SOF Alter Area 19 SOS Sim Parts Storage Bldg. 90710
PROJECT TABLE OF CONTENTS

DIVISION 01 - GENERAL REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 11 00</td>
<td>SUMMARY OF WORK</td>
</tr>
<tr>
<td>01 14 00</td>
<td>WORK RESTRICTIONS</td>
</tr>
<tr>
<td>01 30 00</td>
<td>ADMINISTRATIVE REQUIREMENTS</td>
</tr>
<tr>
<td>01 33 00</td>
<td>SUBMITTAL PROCEDURES</td>
</tr>
<tr>
<td>01 35 13</td>
<td>SPECIAL PROJECT PROCEDURES</td>
</tr>
<tr>
<td>01 50 00</td>
<td>TEMPORARY CONSTRUCTION FACILITIES AND CONTROLS</td>
</tr>
<tr>
<td>01 57 19</td>
<td>TEMPORARY ENVIRONMENTAL CONTROLS</td>
</tr>
<tr>
<td>01 58 00</td>
<td>PROJECT IDENTIFICATION</td>
</tr>
<tr>
<td>01 78 00</td>
<td>CLOSEOUT SUBMITTALS</td>
</tr>
<tr>
<td>01 78 23</td>
<td>OPERATION AND MAINTENANCE DATA</td>
</tr>
</tbody>
</table>

DIVISION 02 - EXISTING CONDITIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 41 00</td>
<td>DEMOLITION</td>
</tr>
<tr>
<td>2 82 16</td>
<td>ASBESTOS ABATEMENT</td>
</tr>
</tbody>
</table>

DIVISION 03 - CONCRETE

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 20 00.00 10</td>
<td>CONCRETE REINFORCING</td>
</tr>
<tr>
<td>3 30 53</td>
<td>MISCELLANEOUS CAST-IN-PLACE CONCRETE</td>
</tr>
</tbody>
</table>

DIVISION 04 - MASONRY

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 20 00</td>
<td>UNIT MASONRY</td>
</tr>
</tbody>
</table>

DIVISION 05 - METALS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 50 13</td>
<td>MISCELLANEOUS METAL FABRICATIONS</td>
</tr>
</tbody>
</table>

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 41 16.00 10</td>
<td>PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS</td>
</tr>
</tbody>
</table>

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 21 16</td>
<td>MINERAL FIBER BLANKET INSULATION</td>
</tr>
<tr>
<td>07 84 00</td>
<td>FIRESTOPPING</td>
</tr>
<tr>
<td>7 92 00</td>
<td>JOINT SEALANTS</td>
</tr>
</tbody>
</table>

DIVISION 08 - OPENINGS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 11 13</td>
<td>STEEL DOORS AND FRAMES</td>
</tr>
<tr>
<td>08 33 23</td>
<td>OVERHEAD COILING DOORS</td>
</tr>
<tr>
<td>8 71 00</td>
<td>DOOR HARDWARE</td>
</tr>
</tbody>
</table>

DIVISION 09 - FINISHES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 22 00</td>
<td>SUPPORTS FOR PLASTER AND GYPSUM BOARD</td>
</tr>
<tr>
<td>09 29 00</td>
<td>GYPSUM BOARD</td>
</tr>
<tr>
<td>09 51 00</td>
<td>ACOUSTICAL CEILINGS</td>
</tr>
<tr>
<td>09 65 00</td>
<td>RESILIENT FLOORING</td>
</tr>
<tr>
<td>09 90 00</td>
<td>PAINTS AND COATINGS</td>
</tr>
<tr>
<td>DIVISION 10 – SPECIALTIES</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>10 26 13 WALL AND CORNER GUARDS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIVISION 21 – FIRE SUPPRESSION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21 13 13.00 10 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIVISION 23 – HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
<td></td>
</tr>
<tr>
<td>23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>23 82 02.00 10 UNITARY HEATING AND COOLING EQUIPMENT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIVISION 26 – ELECTRICAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26 20 00 INTERIOR DISTRIBUTION SYSTEM</td>
<td></td>
</tr>
<tr>
<td>26 51 00 INTERIOR LIGHTING</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIVISION 27 – COMMUNICATIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27 10 00 BUILDING TELECOMMUNICATIONS CABLELING SYSTEM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIVISION 28 – ELECTRONIC SAFETY AND SECURITY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM</td>
<td></td>
</tr>
</tbody>
</table>

90710_90711 Toxic Substance Survey Aug 2015
Bldg 90710 Asbestos and LBP Report Jun 2009

SUBMITTAL LIST
TEST REQUIREMENT LIST

-- End of Project Table of Contents --
PART 1 GENERAL

1.1 WORK COVERED BY CONTRACT DOCUMENTS

1.1.1 Project Description

The work includes the creation of a 10,640+/- square foot climate controlled storage area inside building 90170 with a separate office area to house 6 persons. The office will require NIPRNET and telephone lines. Seal all unused penetrations in the exterior wall and insulation. Install heating/cooling equipment to control temperature and humidity. Modify fire suppression. Provide new lighting and electrical feed. Twelve 12' tall vented shelving will be purchased and installed by the Government. Replace existing roll up door and install new personnel door. Remove and dispose of existing sawdust collector on exterior of facility. Provide all ancillary work as indicated in drawings and specifications and incidental related work.

1.1.2 Location

The work is located at the NW corner of Building 90710, approximately as indicated. The exact location will be shown by the Contracting Officer.

1.2 OCCUPANCY OF PREMISES

Building(s) will be occupied during performance of work under this Contract. Occupancy notifications will be posted in a prominent location in the work area.

Before work is started, arrange with the Contracting Officer a sequence of procedure, means of access, space for storage of materials and equipment, and use of approaches, corridors, and stairways.

1.3 EXISTING WORK

In addition to "FAR 52.236-9, Protection of Existing Vegetation, Structures, Equipment, Utilities, and Improvements":

a. Remove or alter existing work in such a manner as to prevent injury or damage to any portions of the existing work which remain.

b. Repair or replace portions of existing work which have been altered during construction operations to match existing or adjoining work, as approved by the Contracting Officer. At the completion of operations, existing work must be in a condition equal to or better than that which existed before new work started.

1.4 LOCATION OF UNDERGROUND UTILITIES

Obtain digging permits prior to start of excavation, and comply with Installation requirements for locating and marking underground utilities. Contact local utility locating service a minimum of 48 hours prior to excavating, to mark utilities, and within sufficient time required if work...
occurs on a Monday or after a Holiday. Verify existing utility locations indicated on contract drawings, within area of work.

1.4.1 Notification Prior to Excavation

Notify the Contracting Officer at least 48 hours prior to starting excavation work.

1.5 GOVERNMENT-INSTALLED WORK

The government will purchase and install shelving units following completion of construction.

1.6 SALVAGE MATERIAL AND EQUIPMENT

Items designated by the Contracting Officer to be salvaged remain the property of the Government. Segregate, itemize, deliver and off-load the salvaged property at the Government designated storage area located on-board Hurlburt Field.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 SPECIAL SCHEDULING REQUIREMENTS

a. The adjacent portions of Building 90710 will remain in operation during the entire construction period. The Contractor must conduct his operations so as to cause the least possible interference with normal operations of the activity.

b. Permission to interrupt any Activity roads, railroads, or utility service must be requested in writing a minimum of 15 calendar days prior to the desired date of interruption.

1.2 CONTRACTOR ACCESS AND USE OF PREMISES

1.2.1 Base Regulations

Ensure that Contractor personnel employed on the Base become familiar with and obey Base regulations including safety, fire, traffic and security regulations. Keep within the limits of the work and avenues of ingress and egress. Wear hard hats in designated areas. Do not enter any restricted areas unless required to do so and until cleared for such entry. Mark Contractor equipment for identification.

1.2.1.1 Identification Badges and Installation Access

Application for and use of badges will be as directed by the Contracting Officer. Immediately report instances of lost or stolen badges to the Contracting Officer.

1.2.1.2 No Smoking Policy

Smoking is prohibited within and outside of all buildings on installation, except in designated smoking areas. This applies to existing buildings, buildings under construction and buildings under renovation. Discarding tobacco materials other than into designated tobacco receptacles is considered littering and is subject to fines. The Contracting Officer will identify designated smoking areas.

1.2.2 Working Hours

Regular working hours must consist of an 8 1/2 hour period, between 7 a.m. and 3:30 p.m., Monday through Friday, excluding Government holidays.

1.2.3 Work Outside Regular Hours

Work outside regular working hours requires Contracting Officer approval. Make application calendar days prior to such work to allow arrangements to be made by the Government for inspecting the work in progress, giving the specific dates, hours, location, type of work to be performed, contract number and project title. Based on the justification provided, the Contracting Officer may approve work outside regular hours. During periods of darkness, the different parts of the work must be lighted in a manner...
approved by the Contracting Officer. Make utility cutovers after normal working hours or on Saturdays, Sundays, and Government holidays unless directed otherwise.

1.2.4 Utility Cutovers and Interruptions

a. Make utility cutovers and interruptions after normal working hours or on Saturdays, Sundays, and Government holidays. Conform to procedures required paragraph WORK OUTSIDE REGULAR HOURS.

b. Ensure that new utility lines are complete, except for the connection, before interrupting existing service.

c. Interruption to water, sanitary sewer, storm sewer, telephone service, electric service, air conditioning, heating, fire alarm, compressed air, and other major utilities are considered utility cutovers pursuant to the paragraph WORK OUTSIDE REGULAR HOURS.

1.3 SECURITY REQUIREMENTS

Contract Clause "FAR 52.204-2, Security Requirements and Alternate II," "FAC 5252.236-9301, Special Working Conditions and Entry to Work Area," shall apply.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

Not Used

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

U.S. ARMY CORPS OF ENGINEERS (USACE)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-04 Samples

Color Boards; G

1.3 COLOR BOARDS FOR AIR FORCE PROJECTS

Submit one set of color boards within 90 calendar days after Contract Award. Each set of boards must include samples of colors and finishes of interior surfaces, such as walls, floors, and ceilings. Present the samples on 8 by 10-1/2 inches boards (modules) with a maximum spread of 24 by 31-1/2 inches for foldouts. Design modules to fit in a standard loose-leaf, three-ring binder. Where special finishes such as architectural concrete, carpet, or prefinished textured metal panels are required, submit samples not less than 12 inches square with the board. If more space is needed, more than one board per set may be submitted. Certify that the color samples have been reviewed in detail, and that the color samples are in strict accordance with contract drawings and specifications, except as may be otherwise explicitly stated. Submittal of color samples does not relieve the Contractor of the responsibility to submit samples required elsewhere herein.

1.4 MINIMUM INSURANCE REQUIREMENTS

Provide the minimum insurance coverage required by FAR 28.307-2 LIABILITY, during the entire period of performance under this contract. Provide other insurance coverage as required by law.

1.5 FIRST TIER CONTRACTOR REQUIREMENTS FOR ASBESTOS CONTAINING MATERIALS

Accomplish any necessary asbestos removal or handling by a first tier contractor in accordance with all state and federal requirements.
1.6 SUPERVISION

1.6.1 Minimum Communication Requirements

Have at least one qualified superintendent, or competent alternate, capable of reading, writing, and conversing fluently in the English language, on the job-site at all times during the performance of contract work.

1.6.2 Superintendent Qualifications

The project superintendent must have a minimum of 5 years experience in construction with at least 2 of those years as a superintendent on projects similar in size and complexity. The individual must be familiar with the requirements of EM 385-1-1 and have experience in the areas of hazard identification and safety compliance. The individual must be capable of interpreting a critical path schedule and construction drawings. The qualification requirements for the alternate superintendent are the same as for the project superintendent. The Contracting Officer may request proof of the superintendent's qualifications at any point in the project if the performance of the superintendent is in question.

1.6.2.1 Duties

The project superintendent is primarily responsible for managing and coordinating day-to-day production and schedule adherence on the project. The superintendent is required to attend partnering meetings, and quality control meetings. The superintendent or qualified alternative must be on-site at all times during the performance of this contract until the work is completed and accepted.

1.6.3 Non-Compliance Actions

The Project Superintendent is subject to removal by the Contracting Officer for non-compliance with requirements specified in the contract and for failure to manage the project to insure timely completion. Furthermore, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders is acceptable as the subject of claim for extension of time for excess costs or damages by the Contractor.

1.7 PRECONSTRUCTION

After award of the contract but prior to commencement of any work at the site, meet with the Contracting Officer to discuss and develop a mutual understanding relative to the administration of the value engineering and safety program, preparation of the schedule of prices or earned value report, shop drawings, and other submittals, scheduling programming, prosecution of the work, and clear expectations of the "Interim DD Form 1354" Submittal. Major subcontractors who will engage in the work must also attend.

1.8 PARTNERING

To most effectively accomplish this contract, the Government requires the formation of a cohesive partnership within the Project Team whose members are from the Government, the Contractor and their Subcontractors. Key personnel from the Supported Command, the End User (who will occupy the facility), the Government Design and Construction team and Subject Matter Experts, the Installation, the Contractor and Subcontractors, and the

SECT 01 30 00 Page 2
Designer of Record will be invited to participate in the Partnering process. The Partnership will draw on the strength of each organization in an effort to achieve a project that is without any safety mishaps, conforms to the Contract, and stays within budget and on schedule.

The Contracting Officer will provide Information on the Partnering Process and a list of key and optional personnel who should attend the Partnering meeting.

1.9 ELECTRONIC MAIL (E-MAIL) ADDRESS

Establish and maintain electronic mail (e-mail) capability along with the capability to open various electronic attachments as text files, pdf files, and other similar formats. Within 10 days after contract award, provide the Contracting Officer a single (only one) e-mail address for electronic communications from the Contracting Officer related to this contract including, but not limited to contract documents, invoice information, request for proposals, and other correspondence. The Contracting Officer may also use email to notify the Contractor of base access conditions when emergency conditions warrant, such as hurricanes or terrorist threats. Multiple email addresses are not allowed.

It is the Contractor's responsibility to make timely distribution of all Contracting Officer initiated e-mail with its own organization including field office(s). Promptly notify the Contracting Officer, in writing, of any changes to this email address.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

Not Used

-- End of Section --
SECTION 01 33 00

SUBMITTAL PROCEDURES

PART 1 GENERAL

1.1 DEFINITIONS

1.1.1 Submittal Descriptions (SD)

Submittals requirements are specified in the technical sections. Submittals are identified by Submittal Description (SD) numbers and titles as follows:

SD-01 Preconstruction Submittals

Submittals which are required prior to
Certificates of insurance
Surety bonds
Construction progress schedule
Submittal register
Environmental protection plan

SD-02 Shop Drawings

Drawings, diagrams and schedules specifically prepared to illustrate some portion of the work.

Diagrams and instructions from a manufacturer or fabricator for use in producing the product and as aids to the Contractor for integrating the product or system into the project.

Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be coordinated.

SD-03 Product Data

Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions and brochures illustrating size, physical appearance and other characteristics of materials, systems or equipment for some portion of the work.

Samples of warranty language when the contract requires extended product warranties.

SD-04 Samples

Fabricated or unfabricated physical examples of materials, equipment or workmanship that illustrate functional and aesthetic characteristics of a material or product and establish standards by which the work can be judged.
Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project.

Field samples and mock-ups constructed on the project site establish standards by which the ensuring work can be judged. Includes assemblies or portions of assemblies which are to be incorporated into the project and those which will be removed at conclusion of the work.

SD-05 Design Data

Design calculations, mix designs, analyses or other data pertaining to a part of work.

SD-06 Test Reports

Report signed by authorized official of testing laboratory that a material, product or system identical to the material, product or system to be provided has been tested in accord with specified requirements. Unless specified in another section, testing must have been within three years of date of contract award for the project.

Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work or prototype prepared for the project before shipment to job site.

Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.

 Investigation reports.

 Daily logs and checklists.

 Final acceptance test and operational test procedure.

SD-07 Certificates

Statements printed on the manufacturer's letterhead and signed by responsible officials of manufacturer of product, system or material attesting that the product, system, or material meets specification requirements. Must be dated after award of project contract and clearly name the project.

Document required of Contractor, or of a manufacturer, supplier, installer or Subcontractor through Contractor. The document purpose is to further promote the orderly progression of a portion of the work by documenting procedures, acceptability of methods, or personnel qualifications.

 Confined space entry permits.

 Text of posted operating instructions.

SD-08 Manufacturer's Instructions

Preprinted material describing installation of a product, system or material, including special notices and (MSDS) concerning impedances, hazards and safety precautions.
SD-09 Manufacturer's Field Reports

Documentation of the testing and verification actions taken by manufacturer's representative at the job site, in the vicinity of the job site, or on a sample taken from the job site, on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must be signed by an authorized official of a testing laboratory or agency and state the test results; and indicate whether the material, product, or system has passed or failed the test.

Factory test reports.

SD-10 Operation and Maintenance Data

Data that is furnished by the manufacturer, or the system provider, to the equipment operating and maintenance personnel, including manufacturer's help and product line documentation necessary to maintain and install equipment. This data is needed by operating and maintenance personnel for the safe and efficient operation, maintenance and repair of the item.

This data is intended to be incorporated in an operations and maintenance manual or control system.

SD-11 Closeout Submittals

Documentation to record compliance with technical or administrative requirements or to establish an administrative mechanism.

Special requirements necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a major phase of construction on a multi-phase contract.

1.1.2 Approving Authority

Office or designated person authorized to approve submittal.

1.1.3 Work

As used in this section, on- and off-site construction required by contract documents, including labor necessary to produce submittals, construction, materials, products, equipment, and systems incorporated or to be incorporated in such construction.

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with this section.

SD-01 Preconstruction Submittals

Submittal Register; G1.3 SUBMITTAL CLASSIFICATION

Submittals are classified as follows:
1.3.1 Government Approved (G)

Government approval is required for extensions of design, critical materials, deviations, equipment whose compatibility with the entire system must be checked, and other items as designated by the Contracting Officer. Within the terms of the Contract Clause SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION, they are considered to be "shop drawings."

1.3.2

Sustainability Reporting Submittals (S)

Submittals for Guiding Principle Validation (GPV) or Third Party Certification (TPC) are indicated with an "S" designation. Submit the information required by the technical sections that demonstrates compliance with the sustainable requirement, and for inclusion in the Sustainability Notebook. A full submittal for an item may be provided under another SD; however, for the "S" submittal, only provide that portion of the submittal that demonstrates compliance with the sustainable requirement. If the sustainable submittal does require Government Approval, it may be tagged under another SD with a "G."

Schedule submittals for these items throughout the course of construction as provided; do not wait until closeout.

1.4 PREPARATION

1.4.1 Transmittal Form

Utilize Air Force Form 3000 Material Approval Submittal. Use separate forms for different engineering disciplines.

1.4.2 Source Drawings for Shop Drawings

The entire set of Source Drawing files (DWG) will be provided to the Contractor. These drawings may only be provided after award.

1.4.2.1 Terms and Conditions

Data contained on these electronic files must not be used for any purpose other than as a convenience in the preparation of construction data for the referenced project. Any other use or reuse shall be at the sole risk of the Contractor and without liability or legal exposure to the Government. The Contractor must make no claim and waives to the fullest extent permitted by law, any claim or cause of action of any nature against the Government, its agents or sub consultants that may arise out of or in connection with the use of these electronic files. The Contractor must, to the fullest extent permitted by law, indemnify and hold the Government harmless against all damages, liabilities or costs, including reasonable attorney's fees and defense costs, arising out of or resulting from the use of these electronic files.

These electronic Source Drawing files are not construction documents. Differences may exist between the Source Drawing files and the corresponding construction documents. The Government makes no representation regarding the accuracy or completeness of the electronic Source Drawing files, nor does it make representation to the compatibility of these files with the Contractor hardware or software. In the event that a conflict arises between the signed and sealed construction documents.

SECTION 01 33 00 Page 4
prepared by the Government and the furnished Source Drawing files, the
signed and sealed construction documents govern. The Contractor is
responsible for determining if any conflict exists. Use of these Source
Drawing files does not relieve the Contractor of duty to fully comply with
the contract documents, including and without limitation, the need to
check, confirm and coordinate the work of all contractors for the project.
If the Contractor uses, duplicates or modifies these electronic Source
Drawing files for use in producing construction data related to this
contract, remove all previous indicia of ownership (seals, logos,
signatures, initials and dates).

1.4.3 Electronic File Format

Provide submittals in electronic format, with the exception of material
samples required for SD-04 Samples items. Compile the submittal file as a
single, complete document, to include the Transmittal Form described
within. Name the electronic submittal file specifically according to its
contents, coordinate the file naming convention with the Contracting
Officer. Electronic files must be of sufficient quality that all
information is legible. Use PDF as the electronic format, unless otherwise
specified or directed by the Contracting Officer. When required, the
electronic file must include a valid electronic signature, or scan of a
signature.

Email electronic submittal documents fewer than 10MB to an email address as
directed by the Contracting Officer. Provide electronic documents over
10MB on an optical disc, or through an electronic file sharing system such
as the AMRDEC SAFE Web Application located at the following website:

Provide hard copies of submittals when requested by the Contracting
Officer. Up to 2 additional hard copies of any submittal may be requested
at the discretion of the Contracting Officer, at no additional cost to the
Government.

1.5 QUANTITY OF SUBMITTALS

1.5.1 Number of Samples SD-04 Samples

a. Submit two samples, or two sets of samples showing range of variation,
of each required item. One approved sample or set of samples will be
retained by approving authority and one will be returned to Contractor.

b. Submit one sample panel or provide one sample installation where
directed. Include components listed in technical section or as
directed.

c. Submit one sample installation, where directed.

d. Submit one sample of non-solid materials.

1.6 INFORMATION ONLY SUBMITTALS

Normally submittals for information only will not be returned. Approval of
the Contracting Officer is not required on information only submittals.
The Government reserves the right to require the Contractor to resubmit any
item found not to comply with the contract. This does not relieve the
Contractor from the obligation to furnish material conforming to the plans
and specifications; will not prevent the Contracting Officer from requiring
removal and replacement of nonconforming material incorporated in the work; and does not relieve the Contractor of the requirement to furnish samples for testing by the Government laboratory or for check testing by the Government in those instances where the technical specifications so prescribe.

1.7 SUBMITTAL REGISTER

Prepare and maintain submittal register, as the work progresses. Do not change data which is output in columns (c), (d), (e), and (f) as delivered by Government; retain data which is output in columns (a), (g), (h), and (i) as approved. A submittal register showing items of equipment and materials for which submittals are required by the specifications is provided as an attachment. This list may not be all inclusive and additional submittals may be required. The Government will provide the initial submittal register in electronic format with the following fields completed, to the extent that will be required by the Government during subsequent usage.

Column (c): Lists specification section in which submittal is required.

Column (d): Lists each submittal description (SD No. and type, e.g. SD-02 Shop Drawings) required in each specification section.

Column (e): Lists one principal paragraph in specification section where a material or product is specified. This listing is only to facilitate locating submitted requirements. Do not consider entries in column (e) as limiting project requirements.

Thereafter, the Contractor is to track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the Government.

1.7.1 Use of Submittal Register

Submit submittal register. Submit with QC plan and project schedule. Verify that all submittals required for project are listed and add missing submittals. Coordinate and complete the following fields on the register submitted with the QC plan and the project schedule:

Column (a) Activity Number: Activity number from the project schedule.

Column (g) Contractor Submit Date: Scheduled date for approving authority to receive submittals.

Column (h) Contractor Approval Date: Date Contractor needs approval of submittal.

Column (i) Contractor Material: Date that Contractor needs material delivered to Contractor control.

1.7.2 Contractor Use of Submittal Register

Update the following fields in the Government-furnished submittal register program or equivalent fields in program utilized by Contractor with each submittal throughout contract.
Column (b) Transmittal Number: Contractor assigned list of consecutive numbers.

Column (j) Action Code (k): Date of action used to record Contractor's review when forwarding submittals to QC.

Column (l) List date of submittal transmission.

Column (q) List date approval received.

1.7.3 Approving Authority Use of Submittal Register

Update the following fields in the Government-furnished submittal register program or equivalent fields in program utilized by Contractor.

Column (b) Transmittal Number: Contractor assigned list of consecutive numbers.

Column (l) List date of submittal receipt.

Column (m) through (p) List Date related to review actions.

Column (q) List date returned to Contractor.

1.7.4 Copies Delivered to the Government

Deliver one copy of submittal register updated by Contractor to Government with each invoice request.

1.8 VARIATIONS

Variations from contract requirements require both Designer of Record (DOR) and Government approval pursuant to contract Clause FAR 52.236-21 and will be considered where advantageous to Government.

1.8.1 Considering Variations

Discussion with Contracting Officer prior to submission, after consulting with the DOR, will help ensure functional and quality requirements are met and minimize rejections and re-submittals. When contemplating a variation which results in lower cost, consider submission of the variation as a Value Engineering Change Proposal (VECP).

Specifically point out variations from contract requirements in transmittal letters. Failure to point out deviations may result in the Government requiring rejection and removal of such work at no additional cost to the Government.

1.8.2 Proposing Variations

When proposing variation, deliver written request to the Contracting Officer, with documentation of the nature and features of the variation and why the variation is desirable and beneficial to Government, including the DOR's written analysis and approval. If lower cost is a benefit, also include an estimate of the cost savings. In addition to documentation required for variation, include the submittals required for the item. Clearly mark the proposed variation in all documentation.
1.8.3 Warranting that Variations are Compatible

When delivering a variation for approval, Contractor, including its Designer(s) of Record, warrants that this contract has been reviewed to establish that the variation, if incorporated, will be compatible with other elements of work.

1.8.4 Review Schedule Extension

In addition to normal submittal review period, a period of 10 working days will be allowed for consideration by the Government of submittals with variations.

1.9 SCHEDULING

Schedule and submit concurrently submittals covering component items forming a system or items that are interrelated. Include certifications to be submitted with the pertinent drawings at the same time. No delay damages or time extensions will be allowed for time lost in late submittals.

a. Coordinate scheduling, sequencing, preparing and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow for potential resubmittal of requirements.

b. Submittals called for by the contract documents will be listed on the register. If a submittal is called for but does not pertain to the contract work, the Contractor is to include the submittal in the register and annotate it "N/A" with a brief explanation. Approval by the Contracting Officer does not relieve the Contractor of supplying submittals required by the contract documents but which have been omitted from the register or marked "N/A."

c. Re-submit register and annotate monthly by the Contractor with actual submission and approval dates. When all items on the register have been fully approved, no further re-submittal is required.

d. Carefully control procurement operations to ensure that each individual submittal is made on or before the Contractor scheduled submittal date shown on the approved "Submitt Register."

1.10 GOVERNMENT APPROVING AUTHORITY

When approving authority is Contracting Officer, the Government will:

a. Note date on which submittal was received.

b. Review submittals for approval within scheduling period specified and only for conformance with project design concepts and compliance with contract documents.

c. Identify returned submittals with one of the actions defined in paragraph REVIEW NOTATIONS and with markings appropriate for action indicated.

1.10.1 Review Notations

Submittals will be returned to the Contractor with the following notations:

a. Submittals marked "approved" or "accepted" authorize the Contractor to proceed with the work covered.
b. Submittals marked "approved as noted" or "approved, except as noted, resubmittal not required," authorize the Contractor to proceed with the work covered provided he takes no exception to the corrections.

c. Submittals marked "not approved" or "disapproved," or "revise and resubmit," indicate noncompliance with the contract requirements or design concept, or that submittal is incomplete. Resubmit with appropriate changes. No work shall proceed for this item until resubmittal is approved.

d. Submittals marked "not reviewed" will indicate submittal has been previously reviewed and approved, is not required, does not have evidence of being reviewed and approved by Contractor, or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the reason it is not reviewed. Resubmittal submittals returned for lack of review by Contractor or for being incomplete, with appropriate action, coordination, or change.

1.11 DISAPPROVED OR REJECTED SUBMITTALS

Make corrections required by the Contracting Officer. If the Contractor considers any correction or notation on the returned submittals to constitute a change to the contract drawings or specifications; notice as required under the FAR clause entitled CHANGES, is to be given to the Contracting Officer. Contractor is responsible for the dimensions and design of connection details and construction of work. Failure to point out deviations may result in the Government requiring rejection and removal of such work at the Contractor's expense.

If changes are necessary to submittals, make such revisions and submission of the submittals in accordance with the procedures above. No item of work requiring a submittal change is to be accomplished until the changed submittals are approved.

1.12 APPROVED OR ACCEPTED SUBMITTALS

The Contracting Officer's approval or acceptance of submittals is not to be construed as a complete check, and indicates only that

Approval or acceptance will not relieve the Contractor of the responsibility for any error which may exist, as the Contractor under the Contractor Quality Control (CQC) requirements of this contract is responsible for dimensions, the design of adequate connections and details, and the satisfactory construction of all work.

After submittals have been approved or accepted by the Contracting Officer, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.

1.13 APPROVED SAMPLES

Approval of a sample is only for the characteristics or use named in such approval and is not be construed to change or modify any contract requirements. Before submitting samples, the Contractor to assure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
Match the approved samples for materials and equipment incorporated in the work. If requested, approved samples, including those which may be damaged in testing, will be returned to the Contractor, at his expense, upon completion of the contract. Samples not approved will also be returned to the Contractor at its expense, if so requested.

Failure of any materials to pass the specified tests will be sufficient cause for refusal to consider, under this contract, any further samples of the same brand or make of that material. Government reserves the right to disapprove any material or equipment which previously has proved unsatisfactory in service.

Samples of various materials or equipment delivered on the site or in place may be taken by the Contracting Officer for testing. Samples failing to meet contract requirements will automatically void previous approvals. Contractor to replace such materials or equipment to meet contract requirements.

Approval of the Contractor's samples by the Contracting Officer does not relieve the Contractor of his responsibilities under the contract.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

Not Used

-- End of Section --
<table>
<thead>
<tr>
<th>TRANS</th>
<th>SPEC</th>
<th>ACTIVITY</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVT CLASSIFICATION</th>
<th>CONTRACTOR SCHEDULE DATES</th>
<th>CONTRACTOR ACTION</th>
<th>APPROVING AUTHORITY</th>
<th>Mailed to Contraction Authority</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>01 30 00</td>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>Color Boards</td>
<td>1.3 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 33 00</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Submittal Register</td>
<td>1.7 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 50 00</td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Construction Site Plan</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-01 Preconstruction Submittals</td>
<td>Traffic Control Plan</td>
<td>3.4.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td>Backflow Preventer Tests</td>
<td>1.4 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 00</td>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Warranty Management Plan</td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td>Spare Parts Data</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td>Instructions</td>
<td>1.5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>As-Built Drawings</td>
<td>3.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>Record Drawings</td>
<td>3.2 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>Final Approved Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 78 23</td>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td>O&M Database</td>
<td>1.3 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td>Training Content</td>
<td>3.1.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- (a)
- (b)
- (c)
- (d)
- (e)
- (f)
- (g)
- (h)
- (i)
- (j)
- (k)
- (l)
- (m)
- (n)
- (o)
- (p)
- (q)
- (r)
<table>
<thead>
<tr>
<th>TNS</th>
<th>ACTIVITY</th>
<th>SPEC.</th>
<th>NCT</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVT CLASSIFICATION</th>
<th>APPROVAL NEEDED BY</th>
<th>MATERIAL NEEDED BY</th>
<th>CODE</th>
<th>DATE OF ACTION</th>
<th>DATE RCD FROM CONTR.</th>
<th>DATE RCD FROM OTH REVIEWER</th>
<th>DATE RCD FROM APPR AUTH</th>
<th>DATE RCD TO OTHER REVIEWER</th>
<th>DATE RCD TO APPR AUTH</th>
<th>MAILED TO CONTR.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 41 00</td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
<td></td>
<td>Demolition Plan</td>
<td>1.2.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>02 41 00</td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
<td></td>
<td>Existing Conditions</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>02 41 00</td>
<td>SD-01 Preconstruction Submittals</td>
<td></td>
<td></td>
<td>Notification</td>
<td>1.6</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>03 20 00.00 10</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Reinforcement</td>
<td>3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>03 20 00.00 10</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td>03 20 00.00 10</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Reinforcing Steel</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Installation Drawings</td>
<td>1.5</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Air-Entraining Admixture</td>
<td>2.2.3.1</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Water-Reducing or Retarding</td>
<td>2.2.3.2</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Admixture</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Curing Materials</td>
<td>2.2.6</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Batching and Mixing Equipment</td>
<td>3.1.3.3</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Conveying and Placing Concrete</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Mix Design Data</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Ready-Mix Concrete</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Curing Compound</td>
<td>2.4.2</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Mechanical Reinforcing Bar</td>
<td>2.2.5</td>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td>Connectors</td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>SPEC</td>
<td>NSCT</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>03 30 53</td>
<td>Compressive Strength Testing</td>
<td>3.9.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slump</td>
<td>3.9.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Content</td>
<td>3.9.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>2.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cementitious Materials</td>
<td>2.2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aggregates</td>
<td>2.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delivery Tickets</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Floor Hardener</td>
<td>2.4.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curing Compound</td>
<td>2.4.2</td>
<td></td>
</tr>
<tr>
<td>04 20 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut CMU</td>
<td>3.3.2.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detail Drawings</td>
<td>3.4.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cement</td>
<td>2.2.2.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mock-Up Panel</td>
<td>1.3.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete Masonry Units (CMU)</td>
<td>2.2.2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anchors, Ties, and Bar</td>
<td>2.6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positioners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-05 Design Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Masonry Compressive Strength</td>
<td>2.1.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bracing Calculations</td>
<td>3.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Testing of Mortar</td>
<td>3.6.1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Testing of Grout</td>
<td>3.6.1.2</td>
<td></td>
</tr>
<tr>
<td>TRANS No.</td>
<td>SPEC No.</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>DATE OF ACTION</td>
<td>ACTION CODE</td>
<td>DATE FWD TO APPR AUTH</td>
<td>DATE RCD FROM CONTR</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FROM OTH REVIEWER</td>
<td>DATE OF ACTION</td>
<td>Mailed to Contr/ Code</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 20 00</td>
<td>2.4.1.1</td>
<td>Cementitious Materials</td>
<td>2.4.1.1</td>
<td>2.4.1.1</td>
<td></td>
</tr>
<tr>
<td>05 50 13</td>
<td>SD-02</td>
<td>Admixtures for Masonry Mortar</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>05 50 13</td>
<td>2.4.1.3</td>
<td>Admixtures for Grout</td>
<td>Angles and Plates</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>05 50 13</td>
<td>SD-02</td>
<td>Joint Reinforcement</td>
<td>SD-03 Shop Drawings</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>06 41 16.00 10</td>
<td>SD-02</td>
<td>Shop Drawings</td>
<td>Shop Drawings</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>06 41 16.00 10</td>
<td>SD-02</td>
<td>Installation</td>
<td>Installation</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>06 41 16.00 10</td>
<td>SD-03</td>
<td>Product Data</td>
<td>SD-03 Product Data</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>06 41 16.00 10</td>
<td>SD-07</td>
<td>Wood Materials</td>
<td>Wood Materials</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>06 41 16.00 10</td>
<td>SD-07</td>
<td>Finish Schedule</td>
<td>Finish Schedule</td>
<td>2.8.8.3</td>
<td></td>
</tr>
<tr>
<td>07 21 16</td>
<td>SD-03</td>
<td>SD-03 Product Data</td>
<td>Blanket Insulation</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>07 21 16</td>
<td>SD-04</td>
<td>SD-04 Samples</td>
<td>SD-04 Samples</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>07 21 16</td>
<td>SD-07</td>
<td>SD-07 Certificates</td>
<td>SD-07 Certificates</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>07 21 16</td>
<td>SD-08</td>
<td>Quality Assurance</td>
<td>Quality Assurance</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>07 21 16</td>
<td>SD-09</td>
<td>Laminate Clad Casework</td>
<td>Laminate Clad Casework</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>07 21 16</td>
<td>SD-11</td>
<td>SD-11 Closeout Submittals</td>
<td>SD-11 Closeout Submittals</td>
<td>3.3.1</td>
<td></td>
</tr>
<tr>
<td>07 21 16</td>
<td>Recycled Content for Insulation</td>
<td>Recycled Content for Insulation</td>
<td>Recycled Content for Insulation</td>
<td>2.1.1 S</td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Activity 19 SOS Bldg 90710

Description of Item Submitted

<table>
<thead>
<tr>
<th>Item Submitted</th>
<th>Action</th>
<th>Approval Needed By</th>
<th>Material Needed By</th>
<th>Date of Action</th>
<th>Date Rcd to Approving Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce Volatile Organic Compounds (VOC)</td>
<td>2.1.2 S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firestopping Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firestopping Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installer Qualifications</td>
<td>1.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealants</td>
<td>2.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primers</td>
<td>2.2 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond Breakers</td>
<td>2.3 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backstops</td>
<td>2.4 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Adhesion</td>
<td>3.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealant</td>
<td>3.4.7 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organic Compounds (VOC) Content</td>
<td>1.4 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organic Compounds (VOC) Content</td>
<td>2.1.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>2.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>2.1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frames</td>
<td>2.3 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frames</td>
<td>2.3 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS M</td>
<td>SPEC</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>G</td>
<td>CL A R S</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>T</td>
<td>(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 11 13</td>
<td>Weatherstripping</td>
<td>2.4</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frames</td>
<td>2.3</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weatherstripping</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 33 23</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead Coiling Doors</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom Bars</td>
<td>2.2.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guides</td>
<td>2.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting Brackets</td>
<td>2.2.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead Drum</td>
<td>2.2.1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation Drawings</td>
<td>2.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead Coiling Doors</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>2.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-05 Design Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhead Coiling Doors</td>
<td>2.2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterbalancing Mechanism</td>
<td>2.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Door Operators</td>
<td>2.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR</td>
<td>CONTRACTOR SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>Mailed To Approv Auth</td>
<td>Date Rcd From Other Reviewer</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>08 33 23</td>
<td>Operation and Maintenance</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Devices</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procedures</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacture's Brochures</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parts Lists</td>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>3.3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 71 00</td>
<td>SD-02 Shop Drawings</td>
<td>1.4 G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware Schedule</td>
<td>2.3.5 G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keying System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td>Hardware Items</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardware Schedule</td>
<td>1.4 G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 22 00</td>
<td>SD-02 Shop Drawings</td>
<td>Metal support systems</td>
<td>2.1 G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>Key Bitting</td>
<td>1.5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 29 00</td>
<td>SD-03 Product Data</td>
<td>Accessories</td>
<td>2.1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gypsum Board</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>SPEC</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>GOVT</td>
<td>CLASS</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-------------</td>
<td>----------------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>09 29 00</td>
<td>Joint Treatment Materials</td>
<td>2.1.2</td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asbestos Free Materials</td>
<td>2.1</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Material Safety Data Sheets</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer maintenance</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 51 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Approved Detail Drawings</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acoustical Units</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acoustic Ceiling Tiles</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceiling Attenuation Class and</td>
<td>1.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acoustic Ceiling Tiles</td>
<td>2.1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 65 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resilient Flooring and</td>
<td>2.8</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resilient Flooring and</td>
<td>2.8</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adhesives</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS</td>
<td>M</td>
<td>SPEC</td>
<td>N</td>
<td>NO</td>
<td>T</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>ACTIVITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 65 00</td>
<td>Vinyl Composition Tile</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wall Base</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resilient Flooring and</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moisture, Alkalinity and Bond</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface Preparation</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 90 00</td>
<td>SD-03 Product Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certification</td>
<td>1.4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coating</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer's Technical Data Sheets</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-04 Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applicator's qualifications</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualification Testing</td>
<td>1.4.1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-08 Manufacturer's Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application instructions</td>
<td>3.2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixing</td>
<td>3.5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer's Material Safety Data Sheets</td>
<td>1.7.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTIVITY</td>
<td>SPECIFICATION</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>TRANSITION</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(f)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(g)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(h)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(i)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(j)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(k)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(l)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(o)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(p)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(q)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(r)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>SD-10 Operation and Maintenance Data</th>
<th>09 90 00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coatings:</td>
<td>2.1 G</td>
<td></td>
</tr>
<tr>
<td>10 26 13</td>
<td>SD-03 Product Data</td>
<td>Corner Guards</td>
<td>2.2 G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-04 Samples</td>
<td>Finish</td>
<td>2.4 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td>Corner Guards</td>
<td>2.2 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-07 Certificates</td>
<td>Corner Guards</td>
<td>2.2 G</td>
</tr>
<tr>
<td>21 13 13.00 10</td>
<td>SD-02 Shop Drawings</td>
<td>Shop Drawings</td>
<td>1.4.3 G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>As-Built Drawings</td>
<td>SD-03 Product Data</td>
<td>3.5 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Materials and Equipment</td>
<td>Spare Parts</td>
<td>1.6 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Preliminary Tests</td>
<td>Final Acceptance Test</td>
<td>3.4 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire Protection Specialist</td>
<td>Sprinkler System Installer</td>
<td>1.4.1 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-05 Design Data</td>
<td>Pipe Size Calculations</td>
<td>1.2.1 G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD-06 Test Reports</td>
<td>Preliminary Test Report</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Acceptance Test Report</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>
SUBMITTAL REGISTER

TITLE AND LOCATION
Area 19 SOS Bldg 90710

TRANSMITTAL ACTIVITY	SPECIFICATION	DESCRIPTION	ITEM SUBMITTED	CONTRACTOR: SCHEDULE DATES	CONTRACTOR ACTION	APPROVING AUTHORITY	DATE RCD FROM APPR AUTH	DATE RCD FROM OTHER REVIEWER	MAIL TO CONTRACTOR								
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(l)	(m)	(n)	(o)	(p)	(q)	(r)
23 00 00	SD-02 Shop Drawings	Detail Drawings	1.4.5														
		Insulated Nonmetallic Flexible	2.8.1.1														
		Duct Runouts															
		Duct Connectors	2.8.1.1														
		Duct Access Doors	2.8.2														
		Manual Balancing Dampers	2.8.3														
		Diffusers	2.8.6.1														
		Registers and Grilles	2.8.6.2														
		Louvers	2.8.7														
		Air Vents, Penthouses, and	2.8.8														
		Goosenecks															
		Diagrams	1.2.1														
		Operation and Maintenance	3.12														
		Training															
		SD-06 Test Reports															
		Performance Tests	3.10														
		Performance Tests	3.12														
		Damper Acceptance Test	3.8														
		SD-08 Manufacturer’s Instructions															
		Manufacturer’s Installation	3.2														
		Instructions															
		Operation and Maintenance	3.12														
		Training															
Operation and Maintenance Manual Balancing Dampers

Data
- TAB Firm: 1.5.3.1 G
- TAB team assistants: 1.2 G
- TAB team engineer: 1.2 G
- TAB Specialist: 1.5.3.2 G
- TAB team field leader: 1.2 G
- SD-02 Shop Drawings
- TAB Schematic Drawings and Report Forms: 1.3.2 G

SD-03 Product Data
- Equipment and Performance: 1.3 G

SD-06 Test Reports
- TAB Work Execution Schedule: 3.6 G
- TAB Procedures Summary: 3.6 G
- Design review report: 1.3.2 G
<table>
<thead>
<tr>
<th>CONTRACTOR</th>
<th>TRANSMITTED SPECIFICATION</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>GOVT. CLASSIFICATION</th>
<th>APPROVAL NEEDED BY</th>
<th>MATERIAL NEEDED BY</th>
<th>ACTION CODE</th>
<th>DATE OF ACTION</th>
<th>DATE FWD TO APPR AUTH</th>
<th>ACTION CODE</th>
<th>DATE FWD TO OTHER REVIEWER</th>
<th>DATE RCD FROM OTHER REVIEWER</th>
<th>DATE RCD FROM OTH REVIEWER</th>
<th>DATE OF ACTION</th>
<th>MARCHED TO CONTR/ CODE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>23 05 93</td>
<td>Design review report</td>
<td>1.6.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design review report</td>
<td>3.6</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB report</td>
<td>1.5.5.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB report</td>
<td>3.6</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advance Notice of TAB Field</td>
<td>3.6</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completed Pre-TAB Work</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Completed Pre-TAB Work</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Firm</td>
<td>1.5.3.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Independent TAB Agency and Personnel Qualifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAB Submittal and Work</td>
<td>1.6.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design review report</td>
<td>1.3.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design review report</td>
<td>1.6.1.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design review report</td>
<td>3.6</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-field TAB engineering report</td>
<td>1.6.1.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced notice for TAB field</td>
<td>1.6.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite HVAC Work Check</td>
<td>1.6.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Out List</td>
<td></td>
</tr>
<tr>
<td>23 07 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pipe Insulation Systems</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>ACTIVITY SPEC SECTION</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td>(j)</td>
<td>(k)</td>
<td>(l)</td>
<td>(m)</td>
<td>(n)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>3.2</td>
<td>Pipe Insulation Systems</td>
<td>23 07 00</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Duct Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Equipment Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Pipe Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Pipe Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Duct Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Equipment Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>SD-08 Manufacturer’s Instructions</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Pipe Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Pipe Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Duct Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Equipment Insulation Systems</td>
<td></td>
</tr>
<tr>
<td>23 82 02.00 10</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Drawings</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Materials and Equipment</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Spare Parts</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Verification of Dimensions</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>System Performance Tests</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Demonstrations</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Refrigerant Tests, Charging, and Start-Up</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>System Performance Tests</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td>TITLE AND LOCATION</td>
<td>CONTRACTOR</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Area 19 SOS Bldg 90710</td>
<td></td>
</tr>
</tbody>
</table>

Material and Equipment

<table>
<thead>
<tr>
<th>SD-10 Operation and Maintenance Data</th>
<th>2.1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>3.4</td>
</tr>
<tr>
<td>Operation and Maintenance Manuals</td>
<td></td>
</tr>
</tbody>
</table>

Service Organization

SD-02 Shop Drawings	2.10
Panelboards	G
Marking strips	3.1.8.1 G
Receptacles	2.9
Circuit breakers	2.10.3 G
Switches	2.8
Surge protective devices	2.17
SD-06 Test Reports	
600-volt wiring test	3.5.2 G
Grounding system test	3.5.3 G
SD-10 Operation and Maintenance Data	
Electrical Systems	1.5.1 G

Remark

- (a) - (r) are placeholders for additional information.

Table Headers

- **TRANSMISSIBLE SPECIFICATION**
- **DESCRIPTION**
- **ITEM SUBMITTED**
- **GOVERNMENT CLASSIFICATION**
- **APPROVAL NEEDED BY**
- **MATERIAL NEEDED BY**
- **DATE OF ACTION**
- **DATE RCD FROM AUTH**
- **DATE RCD FROM OTHER REVIEWER**
- **DATE RCD FROM OTHER REVIEWER**
- **MAIL TO CONTR/REV**
- **REMARKS**
<table>
<thead>
<tr>
<th>TRANS</th>
<th>ACTIVITY</th>
<th>SPEC NO.</th>
<th>DESCRIPTION</th>
<th>ITEM SUBMITTED</th>
<th>APPL</th>
<th>MATERIAL NEEDED BY</th>
<th>CODE</th>
<th>DATE OF ACTION</th>
<th>ACTION CODE</th>
<th>DATE FWD TO OTH REVIEWER</th>
<th>DATE RCD FROM OTH REVIEWER</th>
<th>DATE RCD FROM OTHER CODE</th>
<th>DATE RCD TO APPT AUTH</th>
<th>MAIL TO CONTR</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 51 00</td>
<td>Drivers, Ballasts and Generators</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>1.6.1</td>
<td>LED Luminaire Warranty</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>1.5.3</td>
<td>Luminaire Design Data</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2.5.2</td>
<td>Dimming Controllers (Dimmers)</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Power Hook Luminaire Hangers</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2.6.1</td>
<td>Exit Signs</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2.6.2</td>
<td>LED Emergency Drivers</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>2.5.3.1</td>
<td>Occupancy Sensors</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td>1.5.4</td>
<td>LED Luminaire - IES LM-79 Test Report</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>1.5.5</td>
<td>LED Light Source - IES LM-80 Test Report</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>1.5.6</td>
<td>LED Light Source - IES TM-21 Test Report</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Report</td>
<td></td>
</tr>
<tr>
<td>1.5.7</td>
<td>Occupancy/Vacancy Sensor Verification Tests</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>1.5.10.3</td>
<td>Energy Efficiency</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td>1.6.1.1</td>
<td>Luminaire Useful Life Certificate</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>1.5.2</td>
<td>LED Driver and Dimming Switch Compatibility Certificate</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>27 10 00</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td>1.6.1.1</td>
<td>Telecommunications drawings</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>1.6.1.2</td>
<td>Telecommunications Space Drawings</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>TRANSACT. NO.</td>
<td>DESCRIPTION</td>
<td>ACTION</td>
<td>CONTRACTOR SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>MATERIAL NEEDED BY</td>
<td>CODE OF ACTION</td>
<td>DATE OF ACTION</td>
<td>CODE OF ACTION</td>
<td>DATE RCD FROM REVIEWER</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FROM OTH. REVIEWER</td>
<td>DATE OF ACTION</td>
<td>Mailed to Contraction Authority</td>
<td>REMARKS</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>27 10 00</td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications cabling</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patch panels</td>
<td>2.4.4</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications</td>
<td>2.5</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>outlet/connector assemblies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipment support frame</td>
<td>2.4.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications cabling</td>
<td>3.5.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications Contractor</td>
<td>1.6.2.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key Personnel</td>
<td>1.6.2.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer Qualifications</td>
<td>1.6.2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test plan</td>
<td>1.6.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-09 Manufacturer’s Field Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory reel tests</td>
<td>2.10.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-10 Operation and Maintenance Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications cabling and pathway system</td>
<td>1.10.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals Record Documentation</td>
<td>1.10.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>28 31 76</td>
<td>SD-02 Shop Drawings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nameplates</td>
<td>2.1.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wiring Diagrams</td>
<td>3.2.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Description</td>
<td>Section</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>28 31 76</td>
<td>System Layout</td>
<td>1.2.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Operation</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notification Appliances</td>
<td>2.14</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amplifiers</td>
<td>2.12</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-03 Product Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminal Cabinets</td>
<td>3.2.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manual Stations</td>
<td>2.13</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batteries</td>
<td>2.11.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoke Sensors</td>
<td>2.10</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notification Appliances</td>
<td>2.14</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addressable Interface Devices</td>
<td>2.7</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amplifiers</td>
<td>2.12</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local Operating Console (LOC)</td>
<td>1.4.4</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-05 Design Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battery Power</td>
<td>2.11.1.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-06 Test Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field Quality Control</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testing Procedures</td>
<td>3.6.1</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoke Sensor Testing</td>
<td>2.10.2</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-07 Certificates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Installer</td>
<td>1.7.1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formal Inspection and Tests</td>
<td>3.6.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Testing</td>
<td>3.6.2.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-09 Manufacturer's Field Reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Operation</td>
<td>2.3</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>TRANSM SPEC</td>
<td>ACTIVITY</td>
<td>DESCRIPTION</td>
<td>ITEM SUBMITTED</td>
<td>G O V T CLASS</td>
<td>CONTRACTOR: SCHEDULE DATES</td>
<td>CONTRACTOR ACTION</td>
<td>APPROVING AUTHORITY</td>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 31 76</td>
<td>Fire Alarm/Mass Notification</td>
<td>1.7.2.2</td>
<td>System</td>
<td>1.7.2.2</td>
<td>SUBMIT</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>DATE OF ACTION</td>
<td>DATE FWD TO APPR AUTH</td>
<td>DATE RCD FROM CONTR</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FRM APPR AUTH</td>
<td>REMARKS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD-11 Closeout Submittals</td>
<td>3.6.2.4</td>
<td>As-Built Drawings</td>
<td>3.6.2.4</td>
<td>SUBMIT</td>
<td>APPROVAL NEEDED BY</td>
<td>MATERIAL NEEDED BY</td>
<td>DATE OF ACTION</td>
<td>DATE FWD TO APPR AUTH</td>
<td>DATE RCD FROM CONTR</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FROM OTHER REVIEWER</td>
<td>DATE RCD FRM APPR AUTH</td>
<td>REMARKS</td>
<td></td>
</tr>
</tbody>
</table>
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

U.S. FEDERAL AVIATION ADMINISTRATION (FAA)

FAA AC 150/5300-13 (2012; Rev A; Change 1 2014) Airport Design

FAA AC 70/7460-1 (2015; Rev L) Obstruction Marking and Lighting

1.2 DEFINITIONS

1.2.1 Landing Areas

"Landing Areas" means:

a. The primary surfaces, comprising the surface of the runway, runway shoulders, and lateral safety zones. The length of each primary surface is the same as the runway length. The width of each primary surface is 2000 feet (1000 feet on each side of the runway centerline).

b. The "clear zone" beyond the ends of each runway is the extension of the primary surface for a distance of 3000 feet beyond each end of each runway.

c. All taxiways, plus the lateral clearance zones along each side for the length of the taxiways (the outer edge of each lateral clearance zone is laterally 250 feet from the far or opposite edge of the taxiway (example: a 75 foot wide taxiway must have a combined width and lateral clearance zone of 425 feet.)

d. All aircraft parking aprons, plus the area 125 feet in width extending beyond each edge all around the aprons.

1.2.2 Safety Precaution Areas

“Safety Precaution Areas” means those portions of approach-departure clearance zones and transitional zones where placement of objects incident to contract performance might result in vertical projections at or above the approach-departure clearance, or the transitional surface.

a. The “approach-departure clearance surface” is an extension of the primary surface and the clear zone at each end of each runway, for a distance of 50,000 feet, first along an inclined (glide angle) and then along a horizontal plane, both flaring symmetrically about the runway centerline extended.
(1) The inclined plane (glide angle) begins in the clear zone 200 feet past the end of the runway (and primary surface) at the same elevation as the end of the runway. It continues upward at a slope of 50:1 (1 foot vertically for each 50 feet horizontally) to an elevation of 500 feet above the established airfield elevation. At that point the plane becomes horizontal, continuing at that same uniform elevation to a point 50,000 feet longitudinally from the beginning of the inclined plane (glide angle) and ending there.

(2) The width of the surface at the beginning of the inclined plane (glide angle) is the same as the width of the clear zone. It then flares uniformly, reaching the maximum width of 16,000 feet at the end.

b. The "approach-departure clearance zone" is the ground area under the approach-departure clearance surface.

c. The "transitional surface" is a sideways extension of all primary surfaces, clear zones, and approach-departure clearance surfaces along inclined planes.

(1) The inclined plane in each case begins at the edge of the surface.

(2) The slope of the incline plane is 7:1 (1 foot vertically for each 7 feet horizontally). It continues to the point of intersection with the:

(a) Inner horizontal surface (which is the horizontal plane 150 feet above the established airfield elevation); or

(b) Outer horizontal surface (which is the horizontal plane 500 feet above the established airfield elevation), whichever is applicable.

d. The "transitional zone" is the ground area under the transitional surface. (It adjoins the primary surface, clear zone, and approach-departure clearance zone.)

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

PART 2 PRODUCTS

2.1 AIRFIELD OBSTRUCTION LIGHTS

Airfield obstruction lights must conform to FAA AC 70/7460-1 and have red or white lenses.

PART 3 EXECUTION

3.1 HAZARDS TO AIRFIELD OPERATION

In addition to "DFARS 252.236-7005, Airfield Safety Precautions," the
following paragraphs apply.

3.1.1 Operations on the Airfield

a. Flightline Driving: A Hurl butt Field Flightline Driving License is required to operate a vehicle on the airfield. The license and half-day training will be provided free of charge by Hurl butt Field Base Operations. The operator cannot be red-green color blind.

b. Flightline Access: Check in and check out with the Airfield Operations Dispatcher daily.
 - During check-in, advise the dispatcher of intended work areas and type of work scheduled.
 - While on any runway, taxiway, or approach area, immediately remove any dirt, debris, or other material spilled or caused by the Contractor’s operations.
 - During check-out, brief the dispatcher on completed work and status of any airfield facilities affected by the work.

c. Airfield Communications: Maintain communications with Base Operations and the air traffic control tower at all times with a radio provided by Base Operations.
 - Furnish all work groups working within 100 feet of a runway with walkie-talkie radios tuned to the ramp net frequency, to be provided by the Government. Provide sufficient radios to allow immediate and simultaneous communication with all work groups.
 - When emergency or operational interruptions of work become necessary, respond immediately. When directed by Base Operations or the air traffic control tower, move all equipment and personnel a minimum of 100 feet from the emergency scene or worksite.

d. Flagman: Depending upon local conditions and based on the discretion of the contracting officer and operational considerations, the contractor may be required to provide, at no additional cost, a flagman and traffic control personnel as required.

d. Airfield Availability: The airfield will be in use during construction activities. Individual requirements for each task order will be coordinated through Airfield Operations. Generally, the contractor will be able to access the airfield during working hours, however construction may be interrupted as a result of flight operations.

3.1.2 FAA Form 7460-1

The contractor is required to comply with all aspects of the Federal Aviation Regulation (FAR), Part 77, Objects Affecting Navigable Airspace, for all work associated with this contract. This includes, but is not limited to, the use of any and all equipment used to construct the facility and the facility itself. The contractor is required to obtain all necessary permits including FAA form 7460-1 (latest edition) and provide all necessary notices associated with this requirement. All work within the following areas must be coordinated in writing with the Contracting Officer 21 days in advance of commencement of the work:

1. LATERAL CLEARANCE AREA: A line 1000 feet from and parallel to the centerline of the runway.

2. TAXIWAY SETBACK: A line 200 feet from and parallel to the centerline of any taxiway.

3. APRON SETBACK: A line 125 feet from and parallel to the edge of the aircraft-parking apron.
4. CLEAR ZONE: A line 1500 feet from and parallel to the centerline of the runway beginning at the runway threshold and continuing for a distance of 3000 feet north and south of the ends of the runway.

Permit requirements and submittal procedures are located at the following web site:
https://oeaaa.faa.gov/oeaaa/external/portal.jsp

3.1.3 Work in Proximity to Landing Areas

Place nothing upon the landing area or applicable portions of safety precaution areas without authority of the Contracting Officer.

Use of landing areas for purposes other than aircraft operation, is prohibited without permission of the Contracting Officer, and the landing area is closed by order of the Contracting Officer and marked as indicated herein.

Accomplish all construction work on the runways, taxiways, and parking aprons and in the end zones of the runways and 75 feet to each side of the runways and taxiways with extreme care regarding the operation of aircraft. Cooperate closely, and coordinate with the Operations Officer and the Contracting Officer. Park equipment in an area designated by the Contracting Officer. Parking of equipment, vehicles, or any type of storage overnight or for any extended period of time in the proximity of the landing areas or taxiways is strictly prohibited. Leave no material in areas where extreme care is to be taken regarding the operation of aircraft.

During periods of active performance of work on the airfield by the Contractor, govern all operations of mobile equipment per the safety provisions.

3.1.4 Schedule of Work/Aircraft Operating Schedules

Schedule work to conform to aircraft operating schedules. The Government will exert every effort to schedule aircraft operations so as to permit the maximum amount of time for the Contractor's activities; however, in the event of emergency, intense operational demands, adverse wind conditions, and other such unforeseen difficulties, the Contractor must cease operations at the specified locations in the aircraft operational area for the safety of the Contractor and military personnel and Government property.

Where flying is controlled, additional permission must be obtained from the control tower operator to enter a landing area unless such area is marked as hazardous to aircraft.

3.1.5 Excavation

Open only those trenches for which material is on hand and ready for placing therein. As soon as possible after the material has been placed and work approved, backfill and compact the trenches as specified.

Maintain landing areas at all times free from hazards, holes, material piles, or projecting shoulders that might damage tires or landing gear. Paved surfaces must be kept clean at all times and free from small stones or other objects which could cause damage to propellers, craft, and personnel.
3.1.6 Contractor Safety Precautions

The Contractor is advised that aircraft operations will produce extremely high noise levels and will induce vibrations in pavements, structures, and equipment in the vicinity, and may result in high velocity flying debris in the area. The Contractor is responsible for providing all necessary protective eye and ear gear and other safety devices for his personnel, for insuring protection of his equipment, and for scheduling the work to eliminate hazards to his personnel and equipment and to prevent damage to work performed by him.

Boundary areas for hazardous work locations and restrictions are defined in FAA AC 150/5300-13. Construction activity within the limits of the boundary areas without approval of the Contracting Officer is prohibited.

Provide a minimum of 2 aviation red or high intensity white obstruction lights on temporary structures (including cranes) over 100 feet above ground level.

3.1.7 Base Civil Engineering (BCE) Work Clearance Request

Obtain an approved BCE Work Clearance Request, AF Form 103, prior to the start of excavation, digging work, or work that disrupts aircraft or vehicular traffic flow, base utility services, fire and intrusion alarm system, or routine activities of the Activity.

3.2 Use of Barge Area

a. Use of the barge off loading area is not allowed except as approved, in writing, by the Contracting Officer. Contractor must request usage of the barge site, in writing, to the Contracting Officer a minimum of 30 days prior to expected deliveries. Contractor must also submit a schedule of all deliveries. Under no circumstances should the contractor assume such requests will be approved. Contractor should plan to have materials delivered by other means.

b. If usage of the barge site is approved, the contractor must meet the following requirements:
 1. Crane boom height cannot exceed eighty (80) feet from mean water elevation.
 2. Crane boom must have a red flag and an operational blinking obstruction light.
 3. Contractor will be responsible for surrounding water quality per the State of Florida Regulations. Prior to delivery of any barge/crane or tug, contractor must install full-depth turbidity barriers both east and west of the site to extend beyond limits of off loading operations.
 4. Off loading operations will be during daylight hours only. Operations will not start before 0700 (7:00 AM) and boom must be lowered to deck height by 1700 hours (5:00 PM) each day.
 5. Contractor is required to provide the name and number of a responsible party, and contact information of the tug/crane operator at site to both of the following:
 a. The Contracting Officer.
 b. Hurlburt Tower: Hurlburt Tower - 884-4795. (If tower cannot be contacted notify the Airfield Manager - 884-4491.
 6. Upon notification of inclement weather, off loading operations must cease and the boom lowered to deck height. Do not raise boom until cleared by the Hurlburt Tower. All barges and equipment must be secured. Upon
notification of Hurcon conditions, the contractor must remove all barges, cranes, tugs, and associated equipment from the site. The government will not be responsible for any delays or costs associated to weather.

7. If notified to do so by the Contracting Officer or Hurlburt Tower, operations must cease and the boom lowered to deck height. Under no circumstances should the boom be raised until cleared by the notifying authority. The government will not be responsible for any associated delays or costs.

C. If these requirements cannot be met, the contractor is prohibited from using the barge site. Failure to adhere to these requirements during operations will result in immediate revocation of site use at no expense to the government. Site must be maintained per specifications and contractor will be responsible for any and all clean-up after operations.

-- End of Section --
SECTION 01 50 00
TEMPORARY CONSTRUCTION FACILITIES AND CONTROLS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C511 (2007) Standard for Reduced-Pressure Principle Backflow Prevention Assembly

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR)

FCCCHR List (continuously updated) List of Approved Backflow Prevention Assemblies

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. FEDERAL AVIATION ADMINISTRATION (FAA)

FAA AC 70/7460-1 (2015; Rev L) Obstruction Marking and Lighting

U.S. FEDERAL HIGHWAY ADMINISTRATION (FHWA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. :

SD-01 Preconstruction Submittals

Construction Site Plan;
Traffic Control Plan; G

SD-06 Test Reports

Backflow Preventer Tests; G
1.3 CONSTRUCTION SITE PLAN

Prior to the start of work, submit a site plan showing the locations and dimensions of temporary facilities (including layouts and details, equipment and material storage area (onsite and offsite), and access and haul routes, avenues of ingress/egress to the fenced area and details of the fence installation. Identify any areas which may have to be graveled to prevent the tracking of mud. Indicate if the use of a supplemental or other staging area is desired. Show locations of safety and construction fences, site trailers, construction entrances, trash dumpsters, temporary sanitary facilities, and worker parking areas.

1.4 BACKFLOW PREVENTER TESTS CERTIFICATE

Backflow prevention devices utilized by the contractor must be listed and have Full Approval from FCCCHR List, University of Southern California, attesting that the design, size and make of each backflow preventer has satisfactorily passed the complete sequence of performance testing and evaluation for the respective level of approval.

1.4.1 Backflow Preventer Tests

The contractor must submit a certified copy of Hurlburt Field Form WS ID No. 1460782 "Backflow Prevention Device Inspection and Maintenance Form" for each approved backflow preventor device installed.

1.5 HURRICANE CONDITION OF READINESS

Unless directed otherwise, comply with:

a. Condition FOUR (Sustained winds of 50 knots or greater expected within 72 hours): Normal daily jobsite cleanup and good housekeeping practices. Collect and store in piles or containers scrap lumber, waste material, and rubbish for removal and disposal at the close of each work day. Maintain the construction site including storage areas, free of accumulation of debris. Stack form lumber in neat piles less than 4 feet high. Remove all debris, trash, or objects that could become missile hazards.

b. Condition THREE (Sustained winds of 50 knots or greater expected within 48 hours): Maintain "Condition FOUR" requirements and commence securing operations necessary for "Condition ONE" which cannot be completed within 18 hours. Cease all routine activities which might interfere with securing operations. Commence securing and stow all gear and portable equipment. Make preparations for securing buildings. Review requirements pertaining to "Condition TWO" and continue action as necessary to attain "Condition THREE" readiness. Contact Contracting Officer for weather and COR updates and completion of required actions.

c. Condition TWO (Sustained winds of 50 knots or greater expected within 24 hours): Curtail or cease routine activities until securing operation is complete. Reinforce or remove form work and scaffolding. Secure machinery, tools, equipment, materials, or remove from the jobsite. Expend every effort to clear all missile hazards and loose equipment from general base areas. Contact Contracting Officer for weather and Condition of Readiness (COR) updates and completion of required actions.
PART 2 PRODUCTS

2.1 TEMPORARY SIGNAGE

2.1.1 Bulletin Board

Immediately upon beginning of work, provide a weatherproof glass-covered bulletin board not less than 36 by 48 inches in size for displaying the Equal Employment Opportunity poster, a copy of the wage decision contained in the contract, Wage Rate Information poster, and other information approved by the Contracting Officer.

2.2 TEMPORARY TRAFFIC CONTROL

2.2.1 Haul Roads

Construct access and haul roads necessary for proper prosecution of the work under this contract. Construct with suitable grades and widths; sharp curves, blind corners, and dangerous cross traffic are be avoided. Provide necessary lighting, signs, barricades, and distinctive markings for the safe movement of traffic. The method of dust control, although optional, must be adequate to ensure safe operation at all times. Location, grade, width, and alignment of construction and hauling roads are subject to approval by the Contracting Officer. Lighting must be adequate to assure full and clear visibility for full width of haul road and work areas during any night work operations.

2.2.2 Barricades

Erect and maintain temporary barricades to limit public access to hazardous areas. Whenever safe public access to paved areas such as roads, parking areas or sidewalks is prevented by construction activities or as otherwise necessary to ensure the safety of both pedestrian and vehicular traffic barricades will be required. Securely place barricades clearly visible with adequate illumination to provide sufficient visual warning of the hazard during both day and night.

2.2.3 Fencing

Provide fencing along the construction site at all open excavations and tunnels to control access by unauthorized people.

a. The safety fencing must be a high visibility orange colored, high density polyethylene grid or approved equal, a minimum of 48 inches high and maximum mesh size of 2 inches, supported and tightly secured to steel posts located on maximum 10 foot centers, constructed at the approved location. Install fencing to be able to restrain a force of at least 250 pounds against it.

2.2.4 Temporary Wiring

Provide temporary wiring in accordance with NFPA 241 and NFPA 70. Include frequent inspection of all equipment and apparatus.
2.2.5 Backflow Preventers

Reduced pressure principle type conforming to the applicable requirements AWWA C511. Provide backflow preventers complete with, bronze mounted gate valve and strainer, stainless steel internal parts. The particular make, model/design, and size of backflow preventers to be installed must be included in the latest edition of the List of Approved Backflow Prevention Assemblies issued by the FCCCHR List. After installation conduct Backflow Preventer Tests and provide test report utilizing the Hurlburt Field Form PWS ID No. 1460782, Backflow Prevention Device Inspection.

PART 3 EXECUTION

3.1 EMPLOYEE PARKING

Contractor employees will park privately owned vehicles in an area designated by the Contracting Officer. This area will be within reasonable walking distance of the construction site. Contractor employee parking must not interfere with existing and established parking requirements of the government installation.

3.2 TEMPORARY BULLETIN BOARD

Locate the bulletin board at the project site in a conspicuous place easily accessible to all employees, as approved by the Contracting Officer.

3.3 AVAILABILITY AND USE OF UTILITY SERVICES

3.3.1 Temporary Utilities

Provide temporary utilities required for construction. Materials may be new or used, must be adequate for the required usage, not create unsafe conditions, and not violate applicable codes and standards.

3.3.2 Sanitation

a. Provide and maintain within the construction area minimum field-type sanitary facilities approved by the Contracting Officer and periodically empty wastes into a municipal, district, or station sanitary sewage system, or remove waste to a commercial facility. Obtain approval from the system owner prior to discharge into any municipal, district, or commercial sanitary sewer system. Any penalties and / or fines associated with improper discharge will be the responsibility of the Contractor. Coordinate with the Contracting Officer and follow station regulations and procedures when discharging into the station sanitary sewer system. Maintain these conveniences at all times without nuisance. Include provisions for pest control and elimination of odors. Government toilet facilities will not be available to Contractor's personnel.

3.3.3 Telephone

Make arrangements and pay all costs for telephone facilities desired.

3.3.4 Obstruction Lighting of Cranes

Provide a minimum of 2 aviation red or high intensity white obstruction
3.4.2 Protection of Traffic

Maintain and protect traffic on all affected roads during the construction period except as otherwise specifically directed by the Contracting Officer. Measures for the protection and diversion of traffic, including the provision of watchmen and flagmen, erection of barricades, placing of lights around and in front of equipment the work, and the erection and maintenance of adequate warning, danger, and direction signs, will be as required by the State and local authorities having jurisdiction. Protect the traveling public from damage to person and property. Minimize the interference with public traffic on roads selected for hauling material to and from the site. Investigate the adequacy of existing roads and their allowable load limit. Contractor is responsible for the repair of any damage to roads caused by construction operations.

3.4.3 Dust Control

Dust control methods and procedures must be approved by the Contracting Officer. Treat dust abatement on access roads with applications of calcium chloride, water sprinklers, or similar methods or treatment.
3.5 CONTRACTOR'S TEMPORARY FACILITIES

3.5.1 Safety

Protect the integrity of any installed safety systems or personnel safety devices. If entrance into systems serving safety devices is required, the Contractor must obtain prior approval from the Contracting Officer. If it is temporarily necessary to remove or disable personnel safety devices in order to accomplish contract requirements, provide alternative means of protection prior to removing or disabling any permanently installed safety devices or equipment and obtain approval from the Contracting Officer.

3.5.2 Administrative Field Offices

Provide and maintain administrative field office facilities within the construction area at the designated site. Government office and warehouse facilities will not be available to the Contractor's personnel.

3.5.3 Storage Area

Construct a temporary 6 foot high chain link fence around trailers and materials. Include plastic strip inserts, colored brown, so that visibility through the fence is obstructed. Fence posts may be driven, in lieu of concrete bases, where soil conditions permit. Do not place or store Trailers, materials, or equipment outside the fenced area unless such trailers, materials, or equipment are assigned a separate and distinct storage area by the Contracting Officer away from the vicinity of the construction site but within the installation boundaries. Trailers, equipment, or materials must not be open to public view with the exception of those items which are in support of ongoing work on any given day. Do not stockpile materials outside the fence in preparation for the next day's work. Park mobile equipment, such as tractors, wheeled lifting equipment, cranes, trucks, and like equipment within the fenced area at the end of each work day.

3.5.4 Supplemental Storage Area

Upon Contractor's request, the Contracting Officer will designate another or supplemental area for the Contractor's use and storage of trailers, equipment, and materials. This area may not be in close proximity of the construction site but will be within the installation boundaries. Fencing of materials or equipment will not be required at this site; however, the Contractor is responsible for cleanliness and orderliness of the area used and for the security of any material or equipment stored in this area. Utilities will not be provided to this area by the Government.

3.5.5 Appearance of Trailers

a. Trailers utilized by the Contractor for administrative or material storage purposes must present a clean and neat exterior appearance and be in a state of good repair. Trailers which, in the opinion of the Contracting Officer, require exterior painting or maintenance will not be allowed on installation property.

3.5.6 Maintenance of Storage Area

a. Keep fencing in a state of good repair and proper alignment. Grassed or unpaved areas, which are not established roadways, will be covered with a layer of gravel as necessary to prevent rutting and the tracking
of mud onto paved or established roadways, should the Contractor elect
to traverse them with construction equipment or other vehicles; gravel
gradation will be at the Contractor's discretion. Mow and maintain
grass located within the boundaries of the construction site for the
duration of the project. Grass and vegetation along fences, buildings,
under trailers, and in areas not accessible to mowers will be edged or
trimmed neatly.

3.5.7 Security Provisions

Provide adequate outside security lighting at the Contractor's temporary
facilities. The Contractor will be responsible for the security of its own
equipment; in addition, the Contractor will notify the appropriate law
enforcement agency requesting periodic security field checks of the temporary
project field office.

3.5.8 Weather Protection of Temporary Facilities and Stored Materials

Take necessary precautions to ensure that roof openings and other critical
openings in the building are monitored carefully. Take immediate actions
required to seal off such openings when rain or other detrimental weather
is imminent, and at the end of each workday. Ensure that the openings are
completely sealed off to protect materials and equipment in the building
from damage.

3.5.8.1 Building and Site Storm Protection

When a warning of gale force winds is issued, take precautions to minimize
danger to persons, and protect the work and nearby Government property.
Precautions must include, but are not limited to, closing openings;
removing loose materials, tools and equipment from exposed locations; and
removing or securing scaffolding and other temporary work. Close openings
in the work when storms of lesser intensity pose a threat to the work or
any nearby Government property.

3.6 PLANT COMMUNICATION

Whenever the Contractor has the individual elements of its plant so located
that operation by normal voice between these elements is not satisfactory,
the Contractor must install a satisfactory means of communication, such as
telephone or other suitable devices and made available for use by
Government personnel.

3.7 TEMPORARY PROJECT SAFETY FENCING

As soon as practicable, but not later than 15 days after the date
established for commencement of work, furnish and erect temporary project
safety fencing at the work site. Maintain the safety fencing during the
life of the contract and, upon completion and acceptance of the work, will
become the property of the Contractor and be removed from the work site.

3.8 CLEANUP

Remove construction debris, waste materials, packaging material and the
like from the work site daily. Any dirt or mud which is tracked onto paved
or surfaced roadways must be cleaned away. Store any salvageable materials
resulting from demolition activities within the fenced area described above
or at the supplemental storage area. Neatly stack stored materials not in
trailers, whether new or salvaged.
3.9 RESTORATION OF STORAGE AREA

Upon completion of the project remove the bulletin board, signs, barricades, haul roads, and any other temporary products from the site. After removal of trailers, materials, and equipment from within the fenced area, remove the fence that will become the property of the Contractor. Restore areas used by the Contractor for the storage of equipment or material, or other use to the original or better condition. Remove gravel used to traverse grassed areas and restore the area to its original condition, including top soil and seeding as necessary.

-- End of Section --
SECTION 01 57 19

TEMPORARY ENVIRONMENTAL CONTROLS

11/15

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.120 Hazardous Waste Operations and Emergency Response

40 CFR 112 Oil Pollution Prevention

40 CFR 241 Guidelines for Disposal of Solid Waste

40 CFR 243 Guidelines for the Storage and Collection of Residential, Commercial, and Institutional Solid Waste

40 CFR 258 Subtitle D Landfill Requirements

40 CFR 260 Hazardous Waste Management System: General

40 CFR 261 Identification and Listing of Hazardous Waste

40 CFR 261.7 Residues of Hazardous Waste in Empty Containers

40 CFR 262 Standards Applicable to Generators of Hazardous Waste

40 CFR 262.31 Standards Applicable to Generators of Hazardous Waste-Labeling

40 CFR 262.34 Standards Applicable to Generators of Hazardous Waste-Accumulation Time

40 CFR 263 Standards Applicable to Transporters of Hazardous Waste

40 CFR 264 Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities
40 CFR 265 Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities

40 CFR 266 Standards for the Management of Specific Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities

40 CFR 268 Land Disposal Restrictions

40 CFR 273 Standards For Universal Waste Management

40 CFR 273.2 Standards for Universal Waste Management - Batteries

40 CFR 273.4 Standards for Universal Waste Management - Mercury Containing Equipment

40 CFR 273.5 Standards for Universal Waste Management - Lamps

40 CFR 279 Standards for the Management of Used Oil

40 CFR 300 National Oil and Hazardous Substances Pollution Contingency Plan

40 CFR 300.125 National Oil and Hazardous Substances Pollution Contingency Plan - Notification and Communications

40 CFR 355 Emergency Planning and Notification

40 CFR 403 General Pretreatment Regulations for Existing and New Sources of Pollution

40 CFR 50 National Primary and Secondary Ambient Air Quality Standards

40 CFR 60 Standards of Performance for New Stationary Sources

40 CFR 61 National Emission Standards for Hazardous Air Pollutants

40 CFR 63 National Emission Standards for Hazardous Air Pollutants for Source Categories

40 CFR 64 Compliance Assurance Monitoring

49 CFR 171 General Information, Regulations, and Definitions

49 CFR 172.101 Hazardous Material Regulation-Purpose and Use of Hazardous Material Table
1.2 DEFINITIONS

1.2.1 Class I and II Ozone Depleting Substance (ODS)

Class I ODS is defined in Section 602(a) of The Clean Air Act. A list of Class I ODS can be found on the EPA website at the following weblink. http://www.epa.gov/ozone/science/ods/classone.html.

Class II ODS is defined in Section 602(s) of The Clean Air Act. A list of Class II ODS can be found on the EPA website at the following weblink. http://www.epa.gov/ozone/science/ods/classtwo.html.

1.2.2 Contractor Generated Hazardous Waste

Contractor generated hazardous waste is materials that, if abandoned or disposed of, may meet the definition of a hazardous waste. These waste streams would typically consist of material brought on site by the Contractor to execute work, but are not fully consumed during the course of construction. Examples include, but are not limited to, excess paint thinners (i.e. methyl ethyl ketone, toluene), waste thinners, excess paints, excess solvents, waste solvents, excess pesticides, and contaminated pesticide equipment rinse water.

1.2.3 Electronics Waste

Electronics waste is discarded electronic devices intended for salvage, recycling, or disposal.

1.2.4 Environmental Pollution and Damage

Environmental pollution and damage is the presence of chemical, physical, or biological elements or agents which adversely affect human health or welfare; unfavorably alter ecological balances of importance to human life; affect other species of importance to humankind; or degrade the environment aesthetically, culturally or historically.

1.2.5 Environmental Protection

Environmental protection is the prevention/control of pollution and habitat disruption that may occur to the environment during construction. The control of environmental pollution and damage requires consideration of land, water, and air; biological and cultural resources; and includes management of visual aesthetics; noise; solid, chemical, gaseous, and liquid waste; radiant energy and radioactive material as well as other pollutants.
1.2.6 Hazardous Debris

As defined in paragraph SOLID WASTE, debris that contains listed hazardous waste (either on the debris surface, or in its interstices, such as pore structure) in accordance with 40 CFR 261. Hazardous debris also includes debris that exhibits a characteristic of hazardous waste in accordance with 40 CFR 261.

1.2.7 Hazardous Materials

Hazardous materials as defined in 49 CFR 171 and listed in 49 CFR 172. Hazardous material is any material that: Is regulated as a hazardous material in accordance with 49 CFR 173; or requires a Safety Data Sheet (SDS) in accordance with 29 CFR 1910.120; or during end use, treatment, handling, packaging, storage, transportation, or disposal meets or has components that meet or have potential to meet the definition of a hazardous waste as defined by 40 CFR 261 Subparts A, B, C, or D. Designation of a material by this definition, when separately regulated or controlled by other sections or directives, does not eliminate the need for adherence to that hazard-specific guidance which takes precedence over this section for "control" purposes. Such material includes ammunition, weapons, explosive actuated devices, propellants, pyrotechnics, chemical and biological warfare materials, medical and pharmaceutical supplies, medical waste and infectious materials, bulk fuels, radioactive materials, and other materials such as asbestos, mercury, and polychlorinated biphenyls (PCBs).

1.2.8 Hazardous Waste

Hazardous Waste is any material that meets the definition of a solid waste and exhibit a hazardous characteristic (ignitability, corrosivity, reactivity, or toxicity) as specified in 40 CFR 261, Subpart C, or contains a listed hazardous waste as identified in 40 CFR 261, Subpart D.

1.2.9 Land Application

Land Application means spreading or spraying discharge water at a rate that allows the water to percolate into the soil. No sheeting action, soil erosion, discharge into storm sewers, discharge into defined drainage areas, or discharge into the "waters of the United States" must occur. Comply with federal, state, and local laws and regulations.

1.2.10 Municipal Separate Storm Sewer System (MS4) Permit

MS4 permits are those held by installations to obtain NPDES permit coverage for their stormwater discharges.

1.2.11 National Pollutant Discharge Elimination System (NPDES)

The NPDES permit program controls water pollution by regulating point sources that discharge pollutants into waters of the United States.

1.2.12 Oily Waste

Oily waste are those materials that are, or were, mixed with Petroleum, Oils, and Lubricants (POLs) and have become separated from that POLs. Oily wastes also means materials, including wastewaters, centrifuge solids, filter residues or sludges, bottom sediments, tank bottoms, and sorbents
which have come into contact with and have been contaminated by, POLs and may be appropriately tested and discarded in a manner which is in compliance with other state and local requirements.

This definition includes materials such as oily rags, "kitty litter" sorbent clay and organic sorbent material. These materials may be land filled provided that: It is not prohibited in other state regulations or local ordinances; the amount generated is "de minimus" (a small amount); it is the result of minor leaks or spills resulting from normal process operations; and free-flowing oil has been removed to the practicable extent possible. Large quantities of this material, generated as a result of a major spill or in lieu of proper maintenance of the processing equipment, are a solid waste. As a solid waste, perform a hazardous waste determination prior to disposal. As this can be an expensive process, it is recommended that this type of waste be minimized through good housekeeping practices and employee education.

1.2.13 Regulated Waste

Regulated waste are solid wastes that have specific additional federal, state, or local controls for handling, storage, or disposal.

1.2.14 Sediment

Sediment is soil and other debris that have eroded and have been transported by runoff water or wind.

1.2.15 Solid Waste

Solid waste is a solid, liquid, semi-solid or contained gaseous waste. A solid waste can be a hazardous waste, non-hazardous waste, or non-Resource Conservation and Recovery Act (RCRA) regulated waste. Types of solid waste typically generated at construction sites may include:

1.2.15.1 Debris

Debris is non-hazardous solid material generated during the construction, demolition, or renovation of a structure that exceeds 2.5-inch particle size that is: a manufactured object; plant or animal matter; or natural geologic material (for example, cobbles and boulders), broken or removed concrete, masonry, and rock asphalt paving; ceramics; roofing paper and shingles. Inert materials may be reinforced with or contain ferrous wire, rods, accessories and weldments. A mixture of debris and other material such as soil or sludge is also subject to regulation as debris if the mixture is comprised primarily of debris by volume, based on visual inspection.

1.2.15.2 Green Waste

Green waste is the vegetative matter from landscaping, land clearing and grubbing, including, but not limited to, grass, bushes, scrubs, small trees and saplings, tree stumps and plant roots. Marketable trees, grasses and plants that are indicated to remain, be re-located, or be re-used are not included.

1.2.15.3 Material not regulated as solid waste

Material not regulated as solid waste is nuclear source or byproduct materials regulated under the Federal Atomic Energy Act of 1954 as amended;
suspended or dissolved materials in domestic sewage effluent or irrigation return flows, or other regulated point source discharges; regulated air emissions; and fluids or wastes associated with natural gas or crude oil exploration or production.

1.2.15.4 Non-Hazardous Waste

Non-hazardous waste is waste that is excluded from, or does not meet, hazardous waste criteria in accordance with 40 CFR 263.

1.2.15.5 Recyclables

Recyclables are materials, equipment and assemblies such as doors, windows, door and window frames, plumbing fixtures, glazing and mirrors that are recovered and sold as recyclable, wiring, insulated/non-insulated copper wire cable, wire rope, and structural components. It also includes commercial-grade refrigeration equipment with Freon removed, household appliances where the basic material content is metal, clean polyethylene terephthalate bottles, cooking oil, used fuel oil, textiles, high-grade paper products and corrugated cardboard, stackable pallets in good condition, clean crating material, and clean rubber/vehicle tires. Metal meeting the definition of lead contaminated or lead based paint contaminated may be included as recyclable if sold to a scrap metal company. Paint cans that meet the definition of empty containers in accordance with 40 CFR 261.7 may be included as recyclable if sold to a scrap metal company.

1.2.15.6 Surplus Soil

Surplus soil is existing soil that is in excess of what is required for this work, including aggregates intended, but not used, for on-site mixing of concrete, mortars, and paving. Contaminated soil meeting the definition of hazardous material or hazardous waste is not included and must be managed in accordance with paragraph HAZARDOUS MATERIAL MANAGEMENT.

1.2.15.7 Scrap Metal

This includes scrap and excess ferrous and non-ferrous metals such as reinforcing steel, structural shapes, pipe, and wire that are recovered or collected and disposed of as scrap. Scrap metal meeting the definition of hazardous material or hazardous waste is not included.

1.2.15.8 Wood

Wood is dimension and non-dimension lumber, plywood, chipboard, hardboard. Treated or painted wood that meets the definition of lead contaminated or lead based contaminated paint is not included. Treated wood includes, but is not limited to, lumber, utility poles, crossties, and other wood products with chemical treatment.

1.2.16 Surface Discharge

Surface discharge means discharge of water into drainage ditches, storm sewers, creeks or "waters of the United States". Surface discharges are discrete, identifiable sources and require a permit from the governing agency. Comply with federal, state, and local laws and regulations.
1.2.17 Wastewater

Wastewater is the used water and solids from a community that flow to a treatment plant.

1.2.17.1 Stormwater

Stormwater is any precipitation in an urban or suburban area that does not evaporate or soak into the ground, but instead collects and flows into storm drains, rivers, and streams.

1.2.18 Waters of the United States

Waters of the United States means Federally jurisdictional waters, including wetlands, that are subject to regulation under Section 404 of the Clean Water Act or navigable waters, as defined under the Rivers and Harbors Act.

1.2.19 Wetlands

Wetlands are those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions.

1.2.20 Universal Waste

The universal waste regulations streamline collection requirements for certain hazardous wastes in the following categories: batteries, pesticides, mercury-containing equipment (for example, thermostats), and lamps (for example, fluorescent bulbs). The rule is designed to reduce hazardous waste in the municipal solid waste (MSW) stream by making it easier for universal waste handlers to collect these items and send them for recycling or proper disposal. These regulations can be found at 40 CFR 273.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Preconstruction Survey

Regulatory Notifications; G

Environmental Protection Plan; G

Stormwater Notice of Intent (for NPDES coverage under the General Permit for Stormwater Discharge from Large and Small Construction Activities); G
Erosion and Dust Control Plan; G
Employee Training Records; G
Environmental Resource Permit or Verification of Exemption (62-330); G
Dredge/Fill Permit or Verification of Exemption (33 U.S.C 1344); G
Dewatering Permit; G
SD-06 Test Reports
 Laboratory Analysis
 Inspection Reports
 Solid Waste Management Report; G
SD-07 Certificates
 Employee Training Records; G
 Erosion and Sediment Control Inspector Qualifications
SD-11 Closeout Submittals
 Stormwater Pollution Prevention Plan Compliance Notebook; G
 Stormwater Notice of Termination (for NPDES coverage under the general permit for construction activities); G
 Waste Determination Documentation; G
 Disposal Documentation for Hazardous and Regulated Waste; G
 Assembled Employee Training Records; G
 Solid Waste Management Report; G
 Hazardous Waste/Debris Management; G
 Regulatory Notifications; G
 Sales Documentation; G
 Engineer Certifications (per 62-330 and dredge/fill permits)
 As-Built Topographic Survey (signed and sealer per 62-330)
 Wetland mitigation documentation per permit requirements (as applicable); G

1.4 ENVIRONMENTAL PROTECTION REQUIREMENTS

Provide and maintain, during the life of the contract, environmental
protection as defined. Plan for and provide environmental protective measures to control pollution that develops during construction practice. Plan for and provide environmental protective measures required to correct conditions that develop during the construction of permanent or temporary environmental features associated with the project. Protect the environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire duration of this Contract. Comply with federal, state, and local regulations pertaining to the environment, including water, air, solid waste, hazardous waste and substances, oily substances, and noise pollution.

Tests and procedures assessing whether construction operations comply with Applicable Environmental Laws may be required. Analytical work must be performed by qualified laboratories; and where required by law, the laboratories must be certified.

1.4.1 Conformance with the Environmental Management System

Perform work under this contract consistent with the policy and objectives identified in the installation's Environmental Management System (EMS). Perform work in a manner that conforms to objectives and targets of the environmental programs and operational controls identified by the EMS. Support Government personnel when environmental compliance and EMS audits are conducted by escorting auditors at the Project site, answering questions, and providing proof of records being maintained. Provide monitoring and measurement information as necessary to address environmental performance relative to environmental, energy, and transportation management goals. In the event an EMS nonconformance or environmental noncompliance associated with the contracted services, tasks, or actions occurs, take corrective and preventative actions. In addition, employees must be aware of their roles and responsibilities under the installation EMS and of how these EMS roles and responsibilities affect work performed under the contract.

Coordinate with the installation's EMS coordinator to identify training needs associated with environmental aspects and the EMS, and arrange training or take other action to meet these needs. Provide training documentation to the Contracting Officer. The Installation Environmental Office will retain associated environmental compliance records. Make EMS Awareness training completion certificates available to Government auditors during EMS audits and include the certificates in the Employee Training Records. See paragraph EMPLOYEE TRAINING RECORDS.

1.5 QUALITY ASSURANCE

1.5.1 Preconstruction Survey and Protection of Features

This paragraph supplements the Contract Clause PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS. Prior to start of any onsite construction activities, perform a Preconstruction Survey of the project site with the Contracting Officer, and take photographs showing existing environmental conditions in and adjacent to the site. Submit a report for the record. Include in the report a plan describing the features requiring protection under the provisions of the Contract Clauses, which are not specifically identified on the drawings as environmental features requiring protection along with the condition of trees, shrubs and grassed areas immediately adjacent to the site of work and adjacent to the Contractor's assigned storage area and access route(s), as applicable. The Contractor and the Contracting Officer will sign this
survey report upon mutual agreement regarding its accuracy and
completeness. Protect those environmental features included in the survey
report and any indicated on the drawings, regardless of interference that
their preservation may cause to the work under the Contract.

1.5.2 Regulatory Notifications

Provide regulatory notification requirements in accordance with federal,
state and local regulations. In cases where the Government will also
provide public notification (such as stormwater permitting), coordinate
with the Contracting Officer. Submit copies of regulatory notifications to
the Contracting Officer at least 10 days prior to commencement of work
activities. Typically, regulatory notifications must be provided for the
following (this listing is not all-inclusive): demolition, renovation,
NPDES defined site work, construction, removal or use of a permitted air
emissions source, dredge/fill, and remediation of controlled substances
(asbestos, hazardous waste, lead paint).

1.5.3 Environmental Brief

Attend an environmental brief to be included in the preconstruction
meeting. Provide the following information: types, quantities, and use of
hazardous materials that will be brought onto the installation; and types
and quantities of wastes/wastewater that may be generated during the
Contract. Discuss the results of the Preconstruction Survey at this time.

Prior to initiating any work on site, meet with the Contracting Officer and
installation Environmental Office to discuss the proposed Environmental
Protection Plan (EPP). Develop a mutual understanding relative to the
details of environmental protection, including measures for protecting
natural and cultural resources, required reports, required permits, permit
requirements (such as mitigation measures), and other measures to be taken.

1.5.4 Environmental Manager

Appoint in writing an Environmental Manager for the project site. The
Environmental Manager is directly responsible for coordinating contractor
compliance with federal, state, local, and installation requirements. The
Environmental Manager must ensure compliance with Hazardous Waste Program
requirements (including hazardous waste handling, storage, manifesting, and
disposal); implement the EPP; ensure environmental permits are obtained,
maintained, and closed out; ensure compliance with Stormwater Program
requirements; ensure compliance with Hazardous Materials (storage,
handling, and reporting) requirements; and coordinate any remediation of
regulated substances (lead, asbestos, PCB transformers). This can be a
collateral position; however, the person in this position must be trained
to adequately accomplish the following duties: ensure waste segregation and
storage compatibility requirements are met; inspect and manage Satellite
Accumulation areas; ensure only authorized personnel add wastes to
containers; ensure Contractor personnel are trained in 40 CFR requirements
in accordance with their position requirements; coordinate removal of waste
containers; and maintain the Environmental Records binder and required
documentation, including environmental permits compliance and close-out.
Submit Environmental Manager Qualifications to the Contracting Officer.

1.5.5 Employee Training Records

Prepare and maintain Employee Training Records throughout the term of the
contract meeting applicable 40 CFR requirements. Provide Employee Training
Records in the Environmental Records Binder. Ensure every employee completes a program of classroom instruction or on-the-job training that teaches them to perform their duties in a way that ensures compliance with federal, state and local regulatory requirements for RCRA Large Quantity Generator. Provide a Position Description for each employee, by subcontractor, based on the Davis-Bacon Wage Rate designation or other equivalent method, evaluating the employee's association with hazardous and regulated wastes. This Position Description will include training requirements as defined in 40 CFR 265 for a Large Quantity Generator facility. Submit these Assembled Employee Training Records to the Contracting Officer at the conclusion of the project, unless otherwise directed.

Train personnel to meet state requirements. Conduct environmental protection/pollution control meetings for personnel prior to commencing construction activities. Contact additional meetings for new personnel and when site conditions change. Include in the training and meeting agenda: methods of detecting and avoiding pollution; familiarization with statutory and contractual pollution standards; installation and care of devices, vegetative covers, and instruments required for monitoring purposes to ensure adequate and continuous environmental protection/pollution control; anticipated hazardous or toxic chemicals or wastes, and other regulated contaminants; recognition and protection of archaeological sites, artifacts, waters of the United States, and endangered species and their habitat that are known to be in the area.

1.5.6 Non-Compliance Notifications

The Contracting Officer will notify the Contractor in writing of any observed noncompliance with federal, state or local environmental laws or regulations, permits, and other elements of the Contractor's EPP. After receipt of such notice, inform the Contracting Officer of the proposed corrective action and take such action when approved by the Contracting Officer. The Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No time extensions will be granted or equitable adjustments allowed for any such suspensions. This is in addition to any other actions the Contracting Officer may take under the contract, or in accordance with the Federal Acquisition Regulation or Federal Law.

1.6 ENVIRONMENTAL PROTECTION PLAN

The purpose of the EPP is to present an overview of known or potential environmental issues that must be considered and addressed during construction. Incorporate construction related objectives and targets from the installation's EMS into the EPP. Include in the EPP measures for protecting natural and cultural resources, required reports, and other measures to be taken. Meet with the Contracting Officer or Contracting Officer Representative to discuss the EPP and develop a mutual understanding relative to the details for environmental protection including measures for protecting natural resources, required reports, and other measures to be taken. Submit the EPP within 15 days after notice to proceed and not less than 10 days before the preconstruction meeting. Revise the EPP throughout the project to include any reporting requirements, changes in site conditions, or contract modifications that change the project scope of work in a way that could have an environmental impact. No requirement in this section will relieve the Contractor of any applicable federal, state, and local environmental protection laws and regulations. During Construction, identify, implement, and submit for
approval any additional requirements to be included in the EPP. Maintain the current version onsite.

The EPP includes, but is not limited to, the following elements:

1.6.1 General Overview and Purpose

1.6.1.1 Descriptions

A brief description of each specific plan required by environmental permit or elsewhere in this Contract such as stormwater pollution prevention plan, spill control plan, solid waste management plan, wastewater management plan, air pollution control plan, contaminant prevention plan, a historical, archaeological, cultural resources, biological resources and wetlands plan, traffic control plan Hazardous, Toxic and Radioactive Waste (HTRW) Plan Non-Hazardous Solid Waste Disposal Plan _____.

1.6.1.2 Duties

The duties and level of authority assigned to the person(s) on the job site who oversee environmental compliance, such as who is responsible for adherence to the EPP, who is responsible for spill cleanup and training personnel on spill response procedures, who is responsible for manifesting hazardous waste to be removed from the site (if applicable), and who is responsible for training the Contractor's environmental protection personnel.

1.6.1.3 Procedures

A copy of any standard or project-specific operating procedures that will be used to effectively manage and protect the environment on the project site.

1.6.1.4 Communications

Communication and training procedures that will be used to convey environmental management requirements to Contractor employees and subcontractors.

1.6.1.5 Contact Information

Emergency contact information contact information (office phone number, cell phone number, and e-mail address).

1.6.2 General Site Information

1.6.2.1 Drawings

Drawings showing locations of proposed temporary excavations or embankments for haul roads, stream crossings, jurisdictional wetlands, material storage areas, structures, sanitary facilities, storm drains and conveyances, and stockpiles of excess soil.

1.6.2.2 Work Area

Work area plan showing the proposed activity in each portion of the area and identify the areas of limited use or nonuse. Include measures for marking the limits of use areas, including methods for protection of features to be preserved within authorized work areas and methods to
control runoff and to contain materials on site, and a traffic control plan.

1.6.2.3 Documentation

A letter signed by an officer of the firm appointing the Environmental Manager and stating that person is responsible for managing and implementing the Environmental Program as described in this contract. Include in this letter the Environmental Manager's authority to direct the removal and replacement of non-conforming work.

1.6.3 Management of Natural Resources

a. Land resources
b. Tree protection (and replacement ratio when applicable)
c. Replacement of damaged landscape features
d. Temporary construction
e. Stream crossings
f. Fish and wildlife resources
g. Wetland areas

1.6.4 Protection of Historical and Archaeological Resources

a. Objectives
b. Methods

1.6.5 Stormwater Management and Control

a. Ground cover
b. Erodible soils
c. Temporary measures
 (1) Structural Practices
 (2) Temporary and permanent stabilization
d. Effective selection, implementation and maintenance of Best Management Practices (BMPs).

1.6.6 Protection of the Environment from Waste Derived from Contractor Operations

Control and disposal of solid and sanitary waste. Control and disposal of hazardous waste.

This item consist of the management procedures for hazardous waste to be generated. The elements of those procedures will coincide with the Installation Hazardous Waste Management Plan. The Contracting Officer will provide a copy of the Installation Hazardous Waste Management Plan. As a minimum, include the following:
a. List of the types of hazardous wastes expected to be generated

b. Procedures to ensure a written waste determination is made for appropriate wastes that are to be generated

c. Sampling/analysis plan, including laboratory method(s) that will be used for waste determinations and copies of relevant laboratory certifications

d. Methods and proposed locations for hazardous waste accumulation/storage (that is, in tanks or containers)

e. Management procedures for storage, labeling, transportation, and disposal of waste (treatment of waste is not allowed unless specifically noted)

f. Management procedures and regulatory documentation ensuring disposal of hazardous waste complies with Land Disposal Restrictions (40 CFR 268)

g. Management procedures for recyclable hazardous materials such as lead-acid batteries, used oil, and similar

h. Used oil management procedures in accordance with 40 CFR 279; Hazardous waste minimization procedures

i. Plans for the disposal of hazardous waste by permitted facilities; and Procedures to be employed to ensure required employee training records are maintained.

1.6.7 Prevention of Releases to the Environment

Procedures to prevent releases to the environment

Notifications in the event of a release to the environment

1.6.8 Regulatory Notification and Permits

List what notifications and permit applications must be made. Some permits require up to 180 days to obtain. Demonstrate that those permits have been obtained or applied for by including copies of applicable environmental permits. The EPP will not be approved until the permits have been obtained.

1.6.9 Clean Air Act Compliance

1.6.9.1 Haul Route

Submit truck and material haul routes along with a Dirt and Dust Control Plan for controlling dirt, debris, and dust on Installation roadways. As a minimum, identify in the plan the subcontractor and equipment for cleaning along the haul route and measures to reduce dirt, dust, and debris from roadways.

1.6.9.2 Pollution Generating Equipment

Identify air pollution generating equipment or processes that may require federal, state, or local permits under the Clean Air Act. Determine requirements based on any current installation permits and the impacts of the project. Provide a list of all fixed or mobile equipment, machinery or operations that could generate air emissions during the project to the
Installation Environmental Office (Air Program Manager).

1.6.9.3 Stationary Internal Combustion Engines

Identify portable and stationary internal combustion engines that will be supplied, used or serviced. Comply with 40 CFR 60 Subpart IIII, 40 CFR 60 Subpart JJJJ, 40 CFR 63 Subpart ZZZZ, and local regulations as applicable. At minimum, include the make, model, serial number, manufacture date, size (engine brake horsepower), and EPA emission certification status of each engine. Maintain applicable records and log hours of operation and fuel use. Logs must include reasons for operation and delineate between emergency and non-emergency operation.

1.6.9.4 Refrigerants

Identify management practices to ensure that heating, ventilation, and air conditioning (HVAC) work involving refrigerants complies with 40 CFR 82 requirements. Technicians must be certified, maintain copies of certification on site, use certified equipment and log work that requires the addition or removal of refrigerant. Any refrigerant reclaimed is the property of the Government, coordinate with the Installation Environmental Office to determine the appropriate turn in location.

1.6.9.5 Air Pollution-engineering Processes

Identify planned air pollution-generating processes and management control measures (including, but not limited to, spray painting, abrasive blasting, demolition, material handling, fugitive dust, and fugitive emissions). Log hours of operations and track quantities of materials used.

1.6.9.6 Compliant Materials

Provide the Government a list of and SDSs for all hazardous materials proposed for use on site. Materials must be compliant with all Clean Air Act regulations for emissions including solvent and volatile organic compound contents, and applicable National Emission Standards for Hazardous Air Pollutants requirements. The Government may alter or limit use of specific materials as needed to meet installation permit requirements for emissions.

1.7 LICENSES AND PERMITS

Obtain licenses and permits required for the construction of the project and in accordance with FAR 52.236-7. Notify the Government of all general use permitted equipment the Contractor plans to use on site. This paragraph supplements the Contractor's responsibility under FAR 52.236-7.

1.8 ENVIRONMENTAL RECORDS BINDER

Maintain on-site a separate three-ring Environmental Records Binder and submit at the completion of the project. Make separate parts within the binder that correspond to each submittal listed under paragraph CLOSEOUT SUBMITTALS in this section.

1.9 SOLID WASTE MANAGEMENT PERMIT

Provide the Contracting Officer with written notification of the quantity of anticipated solid waste or debris that is anticipated or estimated to be generated by construction. Include in the report the locations where
various types of waste will be disposed or recycled. Include letters of acceptance from the receiving location or as applicable; submit one copy of the receiving location state and local Solid Waste Management Permit or license showing such agency's approval of the disposal plan before transporting wastes off Government property.

1.9.1 Solid Waste Management Report

Monthly, submit a solid waste disposal report to the Contracting Officer. For each waste, the report will state the classification (using the definitions provided in this section), amount, location, and name of the business receiving the solid waste.

1.10 FACILITY HAZARDOUS WASTE GENERATOR STATUS

Hurlburt Field is designated as a Large Quantity Generator. Meet the regulatory requirements of this generator designation for any work conducted within the boundaries of this Installation. Comply with provisions of federal, state, and local regulatory requirements applicable to this generator status regarding training and storage, handling, and disposal of construction derived wastes.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

3.1 PROTECTION OF NATURAL RESOURCES

Minimize interference with, disturbance to, and damage to fish, wildlife, and plants, including their habitats. Prior to the commencement of activities, consult with the Installation Environmental Office, regarding rare species or sensitive habitats that need to be protected. The protection of rare, threatened, and endangered animal and plant species identified, including their habitats, is the Contractor's responsibility.

Preserve the natural resources within the project boundaries and outside the limits of permanent work. Restore to an equivalent or improved condition upon completion of work that is consistent with the requirements of the Installation Environmental Office or as otherwise specified. Confine construction activities to within the limits of the work indicated or specified. Provide and maintain appropriate best management practices to protect off-site impacts to natural resources and remove these protective structures at the appropriate time after project completion and stabilization of project site conditions.

3.1.1 Flow Ways

Do not alter water flows or otherwise significantly disturb the native habitat adjacent to the project and critical to the survival of fish and wildlife, except as specified and permitted.

3.1.2 Vegetation

Except in areas to be cleared, do not remove, cut, deface, injure, or destroy trees or shrubs without the Contracting Officer's permission. Do not fasten or attach ropes, cables, or guys to existing nearby trees for anchorages unless authorized by the Contracting Officer. Where such use of
attached ropes, cables, or guys is authorized, the Contractor is responsible for any resultant damage.

Protect existing trees that are to remain to ensure they are not injured, bruised, defaced, or otherwise damaged by construction operations. **Protection of existing trees shall extend to the area just outside the 'drip line' or area beneath outermost branch tips.** Remove displaced rocks from uncleared areas. Coordinate with the Contracting Officer and Installation Environmental Office to determine appropriate action for trees and other landscape features scarred or damaged by equipment operations.

3.1.3 Streams

Stream crossings must allow movement of materials or equipment without violating water pollution control standards of the federal, state, and local governments. Construction of stream crossing structures must be in compliance with any required permits including, but not limited to, Clean Water Act Section 404, and Section 401 Water Quality.

The Contracting Officer's approval and appropriate permits are required before any equipment will be permitted to ford live streams. In areas where frequent crossings are required, install temporary culverts or bridges. Obtain Contracting Officer's approval prior to installation. Remove temporary culverts or bridges upon completion of work, and repair the area to its original condition unless otherwise required by the Contracting Officer.

3.2 STORMWATER

Do not discharge stormwater from construction sites to the sanitary sewer. If the water is noted or suspected of being contaminated, it may only be released to the storm drain system if the discharge is specifically permitted. Obtain authorization in advance from the Installation Environmental Office for any release of contaminated water.

3.2.1 Construction General Permit

Provide a **Generic Permit for Stormwater Discharge from Large and Small Construction Activities** as required by 62-621. Under the terms and conditions of the permit, install, inspect, maintain BMPs, prepare stormwater erosion and sediment control inspection reports, and submit SWPPP inspection reports. Maintain construction operations and management in compliance with the terms and conditions of the permit.

3.2.1.1 Stormwater Pollution Prevention Plan

Submit a project-specific Stormwater Pollution Prevention Plan (SWPPP) to the Contracting Officer for approval, prior to the commencement of work. The SWPPP must meet the requirements of 62-621

Include the following:

a. Comply with terms of the 62-621 permit for stormwater discharges from large and small construction activities. Prepare SWPPP in accordance with the 62-621 requirements. Use Use the Florida Department of Environmental Protection guide at http://www.dep.state.fl.us/water/stormwater/npdes/ to prepare the SWPPP.
b. Select applicable BMPs from EPA Fact Sheets located at http://water.epa.gov/polwaste/npdes/swbmp/Construction-Site-StormWater-Run-Off-Control.cfm or in accordance with state requirements.

c. Include a completed copy of the Notice of Intent, BMP Inspection Report Template, and Stormwater Notice of Termination, except for the effective date.

3.2.1.2 Stormwater Notice of Intent for Construction Activities

Prepare and submit the Notice of Intent for NPDES coverage under the generic permit for construction activities to the Contracting Officer for review and approval.

Once approved, submit the approved NOI and appropriate permit fees to the Florida Department of Environmental Protection. No land disturbing activities may commence without permit coverage. Maintain an approved copy of the SWPPP at the onsite construction office, and continually update as regulations require, reflecting current site conditions.

3.2.1.3 Inspection Reports

Submit "Inspection Reports" to the Contracting Officer in accordance with the Permit.

3.2.1.4 Stormwater Pollution Prevention Plan Compliance Notebook

Create and maintain a three ring binder of documents that demonstrate compliance with the Construction General Permit. Include a copy of the permit Notice of Intent, proof of permit fee payment, SWPPP and SWPPP update amendments, inspection reports and related corrective action records, copies of correspondence with the Florida Department of Environmental Protection, and a copy of the permit Notice of Termination in the binder. At project completion, the notebook becomes property of the Government. Provide the compliance notebook to the Contracting Officer.

3.2.1.5 Stormwater Notice of Termination for Construction Activities

Submit a Notice of Termination to the Contracting Officer for approval once construction is complete and final stabilization has been achieved on all portions of the site for which the permittee is responsible. Once approved, submit the Notice of Termination to the Florida Department of Environmental Protection. Prepare as-built topographic survey information and professional engineer certification form required by the permitting agency for certification of the stormwater management system, and provide to the Contracting Officer.

3.2.2 Erosion and Sediment Control Measures

Provide erosion and sediment control measures in accordance with state regulations. Preserve vegetation to the maximum extent practicable.

Erosion control inspection reports may be compiled as part of a stormwater pollution prevention plan inspection reports.

3.2.2.1 Erosion Control

3.2.2.2 Sediment Control Practices

Implement sediment control practices to divert flows from exposed soils, temporarily store flows, or otherwise limit runoff and the discharge of pollutants from exposed areas of the site. Implement sediment control practices prior to soil disturbance and prior to creating areas with concentrated flow, during the construction process to minimize erosion and sediment laden runoff. Location and details of installation and construction are indicated on the drawings.

3.2.3 Work Area Limits

Mark the areas that need not be disturbed under this Contract prior to commencing construction activities. Mark or fence isolated areas within the general work area that are not to be disturbed. Protect monuments and markers before construction operations commence. Where construction operations are to be conducted during darkness, any markers must be visible in the dark. Personnel must be knowledgeable of the purpose for marking and protecting particular objects.

3.2.4 Contractor Facilities and Work Areas

Place field offices, staging areas, stockpile storage, and temporary buildings in areas designated on the drawings or as directed by the Contracting Officer. Move or relocate the Contractor facilities only when approved by the Government. Provide erosion and sediment controls for onsite borrow and spoil areas to prevent sediment from entering nearby waters. Control temporary excavation and embankments for plant or work areas to protect adjacent areas.

3.2.5 Municipal Separate Storm Sewer System (MS4) Management

Comply with the Installation's MS4 permit requirements.

3.3 SURFACE AND GROUNDWATER

3.3.1 Dewatering

Construction operations for dewatering must be constantly controlled to maintain compliance with existing state water quality standards and designated uses of the surface water body. Comply with the State of Florida water quality standards and anti-degradation provisions and the Clean Water Act Section 404, and applicable Nation Wide Permits. Do not discharge excavation ground water to the sanitary sewer, storm drains, or to surface waters without prior specific authorization in writing from the Installation Environmental Office. Discharge of hazardous substances will not be permitted under any circumstances. Use sediment control BMPs to prevent construction site runoff from directly entering any storm drain or surface waters.

If the construction dewatering is noted or suspected of being contaminated, it may only be released to the storm drain system if the discharge is specifically permitted. Obtain authorization for any contaminated groundwater release in advance from the Installation Environmental Officer and the Florida Department of Environmental Protection. Discharge of hazardous substances will not be permitted under any circumstances.
3.3.2 Waters of the United States

Do not enter, disturb, destroy, or allow discharge of contaminants into waters of the **State or waters of the United States**. The protection of waters of the **State and waters of the United States** shown on the drawings in accordance with paragraph LICENSES AND PERMITS is the Contractor's responsibility. Authorization to enter specific waters of the United States identified does not relieve the Contractor from any obligation to protect other waters within, adjacent to, or in the vicinity of the construction site and associated boundaries.

3.4 PROTECTION OF CULTURAL RESOURCES

3.4.1 Archaeological Resources

Existing archaeological resources within the work area are shown on the drawings. Protect these resources and be responsible for their preservation during the life of the Contract. If, during excavation or other construction activities, any previously unidentified or unanticipated historical, archaeological, and cultural resources are discovered or found, activities that may damage or alter such resources will be suspended. Resources covered by this paragraph include, but are not limited to: any human skeletal remains or burials; artifacts; shell, midden, bone, charcoal, or other deposits; rock or coral alignments, pavings, wall, or other constructed features; and any indication of agricultural or other human activities. Upon such discovery or find, of suspected human remains, cease operations and immediately notify the Contracting Officer so that the appropriate authorities may be notified and a determination made as to their significance and what, if any, special disposition of the finds should be made. Cease all activities that may result in impact to or the destruction of these resources. Secure the area, cover remains, and prevent employees or other persons from trespassing on, removing, or otherwise disturbing such resources. The Government retains ownership and control over archaeological resources.

3.4.2 Historical Resources

Existing historical resources within the work area are shown on the drawings. Protect these resources and be responsible for their preservation during the life of the Contract.

3.5 AIR RESOURCES

Equipment operation, activities, or processes will be in accordance with 40 CFR 64 and state air emission and performance laws and standards.

3.5.1 Preconstruction Air Permits

Notify the Air Program Manager, through the Contracting Officer, at least 6 months prior to bringing equipment, assembled or unassembled, onto the Installation, so that air permits can be secured. Necessary permitting time must be considered in regard to construction activities. Clean Air Act (CAA) permits must be obtained prior to bringing equipment, assembled or unassembled, onto the Installation.

3.5.2 Oil or Dual-fuel Boilers and Furnaces

Provide product data and details for new, replacement, or relocated fuel
fired boilers, heaters, or furnaces to the Installation Environmental Office (Air Program Manager) through the Contracting Officer. Data to be reported include: equipment purpose (water heater, building heat, process), manufacturer, model number, serial number, fuel type (oil type, gas type) size (MMBTU heat input). Provide in accordance with paragraph PRECONSTRUCTION AIR PERMITS.

3.5.3 Burning

Burning is prohibited on the Government premises.

3.5.4 Class I and II ODS Prohibition

Class I and II ODS are Government property and must be returned to the Government for appropriate management. Coordinate with the Installation Environmental Office to determine the appropriate location for turn in of all reclaimed refrigerant.

3.5.5 Accidental Venting of Refrigerant

Accidental venting of a refrigerant is a release and must be reported immediately to the Contracting Officer.

3.5.6 EPA Certification Requirements

Heating and air conditioning technicians must be certified through an EPA-approved program. Maintain copies of certifications at the employees' places of business; technicians must carry certification wallet cards, as provided by environmental law.

3.5.7 Dust Control

Keep dust down at all times, including during nonworking periods. Dry power brooming will not be permitted. Instead, use vacuuming, wet mopping, wet sweeping, or wet power brooming. Air blowing will be permitted only for cleaning nonparticulate debris such as steel reinforcing bars. Only wet cutting will be permitted for cutting concrete blocks, concrete, and bituminous concrete. Do not unnecessarily shake bags of cement, concrete mortar, or plaster.

3.5.7.1 Particulates

Dust particles, aerosols and gaseous by-products from construction activities, and processing and preparation of materials (such as from asphaltic batch plants) must be controlled at all times, including weekends, holidays, and hours when work is not in progress. Maintain excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and other work areas within or outside the project boundaries free from particulates that would exceed 40 CFR 50, state, and local air pollution standards or that would cause a hazard or a nuisance. Sprinkling, chemical treatment of an approved type, baghouse, scrubbers, electrostatic precipitators, or other methods will be permitted to control particulates in the work area. Sprinkling, to be efficient, must be repeated to keep the disturbed area damp. Provide sufficient, competent equipment available to accomplish these tasks. Perform particulate control as the work proceeds and whenever a particulate nuisance or hazard occurs. Comply with state and local visibility regulations.
3.5.7.2 Abrasive Blasting

Blasting operations cannot be performed without prior approval of the Installation Air Program Manager. The use of silica sand is prohibited in sandblasting.

Provide tarpaulin drop cloths and windscreens to enclose abrasive blasting operations to confine and collect dust, abrasive agent, paint chips, and other debris.

3.5.8 Odors

Control odors from construction activities. The odors must be in compliance with state regulations and local ordinances and may not constitute a health hazard.

3.6 WASTE MINIMIZATION

Minimize the use of hazardous materials and the generation of waste. Include procedures for pollution prevention/hazardous waste minimization in the Hazardous Waste Management Section of the EPP. Obtain a copy of the installation's Pollution Prevention/Hazardous Waste Minimization Plan for reference material when preparing this part of the EPP. If no written plan exists, obtain information by contacting the Contracting Officer. Describe the anticipated types of the hazardous materials to be used in the construction when requesting information.

3.6.1 Salvage, Reuse and Recycle

Identify anticipated materials and waste for salvage, reuse, and recycling. Describe actions to promote material reuse, resale or recycling. To the extent practicable, all scrap metal must be sent for reuse or recycling and will not be disposed of in a landfill.

Include the name, physical address, and telephone number of the hauler, if transported by a franchised solid waste hauler. Include the destination and, unless exempted, provide a copy of the state or local permit (cover) or license for recycling.

3.6.2 Nonhazardous Solid Waste Diversion Report

Maintain an inventory of nonhazardous solid waste diversion and disposal of construction and demolition debris. Submit a report to the Contracting Officer on the first working day after each fiscal year quarter, starting the first quarter that nonhazardous solid waste has been generated. Include the following in the report:

<table>
<thead>
<tr>
<th>Construction and Demolition (C&D) Debris Disposed</th>
<th>____ tons, as appropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>C&D Debris Recycled</td>
<td>____ tons, as appropriate</td>
</tr>
<tr>
<td>Total C&D Debris Generated</td>
<td>____ tons, as appropriate</td>
</tr>
</tbody>
</table>
3.7 WASTE MANAGEMENT AND DISPOSAL

3.7.1 Waste Determination Documentation

Complete a Waste Determination form (provided at the pre-construction conference) for Contractor-derived wastes to be generated. All potentially hazardous solid waste streams that are not subject to a specific exclusion or exemption from the hazardous waste regulations (e.g. scrap metal, domestic sewage) or subject to special rules, (lead-acid batteries and precious metals) must be characterized in accordance with the requirements of 40 CFR 261 or corresponding applicable state or local regulations. Base waste determination on user knowledge of the processes and materials used, and analytical data when necessary. Consult with the Installation environmental staff for guidance on specific requirements. Attach support documentation to the Waste Determination form. As a minimum, provide a Waste Determination form for the following waste (this listing is not inclusive): oil- and latex-based painting and caulking products, solvents, adhesives, aerosols, petroleum products, and containers of the original materials.

3.7.1.1 Sampling and Analysis of Waste

3.7.1.1.1 Waste Sampling

Sample waste in accordance with EPA SW-846. Clearly mark each sampled drum or container with the Contractor's identification number, and cross reference to the chemical analysis performed.

3.7.1.1.2 Laboratory Analysis

Follow the analytical procedure and methods in accordance with the 40 CFR 261. Provide analytical results and reports performed to the Contracting Officer.

3.7.1.3 Analysis Type

Identify hazardous waste by analyzing for the following characteristics: ignitability, corrosivity, reactivity, toxicity based on TCLP results, volatiles and semi-volatiles.

3.7.2 Solid Waste Management

3.7.2.1 Solid Waste Management Report

Provide copies of the waste handling facilities' weight tickets, receipts, bills of sale, and other sales documentation. In lieu of sales documentation, a statement indicating the disposal location for the solid waste that is signed by an employee authorized to legally obligate or bind the firm may be submitted. The sales documentation must include the receiver's tax identification number and business, EPA or state...
registration number, along with the receiver's delivery and business addresses and telephone numbers. For each solid waste retained for the Contractor's own use, submit the information previously described in this paragraph on the solid waste disposal report. Prices paid or received do not have to be reported to the Contracting Officer unless required by other provisions or specifications of this Contract or public law.

3.7.2.2 Control and Management of Solid Wastes

Pick up solid wastes, and place in covered containers that are regularly emptied. Do not prepare or cook food on the project site. Prevent contamination of the site or other areas when handling and disposing of wastes. At project completion, leave the areas clean. Employ segregation measures so that no hazardous or toxic waste will become co-mingled with non-hazardous solid waste. Transport solid waste off Government property and dispose of it in compliance with 40 CFR 260, state, and local requirements for solid waste disposal. A Subtitle D RCRA permitted landfill is the minimum acceptable offsite solid waste disposal option. Verify that the selected transporters and disposal facilities have the necessary permits and licenses to operate. Solid waste disposal offsite must comply with most stringent local, state, and federal requirements, including 40 CFR 241, 40 CFR 243, and 40 CFR 258.

Manage hazardous material used in construction, including but not limited to, aerosol cans, waste paint, cleaning solvents, contaminated brushes, and used rags, in accordance with 49 CFR 173.

3.7.3 Control and Management of Hazardous Waste

Do not dispose of hazardous waste on Government property. Do not discharge any waste to a sanitary sewer, storm drain, or to surface waters or conduct waste treatment or disposal on Government property without written approval of the Contracting Officer.

3.7.3.1 Hazardous Waste/Debris Management

Identify construction activities that will generate hazardous waste or debris. Provide a documented waste determination for resultant waste streams. Identify, label, handle, store, and dispose of hazardous waste or debris in accordance with federal, state, and local regulations, including 40 CFR 261, 40 CFR 262, 40 CFR 263, 40 CFR 264, 40 CFR 265, 40 CFR 266, and 40 CFR 268.

Manage hazardous waste in accordance with the approved Hazardous Waste Management Section of the EPP and the Hurlburt Field Hazardous Waste Management Plan. Store hazardous wastes in approved containers in accordance with 49 CFR 173 and 49 CFR 178. Hazardous waste generated within the confines of Government facilities is identified as being generated by the Government. Prior to removal of any hazardous waste from Government property, hazardous waste manifests must be signed by personnel from the Installation Environmental Office. Do not bring hazardous waste onto Government property. Provide the Contracting Officer with a copy of waste determination documentation for any solid waste streams that have any potential to be hazardous waste or contain any chemical constituents listed in 40 CFR 372-SUBPART D.

The contractor shall be considered the primary co-generator for all hazardous wastes generated throughout the duration of the contract. All hazardous waste management activities shall be coordinated and approved by
The Installation Environmental Office.

The contractor's site superintendent must attend the Hurlburt Field Hazardous Waste Awareness training prior to starting work on base. For reservations, contact the Installation Environmental Office 884-7923.

The contractor is responsible for the management and disposal of all hazardous wastes he/she generates on base. All cost for labor, equipment, materials, transportation, and other services required to comply with federal, state and local laws governing hazardous/special waste management and disposal are the responsibility of the contractor.

The contractor shall characterize their waste streams using specific and technical knowledge, MSDSs and/or sampling and analysis. This responsibility also includes preparation of waste profile sheets, manifests (regulated and non-regulated) packaging, marking and labeling of wastes containers.

The contractor shall manage all hazardous waste, special waste, and universal waste IAW the HFLD Hazardous Waste Management Plan. The contractor shall ensure that all employees, including their subs, comply with the rules and procedures outlined in the Hurlburt Field Hazardous Waste Management Plan.

If transportation of Hazardous Wastes is required, the contractor shall possess or ensure the transportation company used for transportation of hazardous waste has a valid state and federal EPA identification number and all DOT requirements are met.

The contractor shall prepare profiles and manifests for all waste transported off base for disposal. A designated representative from the Installation Environmental Office must approve and sign the hazardous waste/non-hazardous waste manifest. Contractor shall ensure the signed manifest is returned to the Installation Environmental Office within 45 days from the time it's received at the disposal facility.

The Hurlburt Field Hazardous Waste Storage Facility may accept contractor's hazardous, special and universal waste (that was generated on base) depending on type of waste, quantities generated and provisions of the contract. The Installation Environmental Office must approve acceptance of the waste before it's generated.

3.7.3.2 Waste Storage/Satellite Accumulation/90 Day Storage Areas

Accumulate hazardous waste at satellite accumulation points and in compliance with 40 CFR 262.34 and applicable state or local regulations. Individual waste streams will be limited to 55 gallons of accumulation (or 1 quart for acutely hazardous wastes). If the Contractor expects to generate hazardous waste at a rate and quantity that makes satellite accumulation impractical, the Contractor may request a temporary 90 day accumulation point be established. Submit a request in writing to the Contracting Officer and provide the following information (Attach Site Plan to the Request):

| Contract Number | [_____] |
| Contractor | [_____] |

SECTION 01 57 19 Page 25
Attach a Waste Determination form for the expected waste streams. Allow 10 working days for processing this request. Additional compliance requirements (e.g. training and contingency planning) that may be required are the responsibility of the Contractor. Barricade the designated area where waste is being stored and post a sign identifying as follows:

"DANGER - UNAUTHORIZED PERSONNEL KEEP OUT"

3.7.3.3 Hazardous Waste Disposal

3.7.3.3.1 Responsibilities for Contractor's Disposal

Provide hazardous waste manifest to the Installations Environmental Office for review, approval, and signature prior to shipping waste off Government property.

3.7.3.3.1.1 Services

Provide service necessary for the disposal of the hazardous material or waste in accordance with 40 CFR 260, local, and state, laws and regulations, and the terms and conditions of the Contract within 60 days after the materials have been generated. These services include necessary personnel, labor, transportation, packaging, detailed analysis (if required for disposal or transportation, include manifesting or complete waste profile sheets, equipment, and compile documentation).

3.7.3.3.1.2 Samples

Obtain a representative sample of the material generated for each job done to provide waste stream determination.

3.7.3.3.1.3 Analysis

Analyze each sample taken and provide analytical results to the Contracting Officer. See paragraph WASTE DETERMINATION DOCUMENTATION.

3.7.3.3.1.4 Labeling

Determine the Department of Transportation's (DOT's) proper shipping names for waste (each container requiring disposal) and demonstrate to the Contracting Officer how this determination is developed and supported by the sampling and analysis requirements contained herein. Label all
containers of hazardous waste with the words "Hazardous Waste" or other words to describe the contents of the container in accordance with 40 CFR 262.31 and applicable state or local regulations.

3.7.3.2 Contractor Disposal Turn-In Requirements

Hazardous waste generated must be disposed of in accordance with the following conditions to meet installation requirements:

a. Drums must be compatible with waste contents and drums must meet DOT requirements for 49 CFR 173 for transportation of materials.

b. Band drums to wooden pallets.

c. No more than three 55 gallon drums or two 85 gallon over packs are to be banded to a pallet.

d. Band using 1-1/4 inch minimum band on upper third of drum.

e. Provide label in accordance with 49 CFR 172.101.

f. Leave 3 to 5 inches of empty space above volume of material.

3.7.3.4 Universal Waste Management

Manage the following categories of universal waste in accordance with federal, state, and local requirements and installation instructions:

a. Batteries as described in 40 CFR 273.2

b. Lamps as described in 40 CFR 273.5

c. Mercury-containing equipment as described in 40 CFR 273.4

Mercury is prohibited in the construction of this facility, unless specified otherwise, and with the exception of mercury vapor lamps and fluorescent lamps. Dumping of mercury-containing materials and devices such as mercury vapor lamps, fluorescent lamps, and mercury switches, in rubbish containers is prohibited. Remove without breaking, pack to prevent breakage, and transport out of the activity in an unbroken condition for disposal as directed.

3.7.3.5 Electronics End-of-Life Management

Recycle electronics waste, including, but not limited to, used electronic devices such as computers, monitors, hard-copy devices, televisions, mobile devices, in accordance with 40 CFR 260-262, state, and local requirements, and installation instructions. Coordinate recycling of electronics with the Installation Environmental Office.

3.7.3.6 Disposal Documentation for Hazardous and Regulated Waste

Contact the Contracting Officer for the facility RCRA identification number that is to be used on each manifest.

Submit a copy of the applicable EPA and or state permit(s), manifest(s), or license(s) for transportation, treatment, storage, and disposal of hazardous and regulated waste by permitted facilities. Hazardous or toxic waste manifests must be reviewed, signed, and approved by the Contracting
Officer before the Contractor may ship waste. To obtain specific disposal instructions, coordinate with the Installation Environmental Office. Refer to Section 01 57 19.01 20 SUPPLEMENTAL TEMPORARY ENVIRONMENTAL CONTROLS for the Installation Point of Contact information.

3.7.4 Releases/Spills of Oil and Hazardous Substances

3.7.4.1 Response and Notifications

Exercise due diligence to prevent, contain, and respond to spills of hazardous material, hazardous substances, hazardous waste, sewage, regulated gas, petroleum, lubrication oil, and other substances regulated in accordance with 40 CFR 300. Maintain spill cleanup equipment and materials at the work site. In the event of a spill, take prompt, effective action to stop, contain, curtail, or otherwise limit the amount, duration, and severity of the spill/release. In the event of any releases of oil and hazardous substances, chemicals, or gases; immediately (within 15 minutes) notify the Installation Fire Department (dial 911), the Installation Environmental Office, and the Contracting Officer.

Submit verbal and written notifications as required by the federal (40 CFR 300.125 and 40 CFR 355), state regulations and the Installation Environmental Office. Provide a copy of the written spill report to the Installation Environmental Office within 24 hours of spill occurrence. Spill response must be in accordance with 40 CFR 300 and applicable state and local regulations. Contain and clean up these spills without cost to the Government.

3.7.4.2 Clean Up

Clean up hazardous and non-hazardous waste spills. Reimburse the Government for costs incurred including sample analysis materials, clothing, equipment, and labor if the Government will initiate its own spill cleanup procedures, for Contractor-responsible spills, when: Spill cleanup procedures have not begun within one hour of spill discovery/occurrence; or, in the Government's judgment, spill cleanup is inadequate and the spill remains a threat to human health or the environment.

3.7.5 Mercury Materials

Immediately report to the Environmental Office and the Contracting Officer instances of breakage or mercury spillage. Clean mercury spill area to the satisfaction of the Contracting Officer.

Do not recycle a mercury spill cleanup; manage it as a hazardous waste for disposal.

3.7.6 Wastewater

3.7.6.1 Disposal of wastewater must be as specified below.

3.7.6.1.1 Treatment

Do not allow wastewater from construction activities, such as onsite material processing, concrete curing, foundation and concrete clean-up, water used in concrete trucks, and forms to enter water ways or to be discharged prior to being treated to remove pollutants. Dispose of the construction-related waste water off-Government property in accordance
with 40 CFR 403 and state regulations.

3.7.6.1.2 Surface Discharge

For discharge of ground water, obtain a state 62-621 dewatering permit specific for pumping and discharging ground water prior to surface discharging.

3.7.6.1.3 Land Application

Water generated from the flushing of lines after disinfection or disinfection in conjunction with hydrostatic testing should not be discharged without prior approval from the Environmental Office and the Contracting Officer.

3.8 HAZARDOUS MATERIAL MANAGEMENT

Include hazardous material control procedures in the Safety Plan, in accordance with Section 01 35 26 GOVERNMENTAL SAFETY REQUIREMENTS. Address procedures and proper handling of hazardous materials, including the appropriate transportation requirements. Do not bring hazardous material onto Government property that does not directly relate to requirements for the performance of this contract. Submit an SDS and estimated quantities to be used for each hazardous material to the Contracting Officer prior to bringing the material on the installation. Typical materials requiring SDS and quantity reporting include, but are not limited to, oil and latex based painting and caulking products, solvents, adhesives, aerosol, and petroleum products. Use hazardous materials in a manner that minimizes the amount of hazardous waste generated. Containers of hazardous materials must have National Fire Protection Association labels or their equivalent. Certify that hazardous materials removed from the site are hazardous materials and do not meet the definition of hazardous waste, in accordance with 40 CFR 261.

3.9 PREVIOUSLY USED EQUIPMENT

Clean previously used construction equipment prior to bringing it onto the project site. Equipment must be free from soil residuals, egg deposits from plant pests, noxious weeds, and plant seeds. Consult with the U.S. Department of Agriculture jurisdictional office for additional cleaning requirements.

3.10 CONTROL AND MANAGEMENT OF ASBESTOS-CONTAINING MATERIAL (ACM)

Manage and dispose of asbestos-containing waste in accordance with 40 CFR 61. Refer to Section 02 82 16 ASBESTOS ABATEMENT. Manifest asbestos-containing waste and provide the manifest to the Contracting Officer. Notifications to the state and Installation Air Program Manager are required before starting any asbestos work.

3.11 PETROLEUM, OIL, LUBRICANT (POL) STORAGE AND FUELING

POL products include flammable or combustible liquids, such as gasoline, diesel, lubricating oil, used engine oil, hydraulic oil, mineral oil, and cooking oil. Store POL products and fuel equipment and motor vehicles in a manner that affords the maximum protection against spills into the environment. Manage and store POL products in accordance with EPA 40 CFR 112, and other federal, state, regional, and local laws and regulations. Use secondary containments, dikes, curbs, and other barriers, to prevent POL products from spilling and entering the ground, storm or
sewer drains, stormwater ditches or canals, or navigable waters of the United States. Describe in the EPP (see paragraph ENVIRONMENTAL PROTECTION PLAN) how POL tanks and containers must be stored, managed, and inspected and what protections must be provided. Storage of oil, including fuel, on the project site is not allowed. Fuel must be brought to the project site each day that work is performed.

3.11.1 Used Oil Management

Manage used oil generated on site in accordance with 40 CFR 279. Determine if any used oil generated while onsite exhibits a characteristic of hazardous waste. Used oil containing 1,000 parts per million of solvents is considered a hazardous waste and disposed of at the Contractor's expense. Used oil mixed with a hazardous waste is also considered a hazardous waste. Dispose in accordance with paragraph HAZARDOUS WASTE DISPOSAL.

3.11.2 Oil Storage Including Fuel Tanks

Provide secondary containment and overfill protection for oil storage tanks. A berm used to provide secondary containment must be of sufficient size and strength to contain the contents of the tanks plus 5 inches freeboard for precipitation. Construct the berm to be impervious to oil for 72 hours that no discharge will permeate, drain, infiltrate, or otherwise escape before cleanup occurs. Use drip pans during oil transfer operations; adequate absorbent material must be onsite to clean up any spills and prevent releases to the environment. Cover tanks and drip pans during inclement weather. Provide procedures and equipment to prevent overfilling of tanks. If tanks and containers with an aggregate aboveground capacity greater than 1320 gallons will be used onsite (only containers with a capacity of 55 gallons or greater are counted), provide and implement a SPCC plan meeting the requirements of 40 CFR 112. Do not bring underground storage tanks to the installation for Contractor use during a project. Submit the SPCC plan to the Contracting Officer for approval.

Monitor and remove any rainwater that accumulates in open containment dikes or berms. Inspect the accumulated rainwater prior to draining from a containment dike to the environment, to determine there is no oil sheen present.

3.12 INADVERTENT DISCOVERY OF PETROLEUM-CONTAMINATED SOIL OR HAZARDOUS WASTES

If petroleum-contaminated soil, or suspected hazardous waste is found during construction that was not identified in the Contract documents, immediately notify the Contracting Officer. Do not disturb this material until authorized by the Contracting Officer.

3.13 CHLORDANE

Evaluate excess soils and concrete foundation debris generated during the demolition of housing units or other wooden structures for the presence of chlordane or other pesticides prior to reuse or final disposal.

3.14 SOUND INTRUSION

Make the maximum use of low-noise emission products, as certified by the EPA. Blasting or use of explosives are not permitted without written
permission from the Contracting Officer, and then only during the designated times.

Keep construction activities under surveillance and control to minimize environment damage by noise. Comply with the provisions of the State of Florida rules.

3.15 POST CONSTRUCTION CLEANUP

Clean up areas used for construction in accordance with Contract Clause: "Cleaning Up". Unless otherwise instructed in writing by the Contracting Officer, remove traces of temporary construction facilities such as haul roads, work area, structures, foundations of temporary structures, stockpiles of excess or waste materials, and other vestiges of construction prior to final acceptance of the work. Grade parking area and similar temporarily used areas to conform with surrounding contours.

-- End of Section --
PART 1 GENERAL

1.1 PROJECT SIGN

Prior to initiating any work on site, provide project identification sign at the location designated. Install sign within 15 days after Notice to Proceed. Install at a location of high public visibility adjacent to the main entrance to the site. Construct the sign of new pressure-treated 4"x4"x12' support posts and exterior grade plywood, A-C, 1/2" thick, 4'-0" x 8'-0". Erect the sign surface plumb and level along with anchoring securely. Utilize exterior professional quality, high gloss alkyd enamel paint. Paint exposed surface of sign, supports, and framing. Lettering may be exterior quality paint or pre-cut vinyl self-adhesive products. Utilize experience professional sign painter with at least two years experience. Maintain sign throughout the life of the project. Upon completion of the project, remove the sign from the site and restore the area.

1.1.1 Project Signboard (Air Force)

Furnish the sign, maintain the sign during construction, and remove the sign from the job site upon completion of the project. Details of sign graphics and construction are indicated in sketch attached to this section.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

Not Used

-- End of Section --
SECTION 01 78 00

CLOSEOUT SUBMITTALS

PART 1 GENERAL

1.1 DEFINITIONS

1.1.1 As-Built Drawings

As-built drawings are developed and maintained by the Contractor and depict actual conditions, including deviations from the Contract Documents. These deviations and additions may result from coordination required by, but not limited to: contract modifications; official responses to Contractor submitted Requests for Information; direction from the Contracting Officer; designs which are the responsibility of the Contractor, and differing site conditions. Maintain the as-builts throughout construction as red-lined hard copies on site. These files serve as the basis for the creation of the record drawings.

1.1.2 Record Drawings

The record drawings are the final compilation of actual conditions reflected in the as-built drawings.

1.2 SOURCE DRAWING FILES

Request the full set of electronic drawings, in the source format, for Record Drawing preparation, after award and at least 30 days prior to required use.

1.2.1 Terms and Conditions

Data contained on these electronic files must not be used for any purpose other than as a convenience in the preparation of construction data for the referenced project. Any other use or reuse shall be at the sole risk of the Contractor and without liability or legal exposure to the Government. The Contractor must make no claim and waives to the fullest extent permitted by law, any claim or cause of action of any nature against the Government, its agents or sub consultants that may arise out of or in connection with the use of these electronic files. The Contractor must, to the fullest extent permitted by law, indemnify and hold the Government harmless against all damages, liabilities or costs, including reasonable attorney's fees and defense costs, arising out of or resulting from the use of these electronic files.

These electronic CAD drawing files are not construction documents. Differences may exist between the CAD files and the corresponding construction documents. The Government makes no representation regarding the accuracy or completeness of the electronic CAD files, nor does it make representation to the compatibility of these files with the Contractor hardware or software. In the event that a conflict arises between the signed and sealed construction documents prepared by the Government and the furnished Source drawing files, the signed and sealed construction documents govern. The Contractor is responsible for determining if any conflict exists. Use of these Source Drawing files does not relieve the
Contractor of duty to fully comply with the contract documents, including and without limitation, the need to check, confirm and coordinate the work of all contractors for the project. If the Contractor uses, duplicates or modifies these electronic source drawing files for use in producing construction data related to this contract, remove all previous indicia of ownership (seals, logos, signatures, initials and dates).

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
 Warranty Management Plan
 Spare Parts Data
SD-08 Manufacturer's Instructions
 Posted Instructions
SD-10 Operation and Maintenance Data
 Operation and Maintenance Manuals
SD-11 Closeout Submittals
 As-Built Drawings; G
 Record Drawings; G
 Final Approved Shop Drawings

1.4 SPARE PARTS DATA

Submit two copies of the Spare Parts Data list.

a. Indicate manufacturer's name, part number, nomenclature, and stock level required for maintenance and repair. List those items that may be standard to the normal maintenance of the system.

1.5 WARRANTY MANAGEMENT

1.5.1 Warranty Management Plan

Develop a warranty management plan which contains information relevant to the required Warranty provisions in each technical specification. At least 30 days before the planned pre-warranty conference, submit two (2) electronic copies of the warranty management plan. Include within the warranty management plan all required actions and documents to assure that the Government receives all warranties to which it is entitled. The plan must be in narrative form and contain sufficient detail to render it suitable for use by future maintenance and repair personnel, whether tradesmen, or of engineering background, not necessarily familiar with this contract. The term "status" as indicated below must include due date and whether item has been submitted or was accomplished. Warranty information made available during the construction phase must be submitted to the Contracting Officer for approval prior to each monthly pay estimate.
Assemble approved information in a binder and turn over to the Government upon acceptance of the work. The construction warranty period will begin on the date of project acceptance and continue for the full product warranty period. A joint 4 month and 9 month warranty inspection will be conducted, measured from time of acceptance, by the Contractor, Contracting Officer and the Customer Representative. Include within the warranty management plan, but not limited to, the following:

a. Roles and responsibilities of all personnel associated with the warranty process, including points of contact and telephone numbers within the organizations of the Contractors, subcontractors, manufacturers or suppliers involved.

b. Furnish with each warranty the name, address, and telephone number of each of the guarantor's representatives nearest to the project location.

c. Listing and status of delivery of all Certificates of Warranty for extended warranty items, to include roofs, HVAC balancing, pumps, motors, transformers, and for all commissioned systems such as fire protection and alarm systems, sprinkler systems, lightning protection systems, etc.

d. A list for each warranted equipment, item, feature of construction or system indicating:

(1) Name of item.
(2) Model and serial numbers.
(3) Location where installed.
(4) Name and phone numbers of manufacturers or suppliers.
(5) Names, addresses and telephone numbers of sources of spare parts.
(6) Warranties and terms of warranty. Include one-year overall warranty of construction, including the starting date of warranty of construction. Items which have extended warranties must be indicated with separate warranty expiration dates.
(7) Cross-reference to warranty certificates as applicable.
(8) Starting point and duration of warranty period.
(9) Summary of maintenance procedures required to continue the warranty in force.
(10) Cross-reference to specific pertinent Operation and Maintenance manuals.
(11) Organization, names and phone numbers of persons to call for warranty service.
(12) Typical response time and repair time expected for various warranted equipment.

e. The plans for attendance at the 4 and 9 month post-construction warranty inspections conducted by the Government.

f. Procedure and status of tagging of all equipment covered by extended warranties.

g. Copies of instructions to be posted near selected pieces of equipment where operation is critical for warranty and/or safety reasons.

1.5.2 Performance Bond

The Performance Bond must remain effective throughout the construction period.
a. In the event the Contractor fails to commence and diligently pursue any construction warranty work required, the Contracting Officer will have the work performed by others, and after completion of the work, will charge the remaining construction warranty funds of expenses incurred by the Government while performing the work, including, but not limited to administrative expenses.

b. In the event sufficient funds are not available to cover the construction warranty work performed by the Government at the Contractor's expense, the Contracting Officer will have the right to recoup expenses from the bonding company.

c. Following oral or written notification of required construction warranty repair work, respond in a timely manner. Written verification will follow oral instructions. Failure to respond will be cause for the Contracting Officer to proceed against the Contractor.

PART 2 PRODUCTS

2.1 NOT USED

PART 3 EXECUTION

3.1 AS-BUILT DRAWINGS

3.1.1 Markup Guidelines

Make comments and markup the drawings complete without reference to letters, memos, or materials that are not part of the As-Built drawing. Show what was changed, how it was changed, where items(s) were relocated and change related details. These working as-built markup prints must be neat, legible and accurate as follows:

a. Use base colors of red, green, and blue. Color code for changes as follows:

 (1) Special (Blue) - Items requiring special information, coordination, or special detailing or detailing notes.

 (2) Deletions (Red) - Over-strike deleted graphic items (lines), lettering in notes and leaders.

 (3) Additions (Green) - Added items, lettering in notes and leaders.

b. Provide a legend if colors other than the "base" colors of red, green, and blue are used.

c. Add and denote any additional equipment or material facilities, service lines, incorporated under As-Built Revisions if not already shown in legend.

d. Use frequent written explanations on markup drawings to describe changes. Do not totally rely on graphic means to convey the revision.

e. Use legible lettering and precise and clear digital values when marking prints. Clarify ambiguities concerning the nature and application of
change involved.

f. Wherever a revision is made, also make changes to related section views, details, legend, profiles, plans and elevation views, schedules, notes and call out designations, and mark accordingly to avoid conflicting data on all other sheets.

g. For deletions, cross out all features, data and captions that relate to that revision.

h. For changes on small-scale drawings and in restricted areas, provide large-scale inserts, with leaders to the applicable location.

i. Indicate one of the following when attaching a print or sketch to a markup print:

1) Add an entire drawing to contract drawings

2) Change the contract drawing to show

3) Provided for reference only to further detail the initial design.

j. Incorporate all shop and fabrication drawings into the markup drawings.

3.1.2 As-Built Drawings Content

Show on the as-built drawings, but not limited to, the following information:

a. The actual location, kinds and sizes of all sub-surface utility lines. In order that the location of these lines and appurtenances may be determined in the event the surface openings or indicators become covered over or obscured, show by offset dimensions to two permanently fixed surface features the end of each run including each change in direction on the record drawings. Locate valves, splice boxes and similar appurtenances by dimensioning along the utility run from a reference point. Also record the average depth below the surface of each run.

b. The location and dimensions of any changes within the building structure.

c. Layout and schematic drawings of electrical circuits and piping.

d. Correct grade, elevations, cross section, or alignment of roads, earthwork, structures or utilities if any changes were made from contract plans.

e. Changes in details of design or additional information obtained from working drawings specified to be prepared and/or furnished by the Contractor; including but not limited to shop drawings, fabrication, erection, installation plans and placing details, pipe sizes, insulation material, dimensions of equipment foundations, etc.

f. The topography, invert elevations and grades of drainage installed or affected as part of the project construction.

g. Changes or Revisions which result from the final inspection.
h. Where contract drawings or specifications present options, show only the option selected for construction on the working as-built markup drawings.

i. If borrow material for this project is from sources on Government property, or if Government property is used as a spoil area, furnish a contour map of the final borrow pit/spoil area elevations.

j. Systems designed or enhanced by the Contractor, such as HVAC controls, fire alarm, fire sprinkler, and irrigation systems.

k. Changes in location of equipment and architectural features.

l. Modifications (include within change order price the cost to change working as-built markup drawings to reflect modifications).

l. Actual location of anchors, construction and control joints, etc., in concrete.

m. Unusual or uncharted obstructions that are encountered in the contract work area during construction.

n. Location, extent, thickness, and size of stone protection particularly where it will be normally submerged by water.

3.2 RECORD DRAWINGS

3.3 OPERATION AND MAINTENANCE MANUALS

Provide project operation and maintenance manuals as specified in Section 01 78 23 OPERATION AND MAINTENANCE MANUALS DATA. Provide Two electronic copies of the Operation and Maintenance Manual files. Submit to the Contracting Officer for approval within 14 calendar days of the Beneficial Occupancy Date (BOD). Update and resubmit files for final approval at BOD.

3.4 CLEANUP

Leave premises "broom clean." Clean interior and exterior glass surfaces exposed to view; remove temporary labels, stains and foreign substances; polish transparent and glossy surfaces; vacuum carpeted and soft surfaces. Clean equipment and fixtures to a sanitary condition. Replace filters of operating equipment. Clean debris from roofs, gutters, downspouts and drainage systems. Sweep paved areas and rake clean landscaped areas. Remove waste and surplus materials, rubbish and construction facilities from the site.

-- End of Section --
SECTION 01 78 23

OPERATION AND MAINTENANCE DATA

PART 1 GENERAL

1.1 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-10 Operation and Maintenance Data

O&M Database ; G

Training Content ; G

1.2 OPERATION AND MAINTENANCE DATA

Submit Operation and Maintenance (O&M) Data for the provided equipment, product, or system, defining the importance of system interactions, troubleshooting, and long-term preventive operation and maintenance. Compile, prepare, and aggregate O&M data to include clarifying and updating the original sequences of operation to as-built conditions. Organize and present information in sufficient detail to clearly explain O&M requirements at the system, equipment, component, and subassembly level. Include an index preceding each submittal. Submit in accordance with this section and Section 01 33 00 SUBMITTAL PROCEDURES.

1.2.1 Package Quality

Documents must be fully legible. Operation and Maintenance data must be consistent with the manufacturer's standard brochures, schematics, printed instructions, general operating procedures, and safety precautions.

1.2.2 Package Content

Provide data package content in accordance with paragraph SCHEDULE OF OPERATION AND MAINTENANCE DATA PACKAGES. Comply with the data package requirements specified in the individual technical sections, including the content of the packages and addressing each product, component, and system designated for data package submission, except as follows. Use Data Package 5 for commissioned items without a specified data package requirement in the individual technical sections. Provide a Data Package 5 instead of Data Package 1 or 2, as specified in the individual technical section, for items that are commissioned.

1.2.3 Changes to Submittals

Provide manufacturer-originated changes or revisions to submitted data if a component of an item is so affected subsequent to acceptance of the O&M Data. Submit changes, additions, or revisions required by the Contracting Officer for final acceptance of submitted data within 30 calendar days of the notification of this change requirement.
1.2.4 Commissioning Authority Review and Approval

Submit the commissioned systems and equipment submittals to the Commissioning Authority (CxA) to review for completeness and applicability. Obtain validation from the CxA that the systems and equipment provided meet the requirements of the Contract documents and design intent, particularly as they relate to functionality, energy performance, water performance, maintainability, sustainability, system cost, indoor environmental quality, and local environmental impacts. The CxA communicates deficiencies to the Contracting Officer. Submit the O&M manuals to the Contracting Officer upon a successful review of the corrections, and with the CxA recommendation for approval and acceptance of these O&M manuals. This work is in addition to the normal review procedures for O&M data.

1.3 O&M DATABASE

Develop an editable, electronic spreadsheet based on the equipment in the Operation and Maintenance Manuals that contains the information required to start a preventive maintenance program. As a minimum, provide list of system equipment, location installed, warranty expiration date, manufacturer, model, and serial number.

1.4 OPERATION AND MAINTENANCE MANUAL FILE FORMAT

Assemble data packages into electronic Operation and Maintenance Manuals. Assemble each manual into a composite electronically indexed file using the most current version of Adobe Acrobat or similar software capable of producing PDF file format. Provide compact disks (CD) or data digital versatile disk (DVD) as appropriate, so that each one contains operation, maintenance and record files, project record documents, and training videos. Include a complete electronically linked operation and maintenance directory.

1.4.1 Organization

Bookmark Product and Drawing Information documents using the current version of CSI Masterformat numbering system, and arrange submittals using the specification sections as a structure. Use CSI Masterformat and UFGS numbers along with descriptive bookmarked titles that explain the content of the information that is being bookmarked.

1.4.2 CD or DVD Label and Disk Holder or Case

Provide the following information on the disk label and disk holder or case:

a. Building Number
b. Project Title
c. Activity and Location
d. Prepared By: (Name, title, phone number and email address)
e. Include the disk content on the disk label
f. Date
1.5 TYPES OF INFORMATION REQUIRED IN O&M DATA PACKAGES

The following are a detailed description of the data package items listed in paragraph SCHEDULE OF OPERATION AND MAINTENANCE DATA PACKAGES.

1.5.1 Operating Instructions

Provide specific instructions, procedures, and illustrations for the following phases of operation for the installed model and features of each system:

1.5.1.1 Safety Precautions and Hazards

List personnel hazards and equipment or product safety precautions for operating conditions. List all residual hazards identified in the Activity Hazard Analysis provided by the contractor. Provide recommended safeguards for each identified hazard.

1.5.1.2 Operator Prestart

Provide procedures required to install, set up, and prepare each system for use.

1.5.1.3 Startup, Shutdown, and Post-Shutdown Procedures

Provide narrative description for Startup, Shutdown and Post-shutdown operating procedures including the control sequence for each procedure.

1.5.1.4 Normal Operations

Provide Control Diagrams with data to explain operation and control of systems and specific equipment. Provide narrative description of Normal Operating Procedures.

1.5.1.5 Emergency Operations

Provide Emergency Procedures for equipment malfunctions to permit a short period of continued operation or to shut down the equipment to prevent further damage to systems and equipment. Provide Emergency Shutdown Instructions for fire, explosion, spills, or other foreseeable contingencies. Provide guidance and procedures for emergency operation of utility systems including required valve positions, valve locations and zones or portions of systems controlled.

1.5.1.6 Operator Service Requirements

Provide instructions for services to be performed by the operator such as lubrication, adjustment, inspection, and recording gauge readings.

1.5.1.7 Environmental Conditions

Provide a list of Environmental Conditions (temperature, humidity, and other relevant data) that are best suited for the operation of each product, component or system. Describe conditions under which the item equipment should not be allowed to run.

1.5.1.8 Operating Log

Provide forms, sample logs, and instructions for maintaining necessary...
operating records.

1.5.1.9 Additional Requirements for HVAC Control Systems

Provide Data Package 5 and the following for control systems:

a. Narrative description on how to perform and apply functions, features, modes, and other operations, including unoccupied operation, seasonal changeover, manual operation, and alarms. Include detailed technical manual for programming and customizing control loops and algorithms.

b. Full as-built sequence of operations.

c. Copies of checkout tests and calibrations performed by the Contractor (not Cx tests).

d. Full points list. Provide a listing of rooms with the following information for each room:

(1) Floor
(2) Room number
(3) Room name
(4) Air handler unit ID
(5) Reference drawing number
(6) Air terminal unit tag ID
(7) Heating or cooling valve tag ID
(8) Minimum cfm
(9) Maximum cfm

e. Full print out of all schedules and set points after testing and acceptance of the system.

f. Full as-built print out of software program.

g. Marking of system sensors and thermostats on the as-built floor plan and mechanical drawings with their control system designations.

1.5.2 Preventive Maintenance

Provide the following information for preventive and scheduled maintenance to minimize repairs for the installed model and features of each system. Include potential environmental and indoor air quality impacts of recommended maintenance procedures and materials.

1.5.2.1 Lubrication Data

Include the following preventive maintenance lubrication data, in addition to instructions for lubrication required under paragraph OPERATOR SERVICE REQUIREMENTS:

a. A table showing recommended lubricants for specific temperature ranges
and applications.

b. Charts with a schematic diagram of the equipment showing lubrication points, recommended types and grades of lubricants, and capacities.

c. A Lubrication Schedule showing service interval frequency.

1.5.2.2 Preventive Maintenance Plan, Schedule, and Procedures

Provide manufacturer's schedule for routine preventive maintenance, inspections, condition monitoring (predictive tests) and adjustments required to ensure proper and economical operation and to minimize repairs. Provide instructions stating when the systems should be retested. Provide manufacturer's projection of preventive maintenance work-hours on a daily, weekly, monthly, and annual basis including craft requirements by type of craft. For periodic calibrations, provide manufacturer's specified frequency and procedures for each separate operation.

a. Define the anticipated time required to perform each of each test (work-hours), test apparatus, number of personnel identified by responsibility, and a testing validation procedure permitting the record operation capability requirements within the schedule. Provide a remarks column for the testing validation procedure referencing operating limits of time, pressure, temperature, volume, voltage, current, acceleration, velocity, alignment, calibration, adjustments, cleaning, or special system notes. Delineate procedures for preventive maintenance, inspection, adjustment, lubrication and cleaning necessary to minimize repairs.

b. Repair requirements must inform operators how to check out, troubleshoot, repair, and replace components of the system. Include electrical and mechanical schematics and diagrams and diagnostic techniques necessary to enable operation and troubleshooting of the system after acceptance.

1.5.3 Repair

Provide manufacturer's recommended procedures and instructions for correcting problems and making repairs.

1.5.3.1 Troubleshooting Guides and Diagnostic Techniques

Provide step-by-step procedures to promptly isolate the cause of typical malfunctions. Describe clearly why the checkout is performed and what conditions are to be sought. Identify tests or inspections and test equipment required to determine whether parts and equipment may be reused or require replacement.

1.5.3.2 Wiring Diagrams and Control Diagrams

Provide point-to-point drawings of wiring and control circuits including factory-field interfaces. Provide a complete and accurate depiction of the actual job specific wiring and control work. On diagrams, number electrical and electronic wiring and pneumatic control tubing and the terminals for each type, identically to actual installation configuration and numbering.
1.5.3.3 Repair Procedures

Provide instructions and a list of tools required to repair or restore the product or equipment to proper condition or operating standards.

1.5.3.4 Removal and Replacement Instructions

Provide step-by-step procedures and a list of required tools and supplies for removal, replacement, disassembly, and assembly of components, assemblies, subassemblies, accessories, and attachments. Provide tolerances, dimensions, settings and adjustments required. Use a combination of text and illustrations.

1.5.3.5 Spare Parts and Supply Lists

Provide lists of spare parts and supplies required for repair to ensure continued service or operation without unreasonable delays. Special consideration is required for facilities at remote locations. List spare parts and supplies that have a long lead-time to obtain.

1.5.3.6 Repair Work-Hours

Provide manufacturer's projection of repair work-hours including requirements by type of craft. Identify, and tabulate separately, repair that requires the equipment manufacturer to complete or to participate.

1.5.4 Appendices

Provide information required below and information not specified in the preceding paragraphs but pertinent to the maintenance or operation of the product or equipment. Include the following:

1.5.4.1 Product Submittal Data

Provide a copy of SD-03 Product Data submittals documented with the required approval.

1.5.4.2 Manufacturer's Instructions

Provide a copy of SD-08 Manufacturer's Instructions submittals documented with the required approval.

1.5.4.3 O&M Submittal Data

Provide a copy of SD-10 Operation and Maintenance Data submittals documented with the required approval.

1.5.4.4 Parts Identification

Provide identification and coverage for the parts of each component, assembly, subassembly, and accessory of the end items subject to replacement. Include special hardware requirements, such as requirement to use high-strength bolts and nuts. Identify parts by make, model, serial number, and source of supply to allow reordering without further identification. Provide clear and legible illustrations, drawings, and exploded views to enable easy identification of the items. When illustrations omit the part numbers and description, both the illustrations and separate listing must show the index, reference, or key number that will cross-reference the illustrated part to the listed part. Group the
parts shown in the listings by components, assemblies, and subassemblies in accordance with the manufacturer's standard practice. Parts data may cover more than one model or series of equipment, components, assemblies, subassemblies, attachments, or accessories, such as typically shown in a master parts catalog.

1.5.4.5 Warranty Information

List and explain the various warranties and clearly identify the servicing and technical precautions prescribed by the manufacturers or contract documents in order to keep warranties in force. Include warranty information for primary components of the system. Provide copies of warranties required by Section 01 78 00 CLOSEOUT SUBMITTALS.

1.5.4.6 Extended Warranty Information

List all warranties for products, equipment, components, and sub-components whose duration exceeds one year. For each warranty listed, indicate the applicable specification section, duration, start date, end date, and the point of contact for warranty fulfillment. Also, list or reference the specific operation and maintenance procedures that must be performed to keep the warranty valid. Provide copies of warranties required by Section 01 78 00 CLOSEOUT SUBMITTALS.

1.5.4.7 Personnel Training Requirements

Provide information available from the manufacturers that is needed for use in training designated personnel to properly operate and maintain the equipment and systems.

1.5.4.8 Testing Equipment and Special Tool Information

Include information on test equipment required to perform specified tests and on special tools needed for the operation, maintenance, and repair of components. Provide final set points.

1.5.4.9 Testing and Performance Data

Include completed prefunctional checklists, functional performance test forms, and monitoring reports. Include recommended schedule for retesting and blank test forms. Provide final set points.

1.5.4.10 Field Test Reports

Provide a copy of Field Test Reports (SD-06) submittals documented with the required approval.

1.5.4.11 Contractor Information

Provide a list that includes the name, address, and telephone number of the General Contractor and each Subcontractor who installed the product or equipment, or system. For each item, also provide the name address and telephone number of the manufacturer's representative and service organization that can provide replacements most convenient to the project site. Provide the name, address, and telephone number of the product, equipment, and system manufacturers.
1.6 SCHEDULE OF OPERATION AND MAINTENANCE DATA PACKAGES

Provide the O&M data packages specified in individual technical sections. The information required in each type of data package follows:

1.6.1 Data Package 1
 a. Safety precautions and hazards
 b. Cleaning recommendations
 c. Maintenance and repair procedures
 d. Warranty information
 e. Extended warranty information
 f. Contractor information
 g. Spare parts and supply list

1.6.2 Data Package 2
 a. Safety precautions and hazards
 b. Normal operations
 c. Environmental conditions
 d. Lubrication data
 e. Preventive maintenance plan, schedule, and procedures
 f. Cleaning recommendations
 g. Maintenance and repair procedures
 h. Removal and replacement instructions
 i. Spare parts and supply list
 j. Parts identification
 k. Warranty information
 l. Extended warranty information
 m. Contractor information

1.6.3 Data Package 3
 a. Safety precautions and hazards
 b. Operator prestart
 c. Startup, shutdown, and post-shutdown procedures
 d. Normal operations
e. Emergency operations
f. Environmental conditions
g. Operating log
h. Lubrication data
i. Preventive maintenance plan, schedule, and procedures
j. Cleaning recommendations
k. Troubleshooting guides and diagnostic techniques
l. Wiring diagrams and control diagrams
m. Maintenance and repair procedures
n. Removal and replacement instructions
o. Spare parts and supply list
p. Product submittal data
q. O&M submittal data
r. Parts identification
s. Warranty information
t. Extended warranty information
u. Testing equipment and special tool information
v. Testing and performance data
w. Contractor information
x. Field test reports

1.6.4 Data Package 4
a. Safety precautions and hazards
b. Operator prestart
c. Startup, shutdown, and post-shutdown procedures
d. Normal operations
e. Emergency operations
f. Operator service requirements
g. Environmental conditions
h. Operating log
i. Lubrication data
j. Preventive maintenance plan, schedule, and procedures
k. Cleaning recommendations
l. Troubleshooting guides and diagnostic techniques
m. Wiring diagrams and control diagrams
n. Repair procedures
o. Removal and replacement instructions
p. Spare parts and supply list
q. Repair work-hours
r. Product submittal data
s. O&M submittal data
t. Parts identification
u. Warranty information
v. Extended warranty information
w. Personnel training requirements
x. Testing equipment and special tool information
y. Testing and performance data
z. Contractor information
aa. Field test reports

1.6.5 Data Package 5
a. Safety precautions and hazards
b. Operator prestart
c. Start-up, shutdown, and post-shutdown procedures
d. Normal operations
e. Environmental conditions
f. Preventive maintenance plan, schedule, and procedures
g. Troubleshooting guides and diagnostic techniques
h. Wiring and control diagrams
i. Maintenance and repair procedures
j. Removal and replacement instructions
k. Spare parts and supply list
l. Product submittal data
m. Manufacturer's instructions
n. O&M submittal data
o. Parts identification
p. Testing equipment and special tool information
q. Warranty information
r. Extended warranty information
s. Testing and performance data
t. Contractor information
u. Field test reports
v. Additional requirements for HVAC control systems

PART 2 PRODUCTS
Not Used

PART 3 EXECUTION

3.1 TRAINING

Prior to acceptance of the facility by the Contracting Officer for Beneficial Occupancy, provide comprehensive training for the systems and equipment specified in the technical specifications. The training must be targeted for the building maintenance personnel, and applicable building occupants. Instructors must be well-versed in the particular systems that they are presenting. Address aspects of the Operation and Maintenance Manual submitted in accordance with Section 01 78 00 CLOSEOUT SUBMITTALS. Training must include classroom or field lectures based on the system operating requirements. The location of classroom training requires approval by the Contracting Officer.

3.1.1 Training Content

The core of this training must be based on manufacturer's recommendations and the operation and maintenance information. Spend 95 percent of the instruction time during the presentation on the OPERATION AND MAINTENANCE DATA. Include the following for each system training presentation:

a. Start-up, normal operation, shutdown, unoccupied operation, seasonal changeover, manual operation, controls set-up and programming, troubleshooting, and alarms.
b. Relevant health and safety issues.
c. Discussion of how the feature or system is environmentally responsive. Advise adjustments and optimizing methods for energy conservation.
d. Design intent.

e. Use of O&M Manual Files.

f. Review of control drawings and schematics.

g. Interactions with other systems.

h. Special maintenance and replacement sources.

i. Tenant interaction issues.

-- End of Section --
SECTION 02 41 00

DESTRUCTION

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)

ASSE/SAFE A10.6 (2006) Safety Requirements for Demolition Operations

U.S. ARMY CORPS OF ENGINEERS (USACE)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

40 CFR 61 National Emission Standards for Hazardous Air Pollutants

1.2 PROJECT DESCRIPTION

1.2.1 Demolition/Deconstruction Plan

Prepare a Demolition Plan and submit proposed demolition, and removal procedures for approval before work is started. Include in the plan procedures for careful removal and disposition of materials specified to be salvaged, coordination with other work in progress, a detailed description of methods and equipment to be used for each operation and of the sequence of operations. Identify components and materials to be salvaged for reuse or recycling with reference to paragraph Existing Facilities to be Removed. Append tracking forms for all removed materials indicating type, quantities, condition, destination, and end use. Coordinate with Waste Management Plan. Provide procedures for safe conduct of the work in accordance with EM 385-1-1. Plan shall be approved by Contracting Officer prior to work beginning.

1.2.2 General Requirements

Do not begin demolition or deconstruction until authorization is received from the Contracting Officer. The work of this section is to be performed in a manner that maximizes the value derived from the salvage and recycling of materials. Remove rubbish and debris from the project site; do not allow accumulations inside or outside the building. The work includes demolition, of identified items and materials, and removal of resulting rubbish and debris. Remove rubbish and debris from Government property daily, unless otherwise directed. Store materials that cannot be removed daily in areas specified by the Contracting Officer. In the interest of occupational safety and health, perform the work in accordance with
EM 385-1-1, Section 23, Demolition, and other applicable Sections.

1.3 ITEMS TO REMAIN IN PLACE

Take necessary precautions to avoid damage to existing items to remain in place, to be reused, or to remain the property of the Government. Repair or replace damaged items as approved by the Contracting Officer. Coordinate the work of this section with all other work indicated. Construct and maintain shoring, bracing, and supports as required. Ensure that structural elements are not overloaded. Increase structural supports or add new supports as may be required as a result of any cutting, removal, deconstruction, or demolition work performed under this contract. Do not overload structural elements or pavements to remain. Provide new supports and reinforcement for existing construction weakened by demolition, deconstruction, or removal work. Repairs, reinforcement, or structural replacement require approval by the Contracting Officer prior to performing such work.

1.3.1 Existing Construction Limits and Protection

Do not disturb existing construction beyond the extent indicated or necessary for installation of new construction. Provide temporary shoring and bracing for support of building components to prevent settlement or other movement. Provide protective measures to control accumulation and migration of dust and dirt in all work areas. Remove dust, dirt, and debris from work areas daily.

1.3.2 Weather Protection

For portions of the building to remain, protect building interior and materials and equipment from the weather at all times. Where removal of existing roofing is necessary to accomplish work, have materials and workmen ready to provide adequate and temporary covering of exposed areas.

1.3.3 Utility Service

Maintain existing utilities indicated to stay in service and protect against damage during demolition and deconstruction operations.

1.3.4 Facilities

Protect electrical and mechanical services and utilities. Where removal of existing utilities and pavement is specified or indicated, provide approved barricades, temporary covering of exposed areas, and temporary services or connections for electrical and mechanical utilities. Floors, roofs, walls, columns, pilasters, and other structural components that are designed and constructed to stand without lateral support or shoring, and are determined to be in stable condition, must remain standing without additional bracing, shoring, or lateral support until demolished or deconstructed, unless directed otherwise by the Contracting Officer. Ensure that no elements determined to be unstable are left unsupported and place and secure bracing, shoring, or lateral supports as may be required as a result of any cutting, removal, deconstruction, or demolition work performed under this contract.

1.4 BURNING

The use of burning at the project site for the disposal of refuse and debris will not be permitted.
1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Demolition Plan; G
Existing Conditions

SD-07 Certificates

Notification; G

SD-11 Closeout Submittals

1.6 QUALITY ASSURANCE

Submit timely notification of demolition renovation projects to Federal, State, regional, and local authorities in accordance with 40 CFR 61, Subpart M. Notify the Contracting Officer in writing 10 working days prior to the commencement of work in accordance with 40 CFR 61, Subpart M. Comply with federal, state, and local hauling and disposal regulations. In addition to the requirements of the "Contract Clauses," conform to the safety requirements contained in ASSE/SAFE A10.6. Comply with the Environmental Protection Agency requirements specified. Use of explosives will not be permitted.

1.6.1 Dust and Debris Control

Prevent the spread of dust and debris to occupied portions of the building and avoid the creation of a nuisance or hazard in the surrounding area. Do not use water if it results in hazardous or objectionable conditions such as, but not limited to, ice, flooding, or pollution. Vacuum and dust the work area daily.

1.7 PROTECTION

1.7.1 Traffic Control Signs

a. Where pedestrian and driver safety is endangered in the area of removal work, use traffic barricades with flashing lights. Notify the Contracting Officer prior to beginning such work.

1.7.2 Protection of Personnel

Before, during and after the demolition work continuously evaluate the condition of the structure being demolished and take immediate action to protect all personnel working in and around the project site. No area, section, or component of floors, roofs, walls, columns, pilasters, or other structural element will be allowed to be left standing without sufficient bracing, shoring, or lateral support to prevent collapse or failure while workmen remove debris or perform other work in the immediate area.

1.8 RELOCATIONS

Perform the removal and reinstallation of relocated items as indicated with
workmen skilled in the trades involved. Repair or replace items to be relocated which are damaged by the Contractor with new undamaged items as approved by the Contracting Officer.

1.9 EXISTING CONDITIONS

Before beginning any demolition or deconstruction work, survey the site and examine the drawings and specifications to determine the extent of the work. Record existing conditions in the presence of the Contracting Officer showing the condition of structures and other facilities adjacent to areas of alteration or removal. Photographs sized 4 inch will be acceptable as a record of existing conditions. Include in the record the elevation of the top of foundation walls, finish floor elevations, possible conflicting electrical conduits, plumbing lines, alarms systems, the location and extent of existing cracks and other damage and description of surface conditions that exist prior to before starting work. It is the Contractor's responsibility to verify and document all required outages which will be required during the course of work, and to note these outages on the record document. Submit survey results.

PART 2 PRODUCTS

PART 3 EXECUTION

3.1 EXISTING FACILITIES TO BE REMOVED

Inspect and evaluate existing structures onsite for reuse. Existing construction scheduled to be removed for reuse shall be disassembled. Dismantled and removed materials are to be separated, set aside, and prepared as specified, and stored or delivered to a collection point for reuse, remanufacture, recycling, or other disposal, as specified. Materials shall be designated for reuse onsite whenever possible.

3.1.1 Structures

a. Selectively remove assemblies indicated.

3.1.2 Utilities and Related Equipment

3.1.2.1 General Requirements

Do not interrupt existing utilities serving occupied or used facilities, except when authorized in writing by the Contracting Officer. Do not interrupt existing utilities serving facilities occupied and used by the Government except when approved in writing and then only after temporary utility services have been approved and provided. Do not begin demolition or deconstruction work until all utility disconnections have been made. Shut off and cap utilities for future use, as indicated.

3.1.2.2 Disconnecting Existing Utilities

Remove existing utilities, as indicated and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Contracting Officer. When utility lines are encountered but are not indicated on the drawings, notify the Contracting Officer prior to further work in that area. Remove meters and related equipment and deliver to a location on the station in accordance with instructions of the Contracting Officer.
3.1.3 Paving and Slabs

Remove concrete and asphaltic concrete paving and slabs as indicated. Provide neat sawcuts at limits of pavement removal as indicated. Pavement and slabs designated to be recycled and utilized in this project shall be moved, ground and stored as directed by the Contracting Officer. Pavement and slabs not to be used in this project shall be removed from the Installation at Contractor's expense.

3.1.4 Masonry

Sawcut and remove masonry so as to prevent damage to surfaces to remain and to facilitate the installation of new work. Where new masonry adjoins existing, the new work shall abut or tie into the existing construction as indicated. Provide square, straight edges and corners where existing masonry adjoins new work and other locations.

3.1.5 Concrete

Saw concrete along straight lines to a depth of a minimum 2 inch. Make each cut in walls perpendicular to the face and in alignment with the cut in the opposite face. Break out the remainder of the concrete provided that the broken area is concealed in the finished work, and the remaining concrete is sound. At locations where the broken face cannot be concealed, grind smooth or saw cut entirely through the concrete.

3.1.6 Patching

Where removals leave holes and damaged surfaces exposed in the finished work, patch and repair these holes and damaged surfaces to match adjacent finished surfaces, using on-site materials when available. Where new work is to be applied to existing surfaces, perform removals and patching in a manner to produce surfaces suitable for receiving new work. Finished surfaces of patched area shall be flush with the adjacent existing surface and shall match the existing adjacent surface as closely as possible as to texture and finish. Patching shall be as specified and indicated, and shall include:

a. Concrete and Masonry: Completely fill holes and depressions, caused by previous physical damage or left as a result of removals in existing masonry walls to remain, with an approved masonry patching material, applied in accordance with the manufacturer's printed instructions.

3.1.7 Electrical Equipment and Fixtures

Salvage motors, motor controllers, and operating and control equipment that are attached to the driven equipment. Salvage wiring systems and components. Box loose items and tag for identification. Disconnect primary, secondary, control, communication, and signal circuits at the point of attachment to their distribution system.

3.1.7.1 Fixtures

Remove and salvage electrical fixtures. Salvage unprotected glassware from the fixture and salvage separately. Salvage incandescent, mercury-vapor, and fluorescent lamps and fluorescent ballasts manufactured prior to 1978, boxed and tagged for identification, and protected from breakage.
3.1.7.2 Electrical Devices

Remove and salvage switches, switchgear, transformers, conductors including wire and nonmetallic sheathed and flexible armored cable, regulators, meters, instruments, plates, circuit breakers, panelboards, outlet boxes, and similar items. Box and tag these items for identification according to type and size.

3.1.7.3 Wiring Ducts or Troughs

Remove and salvage wiring ducts or troughs. Dismantle plug-in ducts and wiring troughs into unit lengths. Remove plug-in or disconnecting devices from the busway and store separately.

3.1.7.4 Conduit and Miscellaneous Items

Salvage conduit except where embedded in concrete or masonry. Consider corroded, bent, or damaged conduit as scrap metal. Sort straight and undamaged lengths of conduit according to size and type. Classify supports, knobs, tubes, cleats, and straps as debris to be removed and disposed.

3.1.8 Elevators and Hoists

Remove elevators, hoists, and similar conveying equipment and salvage as whole units, to the most practical extent. Remove and prepare items for salvage without damage to any of the various parts. Salvage and store rails for structural steel with the equipment as an integral part of the unit.

3.1.9 Items With Unique/Regulated Disposal Requirements

Remove and dispose of items with unique or regulated disposal requirements in the manner dictated by law or in the most environmentally responsible manner.

3.2 CONCURRENT EARTH-MOVING OPERATIONS

Do not begin excavation, filling, and other earth-moving operations that are sequential to demolition or deconstruction work in areas occupied by structures to be demolished or deconstructed until all demolition and deconstruction in the area has been completed and debris removed. Fill holes, open basements and other hazardous openings.

3.3 DISPOSITION OF MATERIAL

3.3.1 Title to Materials

Except for salvaged items specified in related Sections, and for materials or equipment scheduled for salvage, all materials and equipment removed and not reused or salvaged, shall become the property of the Contractor and shall be removed from Government property. Title to materials resulting from demolition and deconstruction, and materials and equipment to be removed, is vested in the Contractor upon approval by the Contracting Officer of the Contractor's demolition, deconstruction, and removal procedures, and authorization by the Contracting Officer to begin demolition and deconstruction. The Government will not be responsible for the condition or loss of, or damage to, such property after contract award. Showing for sale or selling materials and equipment on site is
prohibited.

3.3.2 Unsalvageable and Non-Recyclable Material

Dispose of unsalvageable and non-recyclable combustible material off the site.

3.4 CLEANUP

Remove and transport the debris in a manner that prevents spillage on streets or adjacent areas. Apply local regulations regarding hauling and disposal.

3.5 DISPOSAL OF REMOVED MATERIALS

3.5.1 Regulation of Removed Materials

Dispose of debris, rubbish, scrap, and other nonsalvageable materials resulting from removal operations with all applicable federal, state and local regulations as contractually specified. Storage of removed materials on the project site is prohibited.

3.5.2 Burning on Government Property

Burning of materials removed from demolished and deconstructed structures will not be permitted on Government property.

-- End of Section --
PART 1 GENERAL

1.01 SCOPE OF WORK

A. The Work required by this Section includes furnishing all required plant, labor, equipment, materials, and transportation necessary for the proper and safe removal, handling, and disposal of friable and non-friable asbestos-containing materials (ACM). Work shall be performed in accordance with applicable government regulations, as specified in this Section.

B. Asbestos-Related Work: The asbestos-related Work for this Contract includes the following:

 • Demolition, removal, and disposal of ACM and the encapsulation of the surfaces from which ACM was removed.

 • Personal, area, background, and final air clearance monitoring.

C. Additional ACM: Work areas known to contain or not to contain asbestos will be identified to the Contractor. The Contractor shall notify the Contracting Officer of any other areas suspected to contain asbestos which would be affected by the Work and which was not initially identified.

1.02 CODES, PERMITS, AND STANDARDS

A. Compliance: The Contractor shall comply with applicable federal, state, and local laws, ordinances, codes, rules, and regulations. All Work shall comply with applicable codes and regulations as amended. Before starting the Work, the Contractor shall examine these Specifications for compliance with codes and regulations applicable to the Work and shall immediately report any discrepancy to the Contracting Officer.

B. Specification/Regulation Conflicts: The current issue of each document shall govern. Where conflict among requirements or with these Specifications exists, the more stringent requirements shall apply. The Contractor shall have one copy of the following regulations governing the Work available for review at the site at all times:

C. Federal Regulations, Codes, and Standards:

1. TITLE 29, CODE OF FEDERAL REGULATIONS, U.S. DEPARTMENT OF LABOR, OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) STANDARDS.

 29 CFR 1926.1101 Construction Standard for Asbestos Abatement (Subpart C)
 29 CFR 1910.134 Respiratory Protection Standard
 29 CFR 1910.147 Lockout/Tagout Safety Requirements
 29 CFR 1910.20 Access to Employee Exposure and Medical Records
 29 CFR 1910.1200 Hazardous Communication Equipment
 29 CFR 1910.200 Accident Prevention Signs and Tags

2. TITLE 40, CODE OF FEDERAL REGULATIONS, U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) STANDARDS.

 Part 763, Subpart E Asbestos-Containing Materials in Schools

Part 171, Hazardous Substances
Part 172, Hazardous Materials Tables and Subparts B & C
Part 173, Hazardous Materials Communications Regulations
Part 173, Shippers - General Requirements Subpart M
for Shipments and Packaging

D. State Regulations, Codes and Standards:
 1. Florida Requirements for Asbestos Contractors, Section 53, Chapter 469, Florida Statutes.
 2. Florida Department of Environmental Protection, Asbestos Removal, Chapter 62-257, Florida
 Administrative Code.
 3. Florida Department of Environmental Protection, Resource Recovery and Management Regulations,
 Chapter 62-7, Florida Administrative Code.

E. Air Force Standards:
 1. AFI 32-1052, Facility Asbestos Management
 2. Hurlburt Field Asbestos Management and Operations Plan

F. Manufacturer’s Standards: The following Manufacturer’s Standards shall apply, as referenced:
 1. AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) PUBLICATIONS:
 Z9.2 Fundamentals Governing the Design and Operation of Local Exhaust Systems
 Z88.2 Practice for Respiratory Protection
 Z86.1 Commodity Specification for Air.
 2. UNDERWRITERS LABORATORIES INC. (UL) PUBLICATION.
 586-09 Test Performance of High Efficiency Particulate Air Filter Units
 586-09 Standard for High-Efficiency Particulate Air Filter Units
 467 Grounding and Bonding Equipment
 3. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) PUBLICATION.
 70 National Electrical Code (NEC)

G. Permits, State Licenses, and Notifications: The Contractor shall be responsible for obtaining necessary
 permits, state licenses, and certifications of personnel in conjunction with asbestos removal, hauling, and
 disposition and shall provide timely notification of such actions as may be required by federal, state, regional,
 and local authorities. The Contractor shall pay fees and/or charges for these licenses and permits. The
 Contractor shall submit copies of the required permits and certifications to the Contracting Officer not less
 than ten (10) working days prior to the start of asbestos removal.
 1. At least ten (10) days prior to commencement of any asbestos removal/demolition, the Contractor shall
 prepare written notification in accordance with Title 40 CFR Part 61, to the agencies listed below:
 a. State Asbestos Coordinator
 Florida Department of Environmental Protection
 2600 Blair Stone Road
 Tallahassee, Florida 32399-2409
 b. Florida Department of Environmental Protection Northwest District
 Asbestos Program Manager
 160 Governmental Center
 Pensacola, Florida 32501-5794
 c. 1 SOSES/CEAN
 415 Independence Road, Building 90053
 Hurlburt Field, Florida 32544-5244

 Ten (10) day re-notifications are required if original start date and stop dates change. Alternate removal
 methods require prior approval from EPA and the Contracting Officer.

 A copy of the Notification of Asbestos Renovation, Encapsulation or Demolition Project Forms and the
 Fee Schedule for Removal or Encapsulation Project Forms is included in the Appendix of this Section.
H. Rights and Licenses for Patented Equipment and Systems: The Contractor shall obtain all rights and licenses for use of patented equipment and/or systems that he intends to use to accomplish the Work, including but not limited to negative air systems, air filtration devices and other special asbestos removal systems. The Contractor shall pay fees and/or charges for the licenses and rights to use patented equipment and/or systems.

1.03 TERMINOLOGY (The following commonly-used terms are defined in the context of these Specifications)

A. Abatement: Procedures to control or decrease fiber release from asbestos-containing building materials or insulation material containing asbestos. Includes removal, enclosure, and encapsulation.

B. A-C: Asbestos-containing.

C. Asbestos-Containing Material (ACM): Any material or Product which contains more than 1 percent asbestos.

D. Aggressive Sampling: Air monitoring samples collected while a leaf blower, fans, or other such devices are used to generate air turbulence within the Work area.

E. Air Filtration Device (AFD): A portable, local exhaust system equipped with HEPA filtration, capable of maintaining a constant low velocity air flow into contaminated areas from adjacent, uncontaminated areas and capable of maintaining a negative air pressure with respect to the adjacent, uncontaminated areas.

F. Air Lock: A system for permitting ingress or egress to the Work area while permitting minimal air movement between a contaminated area and an uncontaminated area, typically consisting of two curtained doorways placed a minimum of three feet apart.

G. Air Monitoring: The process of measuring the fiber content of a specific volume of air in a stated period of time. Personal air sampling results shall be calculated to reflect the employee's eight-hour time weighted average (TWA) exposure.

H. Amended Water: Water to which a surfactant has been added.

I. Asbestos Removal Encapsulant: A chemical solution used in place of amended water during asbestos removal to penetrate, bind, and encapsulate the asbestos-containing material.

J. Authorized Visitor: The Contracting Officer or the Contracting Officer's representatives, or representatives of any regulatory or other agency having jurisdiction over the Project.

K. Competent Person: Definition and responsibilities as set down in 29 CFR 1926.1101(b) and as outlined herein.

L. Curtained Doorway: A device to allow ingress or egress from one room to another while permitting minimal air movement between the rooms.

M. Decontamination Enclosure System: A series of connected rooms for the decontamination of workers (Personnel Decontamination Enclosure System) or of materials and equipment (Equipment Decontamination Enclosure System).

N. Differential Air Pressure Recording Device: A device capable of producing a continuous strip recording, in increments of 0.001 inches of water, of the pressure differential between the containment area (Work area) and the ambient air pressure.

O. Equipment Decontamination Enclosure System: A decontamination system for waste materials and equipment, typically consisting of a designated area of the Work area, a washroom, and a holding area, with an air lock between any two adjacent rooms and a curtained doorway between the holding area and the non-work area. Not to be used for personnel entry/exit.
P. Encapsulant (Sealant): A liquid material which can be applied to ACM and which controls the possible release of asbestos fibers from the material, either by creating a membrane over the surface (bridging encapsulant) or by penetrating into the material and binding its components together (penetrating encapsulant).

Q. Encapsulation: Application of an encapsulant to asbestos-containing building materials to control the possible release of asbestos fibers into the ambient air.

R. Fixed Object: A unit of equipment or furniture in the Work area which cannot be removed from the Work area.

S. Friable: Any material which, when dry, may be crumbled, pulverized, or reduced to powder by hand pressure.

T. Full Face piece High Efficiency Respirator (FFHER): A respirator which covers the wearer’s entire face from the hairline to below the chin and which is equipped with a HEPA filter.

U. Glove Bag Technique: A method of limited application for removing small amounts of friable ACM from HVAC ducts, short piping runs, valves, joints, elbows, and other non-planar surfaces. The glove bag assembly is a manufactured or fabricated device, typically constructed of 6-mil transparent plastic with two inwardly projecting, long-sleeved rubber gloves, one inwardly projecting water wand sleeve, an internal tool pouch, and an attached, labeled receptacle for asbestos waste. The glove bag is constructed and installed in such a manner that it surrounds the object or area to be decontaminated and contains (under negative air pressure) all asbestos fibers released during the removal process. All workers who are permitted to use the glove bag technique must be highly trained, experienced, and skilled in this method.

V. Government: United States Air Force.

W. Half Mask High Efficiency Respirator (HMHER): A respirator which covers one-half of the wearer’s face, from the bridge of the nose to below the chin, and is equipped with HEPA filters.

X. HEPA Filter: A high efficiency particulate air (HEPA) filter capable of trapping and retaining 99.97 percent of the fibers of 0.3 micrometer or larger in diameter.

Y. HEPA Vacuum Equipment: High efficiency particulate air (HEPA) filtered vacuuming equipment having a UL 586 filter system capable of collecting and retaining asbestos fibers.

Z. Lockdown: Procedure of applying an encapsulant as a protective coating or sealant to a surface from which ACM has been removed in order to control and minimize airborne asbestos fiber generation that might result from residual asbestos-containing debris.

AA. Movable Object: A unit of equipment or furniture which can be removed from the Work area.

AB. Plastic Sheeting: Six- or four-mil polyethylene sheeting.

AC. Plasticize: To cover floors and walls with plastic sheeting as herein specified.

AD. Personnel Decontamination Enclosure System: A decontamination system for personnel and limited equipment, typically consisting of an equipment room, shower room, and clean room, with an air lock between any two adjacent rooms, and a curtained doorway between the equipment room and the Work area, and a curtained doorway between the clean room and the non-work area. The decontamination system serves as the only entrance/exit for the Work area.

AE. Powered Air Purifying Respirator (PAPR): Either a full face piece, helmet, or hooded respirator that power-supplies breathing air to the wearer after that air has been purified through a HEPA filter.
AF. Removal: The act of removing and transporting asbestos-containing or asbestos-contaminated materials from the Work area to a suitable disposal site.

AG. Surfactant: A chemical wetting agent added to water to improve penetration, thus reducing the quantity of water required for a given operation or area.

AH. Type C Respirator: A respirator which supplies air to the wearer from a source outside the Work area by means of a compressor and air hose.

AI. Wet Cleaning: The process of eliminating asbestos contamination from building surfaces and objects by using cloths, mops, or other cleaning tools which have been dampened with amended water or asbestos removal encapsulant, and by afterwards disposing of these cleaning tools as asbestos-contaminated waste.

AJ. Work Area: Designated rooms, spaces, or areas of the Project where asbestos abatement actions are to be undertaken, or which may become contaminated as a result of such abatement actions. A contained Work area has been sealed, plasticized, and equipped with a decontamination enclosure system. A non-contained work area is an isolated or controlled-access area which has not been plasticized.

1.04 REQUIREMENTS AND QUALIFICATIONS

A. Minimum Experience: The Contractor shall have experience with abatement Work, as evidenced through participation in past asbestos abatement Projects.

B. Experience and Training: The Contractor's job supervisors, foremen, and workers shall be adequately trained and knowledgeable in the field of asbestos abatement. Skilled craftsmen experienced in each respective trade shall execute all phases of the Work. Proof of such experience shall be submitted to the Contracting Officer upon his/her request. Improperly trained, untrained, or inexperienced personnel shall not be allowed in the Work area(s). Personnel shall meet minimum training and experience requirements outlined in this Section.

1. The Contractor's on-site job supervisor shall have successfully completed, within the last twelve months, the EPA/Florida-approved course "Supervision of Asbestos Abatement Projects" taught at an EPA/Florida-approved Asbestos Information and Training Center or at any other educational institution deemed adequate by the Contracting Officer.

2. The job supervisors and foremen shall be thoroughly familiar with and experienced in asbestos removal and related Work and shall meet the requirements of a Competent Person as specified in OSHA Standard 29 CFR 1926.1101.

3. All asbestos abatement workers shall be knowledgeable, qualified, and trained in the removal, handling, and disposal of asbestos material, and in subsequent cleaning of the affected environment. All asbestos abatement workers shall be certified as having attended and satisfactorily completed asbestos worker training in accordance with OSHA Standard 29 CFR 1926.1101(k).

4. The Contractor's, job supervisors, foremen, and asbestos abatement workers shall be certified and licensed as required by the State of Florida.

5. Prior to commencement of Work, all personnel who are to enter the Work area shall be instructed in, and shall be knowledgeable of the appropriate procedures for personnel protection and asbestos abatement. On-site training in the use of equipment and facilities unique to this job site shall be performed. Emergency evacuation procedures from the Work area shall also be included in worker training.

C. Supervision Requirements: The Contractor shall provide adequate job supervision for all phases of the asbestos abatement Work.

1. The Contractor shall have a designated job supervisor present on site whenever Work described in this Section is in progress. If the job supervisor leaves the site for any reason, all Work described in this Section shall be stopped. The Contracting Officer or his representative will enforce this requirement.

2. The Contractor shall furnish one or more foremen who are familiar and experienced with asbestos removal and its related Work, safety procedures, and equipment.
3. The job supervisor and/or one or more foremen shall be required to be continually inside each Work area whenever Work (preparation, removal, or cleaning) is in progress.

D. Worker Medical Examinations: The Contractor shall provide medical examinations for all employees engaged in asbestos removal and disposal operations, in accordance with OSHA Standards 29 CFR 1910.134(b), 1926.1101, and applicable state regulations. The Contractor shall ensure that all employee examination results are on file in his office and available for review and are maintained in accordance with OSHA Standard 29 CFR 1926.1101(n)(3).

E. Certificate of Worker's Release: Each asbestos abatement worker, workers of other trades, or any supervisory personnel who enter the contaminated Work area shall submit an Acknowledgment of Risk by Worker, as required in the Section "Submittals". Example text for the Acknowledgment of Risk by Worker form is presented in the Appendix at the end of this Section.

1.05 SUBMITTALS
A. Unless noted otherwise, the Contractor shall submit to the Contracting Officer four (4) copies of each submittal for review and/or approval.

B. Pre-Work Information: Prior to starting Work, the Contractor will be required to submit four (4) copies of the following to the Contracting Officer:
1. Insurance coverage (policy and certificate) including liability, workmen's compensation and employer's liability. Insurance coverage shall be of the Claims Made type and include a statement that carrier understands this Project is asbestos abatement Work.
2. Names of supervisory personnel and their qualifications and training, and documentation of compliance with paragraph 1.05.B of this Section.
3. Employee training program.
4. List of previous Projects, including the Owner's name and phone number, and a listing of any citations issued by any regulatory agency over the last five (5) years to the Contractor or any of his affiliated companies. Submit list of all other company names for the last five (5) years. (If any of the above is not applicable, it should be noted).
5. List of equipment (job related).
6. Number of jobs under Contract at this time.
7. Description of Work to be performed by Subcontractor(s) and Subcontractor's qualifications.
9. Name, address and telephone number of the independent testing laboratory selected to perform the sample analyses and report the results. The laboratory shall have successfully participated within the past year in the American Industrial Hygiene Association (AIHA) Proficiency Analytical Testing (PAT) Program.
10. Proof of compliance with Paragraph 1.04, Requirements and Qualifications, of this Section.

C. Pre-Work Information: The Contractor shall provide the pre-work submittal items listed herein within five (5) days after receipt of Notice of Award but not fewer than ten (10) days prior to beginning Work, unless noted. Written approval of all pre-work submittals must be obtained from the Contracting Officer prior to start of any asbestos abatement Work specified in this Section.
1. Documentation of compliance with all requirements of paragraph "Requirements and Qualifications" of this Section.
2. Proof of a respiratory protection program. Submittal shall include the level of respiratory protection intended for each operation required by the Project. Submit this information on the Respiratory Protection Justification Form. A copy of this form is included in the Appendix to this Section.
3. Proof of historic airborne fiber data. Submit airborne asbestos fiber monitoring data to substantiate selection of respiratory protection proposed. Data shall include the following for each procedure required by the Work:
 a. Date of measurement.
 b. Type of Work task monitored.
 c. Methods used for sample collection and analysis.
 d. Number, duration, and results of samples taken.
4. Proof of a compressor maintenance program, if Type C respiratory protection is required.
5. Manufacturer's literature on all proposed job related equipment and Products to be used. Include Material Safety Data Sheets (MSDS) for encapsulants, mastic removal Products, and other chemicals to be used on this Project.
6. Certification from the encapsulant manufacturer that the encapsulant to be used is compatible with the materials and with the operating temperatures of the systems to be encapsulated.
7. Proof of written notification and compliance with all requirements of paragraph "Permits, State License, and Notifications" of Section 1.02. Certification that all required permits have been obtained.
8. Copies of the agreements or licenses for the use of patented equipment and/or systems to be used to accomplish the Work.
9. Proof that a landfill site has been located, and arrangements for transport and disposal of asbestos-containing or asbestos-contaminated materials have been made.
10. Shop Drawings (with dimensions and locations) of proposed decontamination facilities and Work areas. These Drawings shall indicate which areas will be sealed off, proposed layout of the decontamination systems, and location of the AFD(s) and pressure differential recorder.
11. Specimen of the daily log proposed for use. Minimally, the log should include the date(s) and time(s) when all personnel enter and leave the Work area(s).
12. Asbestos Abatement Plan detailing the steps and methods to be used to remove the asbestos. Plan shall also describe decontamination procedures.

D. During-Work Information: The Contractor shall provide the information described herein to the Contracting Officer at the time specified. Untimely submittal of information may be cause for halting Work.
1. Results of all air monitoring performed by the Contractor shall be posted within 24 hours after collection for all workers to see.
2. Results of all air monitoring performed by the Contractor shall be reported in writing to the Contracting Officer within 24 hours after the completion of a sampling period.
3. Receipts from the landfill operator which acknowledge the Contractor's delivery(s) of material, will be submitted within three days following removal of ACM from building. Each receipt shall provide date, quantity of material delivered, and signature of authorized representative of landfill.
4. Certified, signed, and completed Waste Shipment Record Forms and Asbestos Disposal Manifest Forms shall be used for the transportation of friable ACM. Each party who has control over the asbestos waste shall sign this form, and a copy retained by each party as responsibility for the waste is transferred to the next party. An example of these forms is included in the Appendix to this Section.
5. Work Area Temperature Readings: Recordings of the temperature in the area containing the facility components at the beginning, middle, and end of each workday and keep daily temperature records, if wetting operations are suspended due to freezing temperatures.

E. Post-Work Information: The Contractor shall provide the information described herein to the Contracting Officer before final payment is authorized.
1. Notarized copies of a daily log showing the date(s) and time(s) of entrance to and exit from the Work area(s) for all persons.
2. Written certification that mechanical and electrical systems disturbed by the Contractor during Work under Contract have been reinstalled and are in proper working order.
3. Asbestos abatement Contractor shall provide the following information which will be incorporated into the Hurlburt Field Asbestos Management Database:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CATEGORY</th>
<th>QUANTITY</th>
<th>BLDG LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friable</td>
<td>Surface material</td>
<td>SF/LF</td>
<td></td>
</tr>
<tr>
<td>Non-Friable</td>
<td>Thermal System Insulation</td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

4. The asbestos abatement Contractor shall obtain disc (digital) copies of the Contract Drawings, change the Drawing files(s) to reflect all as-built conditions indicating the types, categories and locations of all abated asbestos.
5. Three (3) copies of the Final Clearance Reports shall be provided by the asbestos abatement Contractor, two (2) copies to the Contracting Officer, and one (1) copy to the 1 SOCES/CEAN.
1.06 TESTING REQUIREMENTS AND RESPONSIBILITIES

A. Air monitoring will be performed before, during, and after asbestos abatement to document airborne asbestos fiber concentrations. For specific requirements and responsibilities, see the Section AIR MONITORING REQUIREMENTS. The Contractor shall be responsible for personal air monitoring to determine employee exposure and the level of respiratory protection required, as well as background, area, and final clearance air monitoring. The following paragraphs identify specific Contractor responsibilities.

B. Inspections, Monitoring and Clearance Testing:
1. The Contractor, at his expense, shall provide all tests required by specified applicable regulations, codes, and standards and any other tests for his use.
2. From each Work area an independent Certified Industrial Hygienist (CIH) or an industrial hygienist technician under direct supervision of a CIH, hired by the abatement Contractor at his expense, shall collect and analyze personal, background, area, and final clearance air monitoring samples. Sampling shall be repeated during each different Work activity. Sample collection and analysis shall be performed using the OSHA Reference Method as outlined in 29 CFR 1926.1101, Appendix A.
3. The Contractor shall be advised whenever questions arise concerning compliance with standards of quality and completeness of the Work, and shall use his best efforts to resolve any such questions to the satisfaction of the Contracting Officer.

PART 2 PRODUCTS

2.01 MATERIALS

A. Materials furnished under this Section shall be standard Products of manufacturers regularly engaged in the production of the items and shall conform to OSHA Standard 29 CFR 1926.1101; EPA Standard 40 CFR 61, Subpart M; DOT Standards 49 CFR 171, 172, and 173; applicable state regulations; and requirements specified herein.

B. Plastic: Plastic or Polyethylene Sheet of 4-mil and 6-mil thickness shall be provided in rolls of sizes which will minimize the frequency of joints. Fire-retardant polyethylene shall be used in all gross removal areas.

C. Duct Tape: Duct tape shall be capable of sealing joints of adjacent sheets of plastic and of attaching plastic sheeting to finished surfaces without damage to existing finish and shall be capable of adhering under both dry and wet conditions, including use of amended water.

D. Surfactant: Surfactant (Wetting Agent) shall consist of resin materials in a water base, which have been tested to ensure materials are non-toxic and non-irritating to skin and eyes and are non-carcinogenic.

E. Encapsulants: Encapsulants used during this Work shall be compatible with the finish materials which are to be installed on encapsulated surfaces after asbestos abatement Work is completed. The encapsulant shall carry a Class "A" fire resistance rating and shall have an ASTM E-162 flame spread index of 15 or less. A tint shall be given by the Contractor to the encapsulant by means of the addition of non-toxic, nonflammable colorings before application. The encapsulant shall be installed according to the manufactures written instructions.

F. Silicone Sealant: Silicone Sealant shall be single component, solvent curing silicone sealant with 25% elongation capacity, -65°F to 450°F service range. Sealant shall be used to seal space around pipes when constructing a permanent barrier air seal. Sealant membrane shall be not less than 1/8" and not greater than 3/8" thick. Sealant shall be applied against a backer rod, fiberglass mat, or other suitable backup material. Sealant application shall be according to the manufactures written instructions.

G. Caulking Sealant: Caulking sealant shall be single component, non-sag elastomer with 1600% elongation capacity. Sealant shall meet the requirements of Federal Specification TT-S-00230C, Class A Type II. Sealant shall be used to form an airtight seal around plywood barriers or temporary partitions, to seal along the seams of the decontamination enclosure system's plywood sheathing, and to seal around piping or other
small penetrations of the Work area. Sealant application shall be according to the manufactures written instructions.

H. Insulation Cement: Insulation Cement shall be ASTM C 195 (100°F to 1,600°F), mineral fiber, with a thermal conductivity 0.85 maximum at 200°F mean when tested per ASTM C 177.

I. Foam Sealant: Foam Sealant shall be expanding urethane foam sealant with an ASTM E-162 flame spread index of 25 or less and an operating temperature range between -30°F and 250°F.

J. Plywood: Plywood used for temporary partitions, decontamination enclosure systems, and tunnels shall be an exterior grade and a minimum 3/8-inch thick.

K. Spray Adhesive: Spray Aerosol Adhesive shall be specially formulated to stick to sheet polyethylene (3M 76, 3M 77 or equivalent).

L. Other Materials: All other materials, such as lumber, plywood, tools, scrapers, brushes, cleaning materials, adhesive, nails, hardware, etc., which are required to perform the Work described in this Section shall be provided. Materials and equipment shall be new or used, uncontaminated by asbestos, in serviceable condition, and appropriate for the intended purpose.

M. Glove Bags: Glove bags shall be manufactured of clear polyethylene material with shoulder length gloves, clear-plastic tool pouch and side port(s). Gloves shall be heat sealed to sleeves. No sewn type glove bags will be allowed. All bags shall be a minimum thickness of six mils and shall be seamless at the bottom. Glove bags shall be provided in sizes best suited for the Work.

N. Disposal Bags: Plastic Disposal Bags shall be a minimum of six mils in thickness. Bags shall be labeled in accordance with Subparagraph "Warning Labels" of this Section.

O. Shipping Containers: Impermeable Containers shall be suitable to receive and retain any asbestos-containing or asbestos-contaminated materials until they are disposed of at an approved landfill. The containers shall be labeled in accordance with this Section. Containers shall be both airtight and watertight and conform to DOT Standard 49 CFR 178.224. Each container shall be constructed of fiber, hard plastic, or metal, with locking, airtight lids.

P. Warning Signs: Warning Signs shall be posted at the perimeter of the Work area prior to abatement operations in accordance with OSHA Standard 29 CFR 1926.1101 (k)(6). Danger sign format and color shall conform to OSHA Standard 29 CFR 1926.200. The signs shall display the legend indicated below:

DANGER
ASBESTOS
CANCER AND LUNG DISEASE HAZARD
AUTHORIZED PERSONNEL ONLY
RESPIRATORS AND PROTECTIVE CLOTHING ARE REQUIRED IN THIS AREA

DANGER
CONTAINS ASBESTOS FIBERS
AVOID CREATING DUST
CANCER AND LUNG DISEASE HAZARD
and

RQ HAZARDOUS SUBSTANCE,
SOLID, N.O.S.
ORM-E, NA 9188
(ASBESTOS)

and

__
(TRANSPORTER COMPANY NAME & PHONE NO.)

__
(NAME OF FACILITY WASTE IS BEING REMOVED FROM)

(ADDRESS OR LOCATION AT, WHICH THE WASTE WAS GENERATED,
INCLUDING BUILDING NO.)

R. Reuse of Containers: If impermeable containers used to transport bagged asbestos waste to the landfill are to be reused, the empty containers shall display the following label:

RESIDUE: LAST CONTAINED ASBESTOS RQ

S. Mastic Removal Solvent: MSDS's shall be provided for any solvent proposed for use. Solvents categorized as hazardous materials are prohibited from use. 40 CFR Part 273 shall be used as the reference to determine if a solvent is hazardous.

2.02 EQUIPMENT

A. Equipment furnished under this Section shall conform to applicable Federal and State regulations, local codes, and the requirements specified herein.

B. Communication Equipment: Devices suitable for inter-room communications, such as "walkie-talkies" or "radio band" communicators shall be provided, except in areas indicated by Contracting Officer.

C. Spraying Equipment: Equipment used to apply amended water or removal encapsulant shall be of a low-pressure type to prevent disturbance of the asbestos prior to physical, controlled removal. Asbestos encapsulant shall be spray-applied by airless method.

D. Air Filtration Device (AFD): For local exhaust ventilation and Work area air filtration, high efficiency particulate air (HEPA) filtration systems equipped with filtration equipment which complies with ANSI Z9.2 shall be provided. Air movement systems or air filtering equipment shall not discharge unfiltered air outside the Work area. A sufficient quantity of AFDs shall be used in order to provide one workplace air change every 15 minutes. To calculate the minimum total air flow movement:

\[
\text{Total Cubic Feet Per Minute (CFM)} = \frac{\text{Vol. of Work area in ft}^3}{15 \text{ minutes}}
\]

To calculate the minimum number of units needed for the abatement:

\[
\text{No. units needed} = \frac{\text{Total CFM}}{\text{capacity of AFD in CFM}}
\]

Work area exhaust must be sufficient to maintain the required negative pressure (vacuum) in the Work area, with respect to the adjacent surrounding non-work areas. Provisions shall be made to change filters without releasing captured asbestos fibers to the surrounding areas.
E. Differential Air Pressure Recording Device: A continual strip record of the pressure differential between the Work area and the adjacent non-work areas shall be provided. The strip chart shall show the time on the horizontal axis and Work area vacuum on the vertical axis.

F. Vehicles: Trucks or Vans used for the transportation of asbestos waste shall be enclosed, suitable for loading, temporary storage, transit, and unloading of asbestos-contaminated waste without exposure to persons or property, and labeled in accordance with NESHAP requirements.

G. Electrical Service: Compliance with applicable standards of the National Electric Code (NEC), Underwriter's Laboratories (UL), OSHA, local building codes, and regulations governing equipment, materials, layout, and installation of temporary electric service shall be ensured by the Contractor.
 1. Temporary lighting within the Work area and decontamination systems shall be provided. Minimum illumination level in the Work area shall be ten foot-candies. Minimum illumination level in pedestrian tunnels, stairways, ladder runs, and decontamination enclosure systems shall be 20 foot-candies.
 2. The Contractor shall provide and use ground fault circuit interrupters on all electric power service used in the Work area and in decontamination enclosure systems.

H. Fire Extinguishers: Type "ABC" dry chemical extinguishers or a combination of several extinguishers of NFPA recommended types for the fire hazard exposures in each extinguisher location shall be provided. Minimum size of extinguisher shall be 4A-60BC. Supply a minimum of one extinguisher for every 1,500 square feet of floor area, with a maximum travel distance to an extinguisher of 75-feet. Supply at least one extinguisher in each decontamination enclosure equipment room, and clean room.

I. Smoke Detectors: Smoke detectors of the battery-powered, ionization type will be required at a rate of one per 5,000 square feet, with a minimum of one smoke detector in the decontamination enclosure clean room, and one in the Work area.

J. Water Filtration System: A system capable of filtering and retaining particles larger than 5.0 microns in size shall be provided.

2.03 WORKER PROTECTIVE CLOTHING AND EQUIPMENT

A. Protective clothing and equipment shall conform to OSHA Standard 29 CFR 1926.1101

B. Protective Clothing: Workers shall be provided with sufficient sets of properly fitting, full-body, disposable coveralls, head covers, gloves, and 18-inch high boot-type foot covers. Disposable coveralls, head covers, and 18-inch high boot-type foot covers shall be constructed of material equal to Dupont "TYVEK-Type 14" or Kimberly-Clark "Kleenguard", as a minimum requirement.
 1. The Contractor shall provide authorized visitors, the Contracting Officer or his representative, the CIH and the testing laboratory representative suitable, properly fitting, disposable clothing, headgear, hard hats, eye protection, and footwear (up to four sets per 8-hour shift) whenever they are required to enter the Work area.

C. Equipment: The Contractor must provide eye protection and hard hats required for job conditions or by applicable safety regulations.

D. Respiratory Protection: The Contractor shall be solely responsible for providing adequate respiratory protection at all times for all individuals in the Work area. Types of respirators used shall be approved by MSHA/NIOSH for asbestos in accordance with OSHA Standard 29 CFR 1926.1101(h). The Contractor shall provide a level of respiratory protection which supplies an airborne fiber level inside the respirator below 0.01 fibers per cubic centimeter (f/cc), as the minimum level of protection allowed. Determine the proper level of protection by dividing the actual airborne fiber count in the Work area by the "protection factors" given below for each respirator type:

<table>
<thead>
<tr>
<th>Respirator Type</th>
<th>Protection Factor</th>
</tr>
</thead>
</table>

02 82 16.00 20 - 11
Air purifying:
Negative-pressure respirator,
High efficiency HEPA filter,
Half-face piece

Air purifying:
Negative-pressure respirator,
High efficiency HEPA filter,
Full-face piece

Powered air purifying (PAPR):
Positive pressure respirator
High efficiency HEPA filter,
Full-face piece

Type C supplied air:
Continuous flow
Full-face piece with
HEPA escape

Type C supplied air:
Positive-pressure,
Pressure-demand respirator,
Full-face piece with
HEPA escape

Type C supplied air:
over 1000
Pressure-demand,
Full-face piece,
equipped with an auxiliary SCBA

1. The Contractor shall provide workers with individually issued and marked respiratory equipment. Respiratory equipment shall be suitable for the asbestos exposure level(s) in the Work area(s), as specified in OSHA Standard 29 CFR 1926.1101, and as more stringently specified otherwise herein.

2. Where respirators with disposable filter parts are employed, the Contractor will provide sufficient filter parts for replacement as necessary or as required by the applicable regulation.

3. Air supply for Type C respirators shall be a compressed air system providing Grade D breathing air, in accordance with OSHA Standard 29 CFR 1910.134(d)(1) and ANSI Z86.1-1973. The compressor shall be sized to accommodate the respirator manufacturer’s recommendation of supply capacity and shall have a receiver of sufficient capacity to enable the respirator wearer to escape from contaminated atmosphere in the event of compressor failure. All compressed air systems shall have a compressor-failure alarm, a high-temperature alarm or shut-off, and a carbon monoxide monitor with alarm. Documentation of adequacy of the compressed air/respiratory protection system must be retained on site. This documentation shall include a list of components compatible with the maximum number and type of respirators that may be used with the system. Periodic testing of the compressed air shall be provided by the Contractor to ensure that the system provides air of adequate quality.

4. The Contractor shall have a minimum of two spare air hoses with connectors to permit the Contracting Officer or his representative, the CIH, or testing laboratory’s representative to connect his assigned Type C respirator to the air system at any time without having to wait for personnel to exit the Work area in order to obtain a spare hose.

2.04 DECONTAMINATION ENCLOSURE SYSTEMS

A. The Contractor shall provide a personnel decontamination enclosure system, and an equipment decontamination enclosure system in accordance with OSHA Standard 29 CFR 1926.1101, and as specified herein.
B. Structure: Use modular systems, or build using wood or metal frame studs, joists, and rafters placed at a maximum of 24 inches on-center. Interior shall be sheathed with plywood and caulked or taped airtight at joints and seams. Interior and exterior shall be lined with two layers of 6-mil plastic sheeting, with a minimum overlap of 16 inches at seams and sealed airtight by tape and adhesive. If the decontamination enclosure system is constructed outside of a building, the exterior shall be covered with plywood and the structure made weatherproof. The structure shall be capable of withstanding a minimum lateral wind load of 20 pounds/ft\(^2\). The roof of the structure shall be capable of supporting a minimum live load of 25 pounds/ft\(^2\). The Contractor shall ensure compliance with local building codes and other regulations governing temporary structures.

C. Curtained Doorways: Two overlapping sheets of 6-mil polyethylene shall be placed over a framed doorway and secured along the top of the doorway. Secure the vertical edge of the outer sheet along one vertical side of the doorway and the vertical edge of the second sheet along the opposite vertical side of the doorway. The sheets shall be weighted at the bottom so that they close quickly after being released.

D. Air Locks: Air locks shall consist of two curtained doorways placed a minimum of three feet apart.

E. Personnel Decontamination Enclosure System: This system shall be the only entrance/exit for the Work area. The decontamination enclosure system shall be placed adjacent to the Work area and shall consist of three totally enclosed chambers and a gross clean-up system as follows:
 1. **Workers’ Gross Clean-up System:** Just inside the Work area and immediately adjacent to the equipment room, a workers’ gross clean-up system will be used for removal of dust, debris, or loose material from protective clothing and footwear. This area is to be separated from the equipment room by a curtained doorway. A "hand-held" water device or shower shall be provided to facilitate the gross removal of loose material.
 2. **Equipment Room:** The equipment room shall have a curtained doorway to separate it from the Work area (the workers’ gross clean-up area), and share a common air lock with the shower room. The equipment room shall be large enough to accommodate at least one worker (allowing him enough room to remove his protective clothing and footwear), a 6-mil disposal bag in an impermeable container, and any other equipment which the Contractor wishes to store when not in use.
 3. **Shower Room:** The shower room shall have two adjacent air locks, one that separates it from the equipment room and one that separates it from the clean room. The shower room shall contain at least one shower with hot and cold water per eight workers. Careful attention shall be given to the shower to ensure against leaking of any kind. The Contractor shall supply shampoo and soap in the shower room at all times.
 4. **Clean Room:** The clean room shall share a common air lock with the shower room and shall have a curtained doorway to separate it from outside non-contaminated areas. The clean room shall be sized to adequately accommodate the Work crew. Benches for seating, lockable lockers for storage of workers’ street clothing, shelves for storing respirators, and a location for postings shall be provided in this area. Clean disposable clothing, replacement filters for respirators, clean dry towels, and other necessary items shall also be provided in the clean room. A hinged, lockable door shall be placed at the entrance into the clean room to prevent unauthorized access into the Work area. The clean room shall not be used for storage of tools, equipment, or materials, or as office space.

F. Equipment Decontamination Enclosure System: This system is located adjacent to the Work area. The equipment decontamination enclosure system, consisting of two, totally enclosed spaces, shall be constructed as follows:
 1. **Equipment Washroom:** An equipment washroom shall have two air locks, one adjacent to the Work area and one that separates it from the holding area. The washroom shall have facilities for washing material containers and equipment. Gross removal of dust and debris from contaminated material containers and equipment shall be accomplished in the Work area, prior to moving to the washroom.
 2. **Holding Area:** A holding area shall share a common air lock with the equipment washroom and shall have a curtained doorway to outside areas. A hinged, lockable door shall be placed at the holding area entrance to prevent unauthorized access into the Work area.
G. Decontamination Enclosure System Utilities: The Contractor shall provide as necessary, and as specified herein, all lighting, heat and electricity.

2.05 TEMPORARY PARTITIONS AND PEDESTRIAN TUNNELS
A. Temporary partitions shall extend from the floor to the ceiling and form an airtight seal. They shall be built using wood or metal framing at 24-inch on-center and shall be braced as necessary. Both sides of the temporary partition shall be covered with a double layer of 6-mil plastic sheeting, with joints staggered and sealed with tape. Edges of the temporary partition at the floor, walls, and ceiling shall be taped and caulked airtight.

PART 3 EXECUTION

3.01 PERSONNEL PROTECTION AND DECONTAMINATION PROCEDURES
A. General: The Contractor shall take all safety measures and precautions necessary to protect his employees and building occupants in accordance with OSHA Standard 29 CFR 1926, EPA Standard 40 CFR, Part 61, Subpart M, and applicable state regulations. The Contractor shall be solely responsible for enforcing personnel protection requirements. Table 3.1. summarizes the minimum levels of personnel protection required.
TABLE 3.1.

MINIMUM PERSONNEL PROTECTION REQUIREMENTS

<table>
<thead>
<tr>
<th>RESPIRATORY ACTIVITY</th>
<th>DISPOSABLE PROTECTION</th>
<th>SHOWER REQUIRED CLOTHING</th>
<th>DECONTAMINATION AFTER WORK</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Removal of "loose items" prior to Work - no potential asbestos exposure</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2. Removal of "loose items" prior to Work - potential asbestos exposure</td>
<td>HMHER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Precleaning prior to abatement</td>
<td>HMHER</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4. Sealing openings prior to abatement - no potential asbestos exposure</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5. Plasticizing prior to abatement - no potential asbestos exposure</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>6. Plasticizing prior to abatement - potential asbestos exposure</td>
<td>PAPR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7. Gross removal</td>
<td>PAPR<sup>b</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8. Glove bag and wrap and cut removal</td>
<td>PAPR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9. Asbestos-containing debris removal</td>
<td>PAPR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10. A-C cement board removal</td>
<td>PAPR</td>
<td>Yes</td>
<td>Yes<sup>c</sup></td>
<td>Yes<sup>d</sup></td>
</tr>
<tr>
<td>11. A-C flooring removal</td>
<td>PAPR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>12. Preliminary cleanup (after gross removal)</td>
<td>PAPR<sup>b</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>13. Plastic removal after initial clearance</td>
<td>FFHER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>14. Lockdown</td>
<td>PAPR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>15. Cleaning and plastic removal after lockdown before final clearance</td>
<td>FFHER</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>16. Activities after final clearance</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>17. Loading ACM on truck (outside Work area)</td>
<td>HMHER</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

^a These are minimum requirements only. The Contractor is fully responsible for the personnel protection of all workers at the site. If conflict or interpretation differences arise, the text of the Specifications apply.

^b The Contractor shall furnish workers with Type C supplied air pressure demand respirators for each different Work activity until the Contractor determines the 8-hour time-weighted average (TWA). After the TWA is established, the Contractor may furnish respirators as presented in the Specifications, with the minimum requirement as indicated above.

^c Requirement may be waived by the Engineer on an individual, case-by-case basis. Refer to text of Specifications.

^d On-site for emergency use.

PAPR Full face mask powered air purifying respirator.
HMHER Half face mask high efficiency respirator.
FFHER Full face mask high efficiency respirator.

1. Workers shall be fully protected with respirators and protective clothing from the time of first disturbance of asbestos-containing or asbestos-contaminated materials prior to commencing actual asbestos abatement until final cleanup is completed.

2. Workers or authorized visitors shall not eat, smoke, drink, or chew gum or other substances while in the Work area(s) or decontamination area(s).

3. Contaminated worker footwear, eye protection, and hard hats shall be stored in the equipment room when not in use in the Work area and, upon completion of asbestos abatement, disposed of as asbestos-contaminated waste or decontaminated for reuse.

4. Except for Government inspectors with jurisdiction, no visitors except those authorized by the Contracting Officer shall be allowed in Work area.

B. Worker Respiratory Protection: With approval from the Contracting Officer, historical airborne-fiber-level data may serve as the basis for selection of the level of respiratory protection to be used for the time interval prior
to the Contractor establishing the 8-hour time weighted average (TWA) for an abatement task. Historical data provided by the Contractor shall be based on personal air monitoring of the “breathing zone” of his employees for other asbestos abatement Projects within the past 12 months, and the data were obtained during Work operations conducted under workplace conditions closely resembling the processes, type of material, control methods, Work practices, and environmental conditions used and prevailing in the Contractor's current operations. Documentation of aforementioned results shall be presented to the Contracting Officer for review of applicability. (See "Submittals, Pre-work Information". See the Appendix for the Respiratory Protection Justification Form.) This will not relieve the Contractor in providing personal air monitoring to determine the TWA for the Work under Contract. The TWA shall be determined in accordance with 29 CFR 1926.1101 Appendix A. After the TWA is established the Contractor may furnish respirators as presented in the Specifications. In lieu of historical data the Contractor shall furnish for use by his workers Type C supplied air pressure demand respirators for each different Work activity until the Contractor determines the TWA. After the TWA is established the Contractor may furnish respirators as presented in the Specifications.

C. Decontamination Procedures for Gross Removal Operations: The following entry/exit procedures shall be used for gross removal Work areas.

1. Each worker or authorized visitor shall, upon entering the job site, remove street clothes in the clean room and put on a clean respirator (with new filters, if appropriate) and clean protective clothing before entering the Work area through the shower room and equipment room.

2. Each worker or authorized visitor shall, each time he leaves the Work area, remove gross contamination from clothing before leaving the Work area, proceed to the equipment room and remove all clothing except respirator, still wearing the respirator, proceed to the shower room, clean the outside of the respirator with soap and water while showering, remove filters and wet them and dispose of them in the container provided for that purpose, wash and rinse the inside of the respirator, and thoroughly shampoo and wash himself.

3. Following showering and drying off, each worker or authorized visitor shall proceed directly to the clean room, dress in street clothes, and exit the decontamination enclosure system immediately. Disposable clothing of the type worn inside the Work area is not permitted to be worn outside the Work area.

D. Decontamination Procedures for Glove Bag Removal Operations: The following entry/exit procedures shall be used for areas prepared as glove bag removal Work areas.

1. Each worker shall, upon entering the job site, remove street clothes in the clean room, put on a clean respirator (with new filters, if appropriate) and clean protective clothing before entering the Work area through the shower room and equipment room.

2. Each worker or authorized visitor shall, each time he leaves the Work area, HEPA vacuum his clothing before leaving the Work area; proceed to the equipment room and remove all clothing except respirator, still wearing the respirator, proceed to the shower room, clean the outside of the respirator with soap and water while showering, remove filters and wet them and dispose of them in the container provided for that purpose, wash and rinse the inside of the respirator, and thoroughly shampoo and wash himself.

3. Following showering and drying off, each worker shall proceed directly to the clean room, dress in street clothes, and exit the decontamination enclosure system immediately. Disposable clothing of the type worn inside the Work area is not permitted to be worn outside the Work area.

4. The requirement for a shower may be waived by the Contracting Officer. The conditions for waver shall be that the worker did not contact ACM, a proper glove bag technique was executed, and the ACM within the Work area is in good condition.

E. Authorized visitors are not required to remove street clothes and shower each time they enter and leave the Work area if they only observe the Work in progress and do not make contact with ACM. They are required to wear appropriate respiratory protection and protective clothing over their street clothing while in the Work area. If they do make contact with ACM, they are required to follow the decontamination procedures for workers.
F. Decontamination of Impermeable Containers and Plastic Disposal Bags: The following procedure shall be used when removing ACM from the Work area:

1. Asbestos-contaminated materials which are likely to puncture plastic disposal bags (wire, bricks, pipe, etc.,) shall be placed in shipping containers for handling and transport to disposal site. Other asbestos-contaminated materials may be placed in plastic disposal bags for transport to disposal site.

2. Move bagged asbestos-contaminated waste to the equipment washroom, wet clean each bag thoroughly, place each bag inside a second plastic disposal bag (and inside shipping container if applicable, and move it to the holding area pending removal to uncontaminated areas. Ensure that containers are removed from the holding area by workers who have entered the equipment decontamination enclosure system from the uncontaminated non-work area. Dress workers moving asbestos waste from the holding area onto trucks in clean coveralls of a color different than the coveralls used in the Work area. Ensure that workers do not enter from uncontaminated areas into the equipment washroom or the Work area. Ensure that contaminated workers do not exit the Work area through the equipment decontamination enclosure system.

3.02 PREPARATION OF WORK AREA

A. Subparagraph "General Preparations" outlines procedures applicable to all enclosed Work areas. Work procedures specific for preparing a gross asbestos removal area and a glove bag asbestos removal area are addressed in their respective Subparagraphs. Procedures specific for preparing a non-contained Work area are addressed in its respective Subparagraph.

B. General Preparations:

1. Erect barricades; post notices and warning signs.
2. Provide and install decontamination enclosure systems in accordance with Paragraph "Decontamination Enclosure Systems" of this Section.
3. Provide a system to collect all water used by the Contractor. Collected water shall be passed through a water filtration system prior to being discharged into the sanitary sewer. The final filter shall have a pore size of 5 microns or smaller.
4. Ensure that the Contractor's communication equipment is in place, in operating condition, and in operation during Work described in this Section.
5. Separate by means of airtight barriers (temporary partitions) parts of the building that are not included in the Work area(s) from parts of the building that will undergo asbestos abatement.
6. Seal with temporary partitions, open doorways, cased openings, and corridors which will not be used for passage during Work.
7. Isolate the area to be able to create a clean, negative pressure environment (e.g. airtight barriers).
8. Maintain emergency and fire exits from the Work areas or establish alternative exits satisfactory to the local fire officials. Emergency exits and routes shall be established and clearly marked with duct tape arrows or other effective designations to permit easy location from anywhere within the Work area. Emergency exits shall be secured to prevent access from uncontaminated areas and yet permit emergency exiting.
9. After sealing and plasticizing the area (see Subparagraphs "Gross Removal Area Preparations" and "Glove Bag Removal Area Preparations"), install and initiate operation of air filtration devices (see Subparagraph "Air Filtration Devices") to provide a pressure differential of at least -0.02 inches of water within the Work area relative to surrounding non-work areas.
 a. Locate AFD's so that makeup air enters the Work area mainly through the worker entrance and transverses the Work area as much as possible. AFD's shall be exhausted to the building exterior.
 b. Once they are operational, do not shut down AFD's until the Work area is released to the Government following final clearance procedures.
10. Piping systems designated for abatement Work are to be shut down, cooled, and depressurized prior to any removal Work.
C. Gross Removal Area Preparations: The Contractor shall perform the following preparations in conjunction with those outlined in Subparagraph "General Preparations", for each area to undergo gross removal asbestos abatement.

1. Shut down, isolate, and lock out or tag heating, ventilating, and air conditioning (HVAC) systems which serve or which pass through the Work area. Vents within the Work area and seams in HVAC components shall be sealed with tape and plastic sheeting. Filters in HVAC systems shall be removed and treated as asbestos-contaminated waste. Contractor shall provide the Contracting Officer with a list of locations where filters were removed.

2. Shut down, disconnect, and lock out or tag all electric power to the Work area so that there is no possibility of its reactivation until after clearance testing of the Work area.

3. Work Area Precleaning Procedures: After establishing the decontamination enclosure systems, prepare and preclean the Work area as specified below and as indicated by the Drawing notes:
 a. Movable and loose items not removed by the Government from Work areas shall be cleaned using HEPA vacuum equipment and/or wet cleaning methods as appropriate and shall be removed from Work areas to a location designated by the Contracting Officer or his representative. These items will be received by the Government.
 b. Movable and loose items noted as being contaminated shall be removed from the Work areas and discarded as asbestos-contaminated waste.
 c. Fixed objects within the Work area shall be precleaned using HEPA vacuum equipment and/or wet cleaning methods as appropriate. Joints of covers or casings shall be sealed with tape and fixed objects enclosed with a minimum of two layers of 6-mil plastic sheeting sealed airtight with tape. Disassembly of these fixed objects is not required unless otherwise noted.
 d. Existing pipe insulation which does not contain asbestos materials and is to remain shall be cleaned using HEPA vacuum equipment and/or wet cleaning methods as appropriate prior to being wrapped and sealed airtight in two layers of 4-mil plastic sheeting.
 e. Prior to being plasticized, the Work areas shall be cleaned using HEPA vacuum equipment and/or wet cleaning methods as appropriate. Methods that raise dust, such as dry sweeping or vacuuming with equipment not equipped with HEPA filters, shall not be used.

4. Plasticize the area after precleaning, using the following procedure:
 a. Cover floor with one layer of 6-mil plastic sheet, turning layer a minimum of 16 inches up wall, and seal layer to wall.
 b. Cover walls with one layer of 4-mil plastic sheet, lapping wall layer a minimum of 16 inches, and seal layer to floor layer.
 c. Repeat procedure for second layer. All joints in plastic sheets shall be glued and taped in such a manner as to prohibit air passage. Joints on plastic layers shall be staggered to reduce the potential for water to penetrate.

5. Areas immediately adjacent to removal areas, such as corridors or hallways which are not in Work areas but are necessary routes to and from Work areas, shall be protected with two layers of 6-mil plastic sheeting on floors and two layers of 4-mil plastic sheeting on walls and ceilings. The Contractor is permitted to provide plastic-enclosed, framed-in tunnels in lieu of plasticizing walls and ceilings. Openings from these areas into areas where asbestos material is removed shall have curtained doorways to minimize fiber dispersal into adjacent areas.

D. Glove Bag Removal Area Preparations: The following preparations shall be performed in conjunction with those outlined in Subparagraph "General Preparations" for areas to undergo glove bag removal asbestos abatement.

1. Shut down, isolate, and lock out or tag heating, ventilating, and air conditioning (HVAC) systems which serve or which pass through the Work area. During the Work, vents within the Work area shall be sealed with tape and plastic sheeting. Filters in HVAC systems shall be removed and treated as asbestos-contaminated waste. The Contractor shall provide the Contracting Officer with a list of locations where filters were removed.

2. Shut down, disconnect, and lock out or tag all electric power to systems on which glove bag removal will take place.

3. Work area precleaning procedures:
 a. Movable and loose items not removed by the Government from Work areas shall be cleaned using HEPA vacuum equipment and/or wet cleaning methods as appropriate and shall be
removed from Work areas to a location designated by Contracting Officer. These items will be received by the Government.

b. Preclean any gross contamination, from the immediate Work areas using HEPA vacuum equipment and/or wet cleaning methods as appropriate. Methods that raise dust, such as dry sweeping or vacuuming with equipment not equipped with HEPA filters, shall not be used.

c. Fixed objects within the Work area shall be precleaned using HEPA vacuum equipment and/or wet cleaning methods as appropriate.

4. Cover all horizontal surfaces within ten feet of the glove bagging operation, including the floor, with one layer of 6-mil plastic sheet.

5. Prepare insulation sections to be removed as follows:
 a. If insulation is damaged, or if a complete pipe section is being removed, wrap the entire length of the pipe in polyethylene plastic and "candy-stripe" it with duct tape.
 b. If insulation is not damaged, place one layer of duct tape around the pipe at each location where the glove bag will be attached.
 c. For punctures through pipe lagging, or other areas of limited damage, place one layer of duct tape securely over damaged area.

E. Non-Contained Work Area: In areas where the construction of a sealed, enclosed Work area is impracticable, the following preparations shall be performed:

1. Provide a roped-off perimeter around the area where the ACM is to be removed and handled. Post notices and warning signs around the perimeter of the Work area.

2. Provide a decontamination enclosure system adjacent to the Work area, in accordance with Paragraph "Decontamination Enclosure Systems" of this Section.

3. Provide a system to collect all water used by the Contractor. Collected water shall be passed through a water filtration system prior to being discharged into the sanitary sewer.

4. Seal with plastic and tape all doorways, windows, vents and other openings in the walls of the facility adjacent to the Work.

5. Cover all horizontal surfaces within ten feet of the removal operation, including the ground, with one layer of 6-mil plastic sheet.

3.03 PRE-REMOVAL INSPECTION

A. Prior to removal of any ACM the Contracting Officer or his representative shall perform a pre-removal inspection. The Contracting Representative shall be notified 24 hours prior to the inspection. Posting of warning signs, construction of temporary partitions, plasticizing of Work area, building of personnel and equipment decontamination enclosure systems, and all other preparatory steps shall have been taken prior to notification of the Contracting Officer. The Contractor shall not begin asbestos removal until the Contracting Officer approves the Work area preparations.

3.04 MAINTENANCE OF ENCLOSED WORK AREA AND DECONTAMINATION ENCLOSURES

A. Ensure that barriers and plastic linings are effectively sealed and taped. Repair damaged barriers and remedy defects immediately upon their discovery. Visually inspect enclosures at the beginning and end of each Work period. Use smoke methods when directed by the Contracting Officer or his representative to test effectiveness of barriers.

B. Thoroughly clean the decontamination enclosure systems at the end of each 8-hour Work shift, and more frequently if required.

3.05 REMOVAL OF ASBESTOS-CONTAINING MATERIAL

A. A-C Ceiling Material, Vibration Isolators, and Insulation and Lagging on Tanks, Pipes, Fittings, Other Equipment and Ductwork: The Contractor may use the "gross removal" procedure described below. The Contractor shall use methods and equipment which will keep the fiber count during removal operations to less than 0.5 fibers/cc of air when tested by NIOSH Method 7400.

1. Gross removal procedure:
 a. Prepare the area as described in Subparagraph "Gross Removal Area Preparations" of this Section. Remove aluminum lagging from piping and equipment, if present, while providing a continual mist of amended water or removal encapsulant to the insulation, leaving it intact.
Spray asbestos materials with a fine mist of amended water or removal encapsulant, saturating materials to substrate. Spray the asbestos material repeatedly during Work process to maintain a wet condition and to minimize asbestos fiber dispersion.

b. Remove the saturated asbestos material in small sections. As it is removed, pack the material in sealable plastic bags which shall be placed in labeled drums for transport. Remove insulation materials carefully from equipment. Do not permit them to fall to the floor.

2. After completion of all stripping work, surfaces from which ACM have been removed shall be wet brushed and sponged, or cleaned by some equivalent method to remove all visible residue. (Do not use wire brushes.)

B. A-C Insulation and Lagging on Pipes and Fittings: The Contractor shall use the procedure as described below when using the glove bag technique for the removal of ACM from piping and small tanks. The Contractor shall use methods and equipment which will keep the fiber count during removal operations to less than 0.1 fibers/cc of air when tested by NIOSH Method 7400.

1. Prepare the area as described in Subparagraph "Glove Bag Removal Area Preparations" of this Section. For removal of ACM using the glove bag technique where the establishment of a sealed enclosed work area is impracticable, prepare work area as described in Subparagraph "Non-Contained Work Area".

2. Place the glove bag around the affected section of pipe, secure the glove bag, and reinforce the attachment/seal. Glove bags shall provide an airtight seal around the area from which the asbestos is to be removed and shall be under negative air pressure by a HEPA filter exhaust unit. Check for leakage by introducing smoke into the bag and then gently squeezing the bag with hand pressure. If any leaks occur, the bag shall be resealed and retested until no leakage occurs. This seal shall be continually maintained until all asbestos has been removed from the equipment surface enclosed within the glove bag.

3. If the section of pipe is covered with an aluminum jacket, this is removed first. It is important to fold in the sharp edges of the jacket to prevent cutting the bag when it is placed in the bottom. With the insulation exposed, cut the insulation inside the glove bag at each end of the section to be removed. Slit insulation from end to end and remove insulation from pipe. Throughout this process spray water on the cutting area to keep dust to a minimum.

4. When all insulation is removed, introduce water spray into the glove bag and carry out recommended washing-down procedure (tools, pipe, and upper half of bag). Scrub and wipe down the exposed pipe inside the glove bag. Apply lockdown sealant to all exposed insulation and pipe.

5. When the above operations have been completed, remove excess air from the glove bag with HEPA vacuum and remove the glove bag from pipe. Continuous stripping or sliding of the glove bag shall not be allowed. Use the glove bag for only one application prior to disposal. Place the glove bag in a plastic disposal bag and seal the bag prior to placing it in a labeled drum for transport.

C. Abandoned Pipes and Fittings with A-C Insulation and Lagging: Note that all piping scheduled for demolition shall be purged prior to cutting. The Contractor may use the wrap-and-cut technique on these materials. The Contractor shall use methods and equipment which will keep the fiber count during removal operations to less than 0.1 fibers/cc of air when tested by NIOSH Method 7400.

1. Prepare the area as described in Subparagraph "Glove Bag Removal Area Preparations" of this Section.

2. Using the glove bag removal technique described in Subparagraph "Insulation and Lagging on Pipes and Fittings," remove stripe of insulation along the pipe to be demolished. Width of the strips should be sufficient for the use of power cutting equipment to cut the pipe while leaving the remaining insulation undisturbed.

3. Spray aerosol adhesive on the insulated pipe and wrap it airtight in one (1) layer of 6-mil plastic sheet. Cut the pipe at exposed strips. Remove the pipe section and wrap it in a second layer of 6-mil plastic sheet. Secure plastic with duct tape prior to placing the pipe sections in labeled drums for transport and disposal.

D. A-C Debris: The Contractor shall use methods and equipment which will keep the fiber count during removal operations to less than 0.1 fibers/cc of air when tested by NIOSH Method 7400.
1. Prepare the area as described in Subparagraph "Glove Bag Removal Area Preparations" of this Section.
2. Spray debris with amended water or removal encapsulant. While still wet, place loose pieces in 6-mil plastic bags and pack bags in labeled drums for transport.
3. If breaking is required to reduce the bulk size for disposal, wrap debris airtight in two layers of 6-mil plastic sheeting. Break while contained inside plastic layer. Pack into an additional plastic disposal bag and place in labeled drums for transport.

E. A-C Cement Board: For removal of non-friable asbestos cement Products, prepare Work area as described in Subparagraph "Glove Bag Removal Area Preparations" of this Section. The Contractor shall use methods and equipment which will keep the fiber count during removal operations to less than 0.1 fibers/cc of air when tested by NIOSH Method 7400.
1. The A-C cement board shall be kept saturated with amended water during removal, and removed intact if possible, in order to minimize emission of airborne fibers.
2. Fasteners holding material in place shall be cut or removed without breaking the material. Spray amended water on and around the fastener while removing it to control any fiber release.
3. If removal of fastener is unsuccessful, under a continual mist of amended water break A-C cement board from under the fastener.

F. A-C Flooring and Mastic: The Work area shall be prepared as described in Subparagraph "Gross Removal Area Preparations" of this Section. If A-C flooring and/or A-C mastic is the only ACM to be removed in a Work area, modify area preparations to include the following: (1) plasticize the walls to a height of three feet to protect them from water damage and (2) do not plasticize floor area. The Contractor shall use methods and equipment which will keep the fiber count during removal operations to less than 0.1 fiber/cc of air when tested by NIOSH Method 7400.
1. Dispose of any removed carpet and baseboard materials as asbestos waste.
2. Spray amended water onto floors covered with A-C flooring. Wet the material sufficiently to reduce the release of fibers if the materials are broken upon removal. Remove A-C flooring using a flat hoe or scraper. Flooring shall be removed intact. Continually wet the material during the removal process to minimize fiber dispersion. Do not grind or sand floor. Multiple layers of flooring may exist.
3. Remove A-C mastic using a flat hoe, approved mastic-removal solvent, or other suitable method. Do not grind or sand A-C mastic.
4. As material is removed, wrap it in two layers of plastic and place it in labeled containers for transport. After completion of all stripping Work, scrape, wet-brush, and wipe floor. No tile or mastic residue shall remain on the floor surface following removal and cleaning.

G. A-C Painted Panels and Wallboard: For removal of non-friable asbestos-painted Products and wallboard, prepare Work area as described in Subparagraph "Glove Bag Removal Area Preparations" of this Section. The Contractor shall use methods and equipment which will keep the fiber count during removal operations to less than 0.1 fibers/cc of air when tested by NIOSH Method 7400.
1. The A-C painted panels shall be kept saturated with amended water during removal, and removed intact if possible, in order to minimize emission of airborne fibers.
2. Fasteners holding material in place shall be cut or removed without breaking the material. Spray amended water on and around the fastener while removing it to control any fiber release.

H. Additional Removal Requirements:
1. The Contracting Officer or his representative shall issue a stop Work order should the fiber count in Work areas exceed the maximum allowable fiber concentrations specified. The Contracting Officer or his representative shall stop Work in Work areas should the fiber count in adjacent non-work areas exceed 0.01 f/cc of air or the background count (use the greater of these two values as the reference). Work shall not resume until the condition(s) causing the increase are corrected by the Contractor and the Contractor receives written notice from the Contracting Officer.
2. The following refers to asbestos contamination which occurs accidentally in an area prepared in accordance with Paragraph "Glove Bag Removal Area Preparations". Each Project activity in the Work area shall be immediately discontinued if asbestos contamination of the general Work area
occurs as a result of damage to or improper use of glove bags or damage to any other friable ACM located within the area. Project activities shall not be resumed until all surfaces in the area that are likely to have become contaminated with asbestos fibers have been thoroughly cleaned with a HEPA vacuum or by wet cleaning methods. The Contractor shall notify the Contracting Officer immediately of all emergency shutdown actions. Asbestos removal Work shall not resume until the Contractor receives written notice from the Contracting Officer.

3. Removal of ACM at penetrations of walls and concrete slabs shall extend not less than three inches beyond the surface of the wall or slab. The remaining exposed end of insulation not removed shall be sealed with penetrating encapsulant. The remaining hole shall be filled with insulating cement or foam sealant as directed by the Engineer.

4. At the termination of asbestos removal on piping and equipment, encapsulate the exposed edges of remaining asbestos insulation. Wet and cut the rough ends true and square with sharp tools and enclose the edges with a 1/4-inch-thick layer of insulating cement trowelled to a smooth, hard finish. When the insulating cement is dry, lag the end with a layer of fiberglass cloth and thermal insulation adhesive, overlapping the existing ends by four inches.

3.06 CLEANUP AND CLEARANCE TESTING OF WORK AREAS
A. Clearance Procedure for areas prepared as "Gross Removal" areas: Cleaning of the Work areas and other contaminated areas shall be conducted in accordance with the four-step procedure described below.

Step 1. Preliminary Cleanup Visual inspection
Step 2. Initial Clearance Testing Visual inspection and fiber count
Step 3. Lockdown
Step 4. Final Reoccupancy Testing

1. Step 1. Preliminary Cleanup:
 a. Remove visible accumulation of asbestos material and debris. Wet clean all surfaces and objects in the Work area and any other contaminated area. Remove asbestos waste in impermeable containers from the Work area.
 b. After cleaning the Work area, wait 24 hours to allow for the settlement of dust and again wet clean, or clean with HEPA vacuum equipment, all surfaces in the Work area. (Waiting time of 24 hours may be waived.) After completion of the second cleaning operation, perform a complete visual inspection of the Work area to ensure that it is free of visible contamination.
 c. The Contracting Officer or his representative will perform a visual inspection. If the Contracting Officer or his representative finds visible accumulations of dust in the Work area, the Contractor shall repeat the wet cleaning as heretofore specified.

2. Step 2. Initial Clearance Testing:
 a. The Contractor's industrial hygienist or his representative will perform Initial Clearance Testing in Work area.
 b. Areas which do not comply with Initial Clearance Testing criteria shall continue to be cleaned by the Contractor until the specified standard of cleaning is achieved. Initial Clearance Testing results shall be submitted to the Contracting Officer in accordance with paragraph 1.05.D.
 c. When the fiber count is acceptable, one layer of plastic sheeting shall be carefully removed from ceilings, walls, and floor (if two layers are present). The plastic sheeting shall be folded inward as it is removed to trap any debris. Plastic sheeting and seals on doors, windows, vents, and other openings shall remain in place.

3. Step 3. Lockdown:
 a. After successful completion of the Initial Clearance Procedure, all surfaces and building components from which ACM was removed (ceilings, piping, and floors) and the remaining layer of protective plastic sheeting shall receive lockdown encapsulant.
 b. When the encapsulant is dry, the layer of plastic sheeting shall be wet cleaned and/or HEPA vacuumed again.
 c. The second layer of plastic shall be removed from walls and floor and shall be folded inward to trap any debris. Do not remove seals from doors, windows, etc. or turn off the AFDs.
d. All exposed surfaces shall be wet cleaned and/or HEPA vacuumed. After cleaning, wait a minimum of 16 hours to allow for settling of dust and then wet clean and/or HEPA vacuum again. (Waiting time of 16 hours may be waived by the Contracting Officer.)

4. Step 4. Final Reoccupancy Clearance:
 a. The Contracting Officer or his representative will perform a final inspection for reoccupancy for the purpose of observing whether the condition of cleaned areas is free of dust, dirt, and debris. Evidence of asbestos contamination identified during the inspection will necessitate further cleaning as heretofore specified.
 b. When the Work area passes the final inspection for reoccupancy, the Contractor shall test for reoccupancy using aggressive sampling techniques. Reoccupancy will be approved by the Contracting Officer if the recommended fiber count in the Work area is achieved. Failure to achieve this level will necessitate further cleaning as heretofore specified. Final Air Clearance results shall be submitted to the Contracting Officer in accordance with paragraph 1.05.D.
 c. When the Work area passes the reoccupancy test, disconnect the AFDs, and seal the intakes to the machines airtight with 6-mil plastic sheeting and tape. Remove all controls and seals established.

B. Clearance Procedure for areas prepared as “Glove Bag Removal” areas: For areas in which glove bag removal area preparation was required, cleaning of the Work areas and other contaminated areas shall be conducted in accordance with the three-step procedure described below.

 Step 1. Preliminary Cleanup Visual Inspection
 Step 2. Lockdown --
 Step 3. Final Reoccupancy Fiber count of <0.01 fiber/cc of Clearance air, using NIOSH Method 7400.

1. Step 1. Preliminary Cleanup:
 a. Remove any visible accumulation of asbestos material and debris. All sealed drums, plastic bags, and equipment used in the Work area shall be removed from the Work area.
 b. The Contracting Officer or his representative will perform a visual inspection. Evidence of asbestos contamination identified during the inspection will necessitate further cleaning as heretofore specified.

2. Step 2. Lockdown: (For glove bag removal, this step should have already been completed with the glove bag still on the pipe).
 a. When the Work area passes the Preliminary Cleanup, all building materials and components from which ACM was removed, as well as protective layer of plastic sheeting, shall receive a lockdown encapsulant.
 b. When the encapsulant is dry, plastic sheets on the walls and floors shall be removed. Do not remove seals from doors, windows, etc. or turn off the AFDs.

3. Step 3. Reoccupancy Clearance:
 a. The Contractor shall test for reoccupancy using aggressive sampling techniques. Reoccupancy will be approved by the Contracting Officer or his representative if the specified fiber count in the Work area is achieved according to the testing laboratory. Final air clearance monitoring results shall be submitted in accordance with paragraph 1.05.D.
 b. When the Work area passes the reoccupancy test disconnect the AFDs, and seal the intakes to the machines airtight with 6-mil plastic sheeting and tape. Remove all controls and seals established.

C. Other Information:
 1. Extra time required to clean Work areas in order to achieve clearance criteria shall not be considered grounds for an extension of time for Contract completion.

3.07 AIR MONITORING REQUIREMENTS

A. Air monitoring will be performed before, during, and after asbestos abatement to document airborne asbestos fiber concentrations. Air sampling shall be conducted under the direction of an independent Certified Industrial Hygienist (CIH) or a Industrial Hygienist Technician (IHT) under direct supervision of the CIH experienced in asbestos abatement and who is currently certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene (ABIH). The Contractor shall be responsible
for the development and implementation of a personal air monitoring program in accordance with OSHA Standard 29 CFR 1926.1101, good industrial hygiene practices, and the requirements herein for gross removal and/or glove bag removal, including background, area, and final air clearance air sampling.

1. Air Monitoring Prior to Asbestos Work. The baseline air sampling shall be established one day prior to the masking and sealing operations for each abatement area site. The background shall be established by performing area sampling in similar but uncontaminated sites in the building. PCM air samples shall be collected at a minimum of three locations. These locations are: outside the building, inside the building not within the abatement area, and inside each abatement area. One sample shall be collected for every 2000 square feet of floor space for the inside samples. At least two samples shall be collected outside the building. Air monitoring results shall be submitted to the Contracting Officer in accordance with paragraph 1.06.D.

2. Air Monitoring During Removal Operations:
 a. Full-shift daily personal exposure air sampling of workers shall be performed to establish the 8-hour (TWA) exposure. Such sampling shall be conducted for each employee (or representative group of employees) expected to receive the highest exposure in each Work area for each type of activity that removal, cleanup, or site preparation activities occur. Similarly, 30-minute personal exposure air sampling shall be conducted during activities anticipated to produce the highest airborne concentrations to determine the excursion limit (EL). The Contractor shall notify the Contracting Officer immediately of any exposures to asbestos fibers within the asbestos control area in excess of 0.1 f/cc (PEL) or the 1.0 f/cc (EL), without regard to respiratory protection. All air monitoring results shall be submitted to the Contracting Officer in accordance with paragraph 1.05.D.
 b. Area sampling shall be conducted at least every shift. Samples shall be taken within the containment area, outside the clean room entrance, inside the clean room, outside the load-out unit exit, and other areas surrounding the containment including the exhaust discharge point of the local exhaust system. Monitoring stations shall not be positioned in such a manner that will generate false results (e.g. within direct line of the exhaust system, facing upward). If monitoring anywhere outside the asbestos control area (barrier/perimeter, environmental, and clean room air samples) indicates airborne concentrations in excess of 0.01 f/cc or the reference background fiber concentration, whichever is greater, the Contractor shall immediately notify the Contracting Officer. The Contractor shall immediately stop the removal of asbestos, investigate, and correct the condition causing the increase. All area monitoring results shall be submitted to the Contracting Officer in accordance with paragraph 1.05.C.

3. Air Monitoring After Removal Operations (Final Air Clearance). Final Air Clearance shall be performed as specified in Section 3.06, and submitted in accordance with paragraph 1.05.D.

B. Recordkeeping: The Contractor shall keep and maintain accurate records of all air monitoring performed during this Project in accordance with OSHA Standards 29 CFR 1926.1101. The Contractor shall complete and submit to the Contracting Officer within 15 working days after completion of all airborne asbestos monitoring conducted under this Contract, the following (this is in addition to the daily submittal of the air monitoring results required by Section 1.05.D):
 1. Negative air pressure readings, signed and dated.
 2. Detailed background, personal, clearance, and area air monitoring records, signed and dated.

3.08 DISPOSAL AND TRANSPORTATION OF ASBESTOS-CONTAMINATED WASTE

A. As the Work progresses, to prevent exceeding available storage capacity on site or to prevent stacking of drums, remove sealed and labeled drums or bags of ACM from the Work area as required.

B. Sealed and labeled drums or bags shall be used to transport asbestos- contaminated waste to the landfill. Procedures for hauling and disposal shall comply with 40 CFR Part 61, 49 CFR Part 171 and 172, and other applicable state, regional, and local government regulations. Procedures for removal from the Work area and disposal of waste are outlined below:
 1. Asbestos-containing waste shall remain under the positive control of the Contractor and must never be left unattended in an area or on a vehicle where unauthorized persons could gain access. When control of the asbestos waste is relinquished to another party, the signature of both parties, and the time and date of the transaction, shall be recorded on the Waste Shipment Record form. Each party who has control over the asbestos waste shall retain a copy of the waste shipment record form, as the
responsibility for the waste is transferred to the next party. Copies of all waste shipment record forms and waste receipts shall be provided to the Contracting Officer.

2. Trucks hauling drums or bags shall be totally enclosed to prevent loss or damage to waste containers en route to approved landfill. The interior of the vehicles shall be lined with two layers of 6-mil plastic.

3. All vehicles used to transport the waste material shall be marked with a visible warning sign during the loading and unloading of asbestos-containing waste. Danger sign legend, text size, style and arrangement shall conform to the requirements of 40 CFR Part 61.149 (d)(1).

4. Only sealed plastic bags or drums are permitted to be deposited in landfill. Damaged, broken, or leaking plastic bags shall remain in the drum, and the drum shall be deposited in landfill. Broken bags shall be rebagged prior to disposal. Workers shall place asbestos waste in the landfill. Throwing or dumping of containers shall not be allowed. Workers unloading and handling the sealed bags/drums at the disposal site shall wear appropriate personnel protective equipment including respirators and protective clothing.

5. After the vehicle is unloaded at the landfill, the plastic sheeting that was taped to the floor, sides and top of the truck shall be carefully removed and placed in properly labeled bags for disposal with the rest of the waste.

3.09 RE-ESTABLISH MECHANICAL AND ELECTRICAL SYSTEMS

A. Mechanical and Electrical Systems: After final clearance of the Work areas, re-establish HVAC, mechanical, and electrical systems disconnected or removed to perform asbestos abatement. The Contractor shall certify in writing that all systems disturbed or removed during this Work have been reinstalled and are in proper working order.

B. Mounted Objects: When finishes have been completed the Contractor shall resecure mounted objects removed during the course of the Work to their former positions.

C. Loose and Movable Objects: Objects cleaned and removed from the Work area by the Contractor shall be returned to their former positions by the Contractor.

END OF SECTION
SECTION 02 82 16.00 20 APPENDIX

TABLE OF CONTENTS

Respiratory Protection Justification

Notification of Demolition and Renovation

Certificate of Worker's Release

Waste Shipment Record Form, with Instructions
RESPIRATORY PROTECTION JUSTIFICATION

Project Name ___

Location ___

Date ____________

Based upon airborne asbestos fiber counts encountered on previous Projects of similar type working on materials similar to those found on the above-referenced Project, the following level of respiratory protection is proposed for the indicated operations to maintain an airborne fiber concentration below 0.01 fibers per cubic centimeter (f/cc) exposure limit inside the respirator facepiece.

<table>
<thead>
<tr>
<th>Anticipated Operation</th>
<th>Respiratory f/cc</th>
<th>Protection</th>
<th>f/cc in Factor</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing sheet plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removing objects in contact with ACM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross removal of pipe, duct, & tank insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glove bag removal of pipe run & fitting insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal of asbestos cement Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal of floor tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removal of flexible duct joints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross debris removal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning "primary" sheet plastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning "critical" barrier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removing decontamination unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disposal at landfill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Contractor certifies that to the best of his knowledge and belief the above represent a true and accurate representation of airborne fiber concentrations expected for the operations indicated, and are based upon airborne fiber data from past Projects with similar materials and operations.

Contractor __

Signed by:

Signature _________________________________ Date __________________

Print Name __

Title _____________________________________
Notification of Demolition and Renovation
Get form from Environmental Section, 16 CES or the Florida Dept of Environmental Protection

Certificate of Worker's Release
Get form from Environmental Section, 16 CES or the Florida Dept of Environmental Protection

Waste Shipment Record Form, with Instructions
Get form from Environmental Section, 16 CES or the Florida Dept of Environmental Protection
SECTION 03 20 00.00 10

CONCRETE REINFORCING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 318 (2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016) Building Code Requirements for Structural Concrete and Commentary

ASTM INTERNATIONAL (ASTM)

ASTM A615/A615M (2016) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

CONCRETE REINFORCING STEEL INSTITUTE (CRSI)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; . Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

SD-02 Shop Drawings

Reinforcement; G

SD-07 Certificates

Reinforcing Steel

1.3 DELIVERY, STORAGE, AND HANDLING

Store reinforcement and accessories off the ground on platforms, skids, or other supports.
PART 3 EXECUTION

3.1 REINFORCEMENT

Fabricate and place reinforcement steel and accessories as specified, as indicated, and as shown on approved shop drawings. Fabrication and placement details of steel and accessories not specified or shown must be in accordance with ACI SP-66 and ACI 318. Cold bend reinforcement unless otherwise authorized. Bending may be accomplished in the field or at the mill. Do not bend bars after embedment in concrete. Place safety caps on all exposed ends of vertical concrete reinforcement bars that pose a danger to life safety. Face wire tie ends away from the forms. Submit detail drawings showing reinforcing steel placement, schedules, sizes, grades, and splicing and bending details. Show support details including types, sizes and spacing.

3.1.1 Placement

Reinforcement must be free from loose rust and scale, dirt, oil, or other deleterious coating that could reduce bond with the concrete. Place reinforcement in accordance with ACI 318 at locations indicated plus or minus one bar diameter. Do not continue reinforcement through expansion joints and place as indicated through construction or contraction joints. Cover with concrete coverage as indicated or as required by ACI 318. If bars are moved more than one bar diameter to avoid interference with other reinforcement, conduits or embedded items, the resulting arrangement of...
bars, including additional bars required to meet structural requirements, requires approval before concrete is placed.

-- End of Section --
SECTION 03 30 53
MISCELLANEOUS CAST-IN-PLACE CONCRETE

PART 1 GENERAL

1.1 SUMMARY

Perform all work in accordance with ACI 318.

1.2 UNIT PRICES

1.2.1 Concrete Payment

Payment will cover all costs associated with manufacturing, furnishing, delivering, placing, finishing, and curing of concrete for the various items of the schedule, including the cost of all formwork. Payment for concrete, for which payment is made as a lump sum, is to be included in this unit price payment item. Payment for grout, preformed expansion joints, field-molded sealants, waterstops, reinforcing steel bars or wire reinforcement is to be included in this unit price payment item.

1.2.2 Measurement

Concrete will be measured for payment on the basis of the actual volume of concrete within the pay lines of the structures as indicated. Measurement of concrete placed against the sides of any excavation without the use of intervening forms will be made only within the pay lines of the structure. No deductions will be made for rounded or beveled edge, for space occupied by metal work, for electrical conduits or timber, or for voids or embedded items that are either less than 5 cubic feet in volume or 1 square foot in cross section.

1.2.3 Unit of Measure

Unit of measure: cubic yard.

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 117 (2010; Errata 2011) Specifications for Tolerances for Concrete Construction and Materials and Commentary

ACI 301 (2016) Specifications for Structural Concrete

ACI 318 (2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016) Building Code Requirements for Structural Concrete and Commentary

ASTM INTERNATIONAL (ASTM)

ASTM A1064/A1064M (2016b) Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete
ASTM A615/A615M (2016) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
ASTM C172/C172M (2014a) Standard Practice for Sampling Freshly Mixed Concrete
ASTM C231/C231M (2014) Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
ASTM C31/C31M (2015a; E 2016) Standard Practice for Making and Curing Concrete Test Specimens in the Field

ASTM C618 (2012a) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

ASTM C685/C685M (2014) Concrete Made by Volumetric Batching and Continuous Mixing

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

40 CFR 247 Comprehensive Procurement Guideline for Products Containing Recovered Materials

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Installation Drawings; G

SD-03 Product Data
 Air-Entraining Admixture
 Water-Reducing or Retarding Admixture
 Curing Materials
 Batching and Mixing Equipment
 Conveying and Placing Concrete

 Mix Design Data; G
 Ready-Mix Concrete
 Curing Compound
 Mechanical Reinforcing Bar Connectors

SD-06 Test Reports
 Aggregates
 Concrete Mixture Proportions; G
 Compressive Strength Testing; G
 Slump; G
 Air Content
 Water
1.5 QUALITY ASSURANCE

Indicate specific locations of Concrete Placement on installation drawings and include, but not be limited to, square feet of concrete placements, thicknesses and widths, plan dimensions, and arrangement of cast-in-place concrete section.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

The Government retains the option to sample and test aggregates and concrete to determine compliance with the specifications. Provide facilities and labor as may be necessary to assist the Government in procurement of representative test samples. Obtain samples of aggregates at the point of batching in accordance with ASTM D75/D75M. Sample concrete in accordance with ASTM C172/C172M. Determine slump and air content in accordance with ASTM C143/C143M and ASTM C231/C231M, respectively, when cylinders are molded. Prepare, cure, and transport compression test specimens in accordance with ASTM C31/C31M. Test compression test specimens in accordance with ASTM C39/C39M. Take samples for strength tests not less than once each shift in which concrete is produced. Provide a minimum of five specimens from each sample; two to be tested at 28 days (90 days if pozzolan is used) for acceptance, two will be tested at 7 days for information and one held in reserve.

2.1.1 Strength

Acceptance test results are the average strengths of two specimens tested at 28 days (90 days if pozzolan is used). The strength of the concrete is considered satisfactory so long as the average of three consecutive acceptance test results equal or exceed the specified compressive strength, f'c, but not more than 20 percent, and no individual acceptance test result falls below f'c by more than 500 psi.

2.1.2 Construction Tolerances

Apply a Class "C" finish to all surfaces except those specified to receive a Class "D" finish. Apply a Class "D" finish to all post-construction surfaces which will be permanently concealed. Surface requirements for the classes of finish required are as specified in ACI 117.

2.1.3 Concrete Mixture Proportions

Concrete mixture proportions are the responsibility of the Contractor. Mixture proportions must include the dry weights of cementitious material(s); the nominal maximum size of the coarse aggregate; the specific gravities, absorptions, and saturated surface-dry weights of fine and
2.2 MATERIALS

Submit manufacturer's literature from suppliers which demonstrates compliance with applicable specifications for the specified materials.

2.2.1 Cementitious Materials

Submit Manufacturer's certificates of compliance, accompanied by mill test reports, attesting that the concrete materials meet the requirements of the specifications in accordance with the Special Clause "CERTIFICATES OF COMPLIANCE". Also, certificates for all material conforming to EPA's Comprehensive Procurement Guidelines (CPG), in accordance with 40 CFR 247. Provide cementitious materials that conform to the appropriate specifications listed:

2.2.1.1 Portland Cement

ASTM C150/C150M, Type III, low alkali with tri-calcium aluminates (C3A) content less than 10 percent and a maximum cement-alkali content of 0.80 percent Na2Oe (sodium oxide) equivalent.

2.2.1.2 Pozzolan

Provide pozzolan that conforms to ASTM C618, Class F, including requirements of Tables 1A and 2A.

2.2.2 Aggregates

For fine and coarse aggregates meet the quality and grading requirements of ASTM C33/C33M. Submit certificates of compliance and test reports for aggregates showing the material(s) meets the quality and grading requirements of the specifications under which it is furnished.

2.2.3 Admixtures

Provide admixtures, when required or approved, in compliance with the appropriate specification listed. Retest chemical admixtures that have been in storage at the project site, for longer than 6 months or that have been subjected to freezing, at the expense of the Contractor at the request of the Contracting Officer and will be rejected if test results are not satisfactory.

2.2.3.1 Air-Entraining Admixture

Provide air-entraining admixture that meets the requirements of ASTM C260/C260M.
2.2.3.2 Water-Reducing or Retarding Admixture

Provide water-reducing or retarding admixture meeting the requirements of ASTM C494/C494M, Type A, B, or D.

2.2.4 Water

Mixing and curing water in compliance with the requirements of ASTM C1602/C1602M; potable, and free of injurious amounts of oil, acid, salt, or alkali. Submit test report showing water complies with ASTM C1602/C1602M.

2.2.5 Reinforcing Steel

Provide reinforcing bars conforming to the requirements of ASTM A615/A615M, Grade 60, deformed. Provide welded steel wire reinforcement conforming to the requirements of ASTM A1064/A1064M. Detail reinforcement not indicated in accordance with ACI 301 and ACI SP-66. Provide mechanical reinforcing bar connectors in accordance with ACI 301 and provide 125 percent minimum yield strength of the reinforcement bar.

2.2.6 Curing Materials

Provide curing materials in accordance with ACI 301, Section 5.

2.3 READY-MIX CONCRETE

Provide ready-mix concrete with mix design data conforming to ACI 301 Part 2. Submit delivery tickets in accordance with ASTM C94/C94M for each ready-mix concrete delivery, include the following additional information: .

a. Type and brand cement
b. Cement content in 94-pound bags per cubic yard of concrete
c. Maximum size of aggregate
d. Amount and brand name of admixture
e. Total water content expressed by water cementitious material ratio

2.4 ACCESSORIES

2.4.1 Chemical Floor Hardener

Provide hardener which is a colorless aqueous solution containing a blend of inorganic silicate or silicate material and proprietary components combined with a wetting agent; that penetrates, hardens, and densifies concrete surfaces. Submit manufactures instructions for placement of liquid chemical floor hardener.

2.4.2 Curing Compound

Provide curing compound conforming to ASTM C309. Submit manufactures instructions for placing curing compound.
PART 3 EXECUTION

3.1 PREPARATION

Prepare construction joints to expose coarse aggregate. The surface must be clean, damp, and free of laitance. Construct ramps and walkways, as necessary, to allow safe and expeditious access for concrete and workmen. Remove snow, ice, standing or flowing water, loose particles, debris, and foreign matter. Satisfactorily compact earth foundations. Make spare vibrators available. Placement cannot begin until the entire preparation has been accepted by the Government.

3.1.1 Embedded Items

Secure reinforcement in place after joints, anchors, and other embedded items have been positioned. Arrange internal ties so that when the forms are removed the metal part of the tie is not less than 2 inches from concrete surfaces permanently exposed to view or exposed to water on the finished structures. Prepare embedded items so they are free of oil and other foreign matters such as loose coatings or rust, paint, and scale. The embedding of wood in concrete is permitted only when specifically authorized or directed. Provide all equipment needed to place, consolidate, protect, and cure the concrete at the placement site and in good operating condition.

3.1.2 Formwork Installation

Forms must be properly aligned, adequately supported, and mortar-tight. Provide smooth form surfaces, free from irregularities, dents, sags, or holes when used for permanently exposed faces. Chamfer all exposed joints and edges, unless otherwise indicated.

3.1.3 Production of Concrete

3.1.3.1 Ready-Mixed Concrete

Provide ready-mixed concrete conforming to ASTM C94/C94M except as otherwise specified.

3.1.3.2 Concrete Made by Volumetric Batching and Continuous Mixing

Conform to ASTM C685/C685M.

3.1.3.3 Batching and Mixing Equipment

The option of using an on-site batching and mixing facility is available. The facility must provide sufficient batching and mixing equipment capacity to prevent cold joints. Submit the method of measuring materials, batching operation, and mixer for review, and manufacturer's data for batching and mixing equipment demonstrating compliance with the applicable specifications.

3.2 CONVEYING AND PLACING CONCRETE

Convey and place concrete in accordance with ACI 301, Section 5.

3.2.1 Cold-Weather Requirements

Place concrete in cold weather in accordance with ACI 306R
3.2.2 Hot-Weather Requirements

Place concrete in hot weather in accordance with ACI 305R

3.3 FINISHING

3.3.1 Temperature Requirement

Do not finish or repair concrete when either the concrete or the ambient temperature is below 50 degrees F.

3.3.2 Finishing Formed Surfaces

Remove all fins and loose materials, and surface defects including filling of tie holes. Repair all honeycomb areas and other defects. Remove all unsound concrete from areas to be repaired. Ream or chip surface defects greater than 1/2 inch in diameter and holes left by removal of tie rods in all surfaces not to receive additional concrete and fill with dry-pack mortar. Brush-coat the prepared area with an approved epoxy resin or latex bonding compound or with a neat cement grout after dampening and filling with mortar or concrete. Use a blend of portland cement and white cement in mortar or concrete for repairs to all surfaces permanently exposed to view shall be so that the final color when cured is the same as adjacent concrete.

3.3.3 Finishing Unformed Surfaces

Finish unformed surfaces in accordance with ACI 301, Section 5.

<table>
<thead>
<tr>
<th>FINISH</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broom or Belt</td>
<td>Stairs and Ramp</td>
</tr>
</tbody>
</table>

3.4 CURING AND PROTECTION

Cure and protect in accordance with ACI 301, Section 5.

3.5 FORM WORK

Provide form work in accordance with ACI 301, Section 2 and Section 5.

3.5.1 Removal of Forms

Remove forms in accordance with ACI 301, Section 2.

3.6 STEEL REINFORCING

Reinforcement must be free from loose, flaky rust and scale, and free from oil, grease, or other coating which might destroy or reduce the reinforcement's bond with the concrete.
3.6.1 Fabrication

Shop fabricate steel reinforcement in accordance with ACI 318 and ACI SP-66. Provide shop details and bending in accordance with ACI 318 and ACI SP-66.

3.6.2 Splicing

Perform splices in accordance with ACI 318 and ACI SP-66.

3.6.3 Supports

Secure reinforcement in place by the use of metal or concrete supports, spacers, or ties.

3.7 EMBEDDED ITEMS

Before placing concrete, take care to determine that all embedded items are firmly and securely fastened in place. Provide embedded items free of oil and other foreign matter, such as loose coatings of rust, paint and scale. Embedding of wood in concrete is permitted only when specifically authorized or directed.

3.8 CHEMICAL FLOOR HARDENER

Apply Chemical Floor Hardener where indicated, after curing and drying concrete surface. Dilute liquid hardener with water and apply in three coats. First coat is one-third strength, second coat one-half strength, and third coat two-thirds strength. Apply each coat evenly and allow it to dry 24 hours before applying next coat. Apply proprietary chemical hardeners in accordance with manufacturer's printed directions.

3.9 TESTING AND INSPECTING

Report the results of all tests and inspections conducted at the project site informally at the end of each shift. Submit written reports weekly. Deliver within three days after the end of each weekly reporting period.

3.9.1 Field Testing Technicians

The individuals who sample and test concrete must have demonstrated a knowledge and ability to perform the necessary test procedures equivalent to the ACI minimum guidelines for certification of Concrete Field Testing Technicians, Grade I.

3.9.2 Preparations for Placing

Inspect foundation or construction joints, forms, and embedded items in sufficient time prior to each concrete placement to certify that it is ready to receive concrete.

3.9.3 Sampling and Testing

a. Obtain samples and test concrete for quality control during placement. Sample fresh concrete for testing in accordance with ASTM C172/C172M. Make six test cylinders.

b. Test concrete for compressive strength at 7 and 28 days for each design mix and for every 100 cubic yards of concrete. Test two cylinders at 7 days; two cylinders at 28 days; and hold two cylinders in reserve.
Conform test specimens to ASTM C31/C31M. Perform compressive strength testing conforming to ASTM C39/C39M.

c. Test slump at the site of discharge for each design mix in accordance with ASTM C143/C143M. Check slump once during each shift that concrete is produced for each strength of concrete required.

d. Test air content for air-entrained concrete in accordance with ASTM C231/C231M. Test concrete using lightweight or extremely porous aggregates in accordance with ASTM C173/C173M. Check air content at least once during each shift that concrete is placed for each strength of concrete required.

e. Determine temperature of concrete at time of placement in accordance with ASTM C1064/C1064M. Check concrete temperature at least once during each shift that concrete is placed for each strength of concrete required.

3.9.4 Action Required

3.9.4.1 Placing

Do not begin placement until the availability of an adequate number of acceptable vibrators, which are in working order and have competent operators, has been verified. Discontinue placing if any lift is inadequately consolidated.

3.9.4.2 Air Content

Whenever an air content test result is outside the specification limits, adjust the dosage of the air-entrainment admixture prior to delivery of concrete to forms.

3.9.4.3 Slump

Whenever a slump test result is outside the specification limits, adjust the batch weights of water and fine aggregate prior to delivery of concrete to the forms. Make the adjustments so that the water-cementitious material ratio does not exceed that specified in the submitted concrete mixture proportion and the required concrete strength is still met.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ASTM INTERNATIONAL (ASTM)

ASTM A1064/A1064M (2016b) Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete

ASTM A615/A615M (2016) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM A996/A996M (2016) Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement

ASTM C129 (2014a) Standard Specification for Nonloadbearing Concrete Masonry Units

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Cut CMU Drawings; G
Reinforcement Detail Drawings; G
Concrete Masonry Units (CMU) Anchors, Ties, and Bar Positioners
SD-04 Samples

Mock-Up Panel; G

SD-05 Design Data
Masonry Compressive Strength; G
Bracing Calculations

SD-06 Test Reports
Field Testing of Mortar
Field Testing of Grout

Cementitious Materials Admixtures for Masonry Mortar
Admixtures for Grout
Joint Reinforcement
1.3 QUALITY ASSURANCE

1.3.1 Masonry Mock-Up Panels

1.3.1.1 Mock-Up Panel Location

After material samples are approved and prior to starting masonry work, construct a mock-up panel for each type and color of masonry required. At least 48 hours prior to constructing the panel or panels, submit written notification to the Contracting Officer. Do not build-in mock-up panels as part of the structure; locate mock-up panels where directed. Construct portable mock-up panels or locate in an area where they will not be disrupted during construction.

1.3.1.2 Mock-Up Panel Configuration

Construct mock-up panels L-shaped or otherwise configured to represent all of the wall elements. Construct panels of the size necessary to demonstrate the acceptable level of workmanship for each type of masonry represented on the project. Provide a straight panel or a leg of an L-shaped panel of minimum size 8 feet long by 4 feet high.

1.3.1.3 Mock-Up Panel Composition

Show full color range, texture, and bond pattern of the masonry work. Demonstrate mortar joint tooling; grouting of reinforced vertical cores, collar joints, bond beams, and lintels; positioning, securing, and lapping of reinforcing steel; positioning and lapping of joint reinforcement (including prefabricated corners); and cleaning of masonry work during the construction of the panels. Also include installation or application procedures for anchors, wall ties, CMU control joints, flashing, . Include a a masonry bonded corner. When the panel represents reinforced masonry, include a 2 by 2 foot opening placed at least 2 feet above the panel base and 2 feet away from all free edges, corners, and control joints. Provide required reinforcing around this opening as well as at wall corners and control joints.

1.3.1.4 Mock-Up Panel Construction Method

Where anchored veneer walls or cavity walls are required, demonstrate and receive approval for the method of construction; i.e., either bring up the two wythes together or separately, with the insulation and appropriate ties placed within the specified tolerances across the cavity. Demonstrate provisions to preclude mortar or grout droppings in the cavity and to provide a clear open air space of the dimensions shown on the drawings. Where masonry is to be grouted, demonstrate and receive approval on the method that will be used to bring up the masonry wythes; support the reinforcing bars; and grout cells, bond beams, lintels, and collar joints using the requirements specified herein. When water-repellent is specified to be applied to the masonry, apply the approved product to the mock-up panel. Construct panels on a properly designed concrete foundation.

1.3.1.5 Mock-Up Panel Purpose

The completed panels is used as the standard of workmanship for the type of masonry represented. Do not commence masonry work until the mock-up panel for that type of masonry construction has been completed and approved. Protect panels from the weather and construction operations until the masonry work has been completed and approved. Perform cleaning procedures
on the mockup and obtain approval of the Contracting Officer prior to cleaning the building. After completion of the work, completely remove the mock-up panels, including all foundation concrete, from the construction site.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver, store, handle, and protect material to avoid chipping, breakage, and contact with soil or contaminating material. Store and prepare materials in already disturbed areas to minimize project site disturbance and size of project site.

1.4.1 Masonry Units

Cover and protect masonry units from precipitation. Conform to handling and storage requirements of TMS MSJC.

a. Pack glazed brick, glazed structural clay tile, and prefaced concrete masonry units in the manufacturer's standard paper cartons, trays, or shrink wrapped pallets with a divider between each unit. Do not stack pallets. Do not remove units from cartons until cartons are placed on scaffolds or in the location where units are to be laid.

b. Mark prefabricated lintels on top sides to show either the lintel schedule number or the number and size of top and bottom bars.

1.4.2 Reinforcement, Anchors, and Ties

Store steel reinforcing bars, coated anchors, ties, and joint reinforcement above the ground. Maintain steel reinforcing bars and uncoated ties free of loose mill scale and loose rust.

1.4.3 Cementitious Materials, Sand and Aggregates

Deliver cementitious and other packaged materials in unopened containers, plainly marked and labeled with manufacturers' names and brands. Store cementitious material in dry, weather tight enclosures or completely cover. Handle cementitious materials in a manner that will prevent the inclusion of foreign materials and damage by water or dampness. Store sand and aggregates in a manner to prevent contamination and segregation.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

2.1.1 Design - Specified Compressive Strength of Masonry

The specified compressive strength of masonry, f'm, is as indicated for each type of masonry.

2.1.2 Performance - Verify Masonry Compressive Strength

Verify specified compressive strength of masonry using the "Unit Strength Method" of TMS MSJC. Submit calculations and certifications of unit and mortar strength.

Verify specified compressive strength of masonry using the "Prism Test Method" of TMS MSJC when the "Unit Strength Method" cannot be used. Submit test results.
2.2 MANUFACTURED UNITS

2.2.1 General Requirements

Do not change the source of materials, which will affect the appearance of the finished work, after the work has started except with Contracting Officer's approval. Submit test reports from an approved independent laboratory. Certify test reports on a previously tested material as the same materials as that proposed for use in this project. Submit certificates of compliance stating that the materials meet the specified requirements.

2.2.2 Concrete Units

2.2.2.1 Concrete Masonry Units (CMU)

2.2.2.1.1 Cement

Use only cement that has a low alkali content and is of one brand.

2.2.2.1.2 Unit Types. Hollow Non-Load-Bearing Units: ASTM C129, lightweight or medium weight.

2.3 EQUIPMENT

2.3.1 Vibrators

Maintain at least one spare vibrator on site at all times.

2.3.2 Grout Pumps

Pumping through aluminum tubes is not permitted.

2.4 MATERIALS

2.4.1 Mortar Materials

2.4.1.1 Cementitious Materials

Provide cementitious materials that conform to those permitted by ASTM C270.

2.4.1.2 Hydrated Lime and Alternates

Provide lime that conforms to one of the materials permitted by ASTM C207 for use in combination with portland cement, hydraulic cement, and blended hydraulic cement. Do not use lime in combination with masonry cement or mortar cement.

2.4.1.3 Admixtures for Masonry Mortar

In cold weather, use a non-chloride based accelerating admixture that conforms to ASTM C1384, unless Type III portland cement is used in the mortar.

2.4.1.4 Aggregate and Water

Provide aggregate (sand) and water that conform to materials permitted by ASTM C270.
2.4.2 Grout and Ready-Mix Grout Materials

2.4.2.1 Cementitious Materials for Grout

Provide cementitious materials that conform to those permitted by ASTM C476.

2.4.2.2 Admixtures for Grout

Water-reducing admixtures that conform to ASTM C494/C494M Type F or G and viscosity-modifying admixtures that conform to ASTM C494/C494M Type S are permitted for use in grout. Other admixtures require approval by the Contracting Officer.

2.4.2.3 Aggregate and Water

Provide fine and coarse aggregates and water that conform to materials permitted by ASTM C476.

2.5 MORTAR AND GROUT MIXES

2.5.1 Mortar Mix

a. Provide mortar Type S unless specified otherwise herein. Do not use masonry cement in the mortar.

b. Use ASTM C270 Type S cement-lime mortar or mortar cement mortar for seismic-force-resisting elements indicated.

2.5.2 Grout and Ready Mix Grout Mix

Use grout that conforms to ASTM C476, fine. Use conventional grout with a slump between 8 and 11 inches. Use self-consolidating grout with slump flow of 24 to 30 inches and a visual stability index (VSI) not greater than 1. Provide minimum grout strength of 3000 psi in 28 days, as tested in accordance with ASTM C1019. Do not change proportions and do not use materials with different physical or chemical characteristics in grout for the work unless additional evidence is furnished that grout meets the specified requirements. Use ready-mixed grout that conforms to ASTM C476.

2.6 ACCESSORIES

2.6.1 Grout Barriers

Grout barriers for vertical cores that consist of fine mesh wire, fiberglass, or expanded metal.

2.6.2 Anchors, Ties, and Bar Positioners

2.6.2.1 General

a. Fabricate anchors and ties without drips or crimps. Size anchors and ties to provide a minimum of 5/8 inch mortar cover from each face of masonry.

b. Fabricate steel wire anchors and ties shall from wire conforming to ASTM A1064/A1064M and hot-dip galvanize in accordance with ASTM A153/A153M.
c. Fabricate joint reinforcement in conformance with ASTM A951/A951M. Hot dip galvanize joint reinforcement in exterior walls and in interior walls exposed to moist environment in conformance with ASTM A153/A153M. Galvanize joint reinforcement in other interior walls in conformance with ASTM A641/A641M; coordinate with paragraph JOINT REINFORCEMENT below.

d. Submit two anchors, ties and bar positioners of each type used, as samples.

2.6.2.2 Bar Positioners

Factory-fabricate bar positioners, used to prevent displacement of reinforcing bars during the course of construction, from 9 gauge steel wire or equivalent, and hot-dip galvanized.

2.6.3 Joint Reinforcement

Factory fabricate joint reinforcement in conformance with ASTM A951/A951M, welded construction. Provide ladder type joint reinforcement, having one longitudinal wire in the mortar bed of each face shell for hollow units and one wire for solid units and with all wires a minimum of 9 gauge. Size joint reinforcement to provide a minimum of 5/8 inch cover from each face. Space crosswires not more than 16 inches. Provide joint reinforcement for straight runs in flat sections not less than 10 feet long. Provide joint reinforcement with factory formed corners and intersections. If approved for use, joint reinforcement may be furnished with adjustable wall tie features. Submit one piece of each type used, including corner and wall intersection pieces, showing at least two cross wires.

2.6.4 Reinforcing Steel Bars

Reinforcing steel bars and rods shall conform to ASTM A615/A615M or ASTM A996/A996M, Grade 60.

2.6.5 Concrete Masonry Control Joint Keys

Provide control joint keys of a factory fabricated solid section of natural or synthetic rubber (or combination thereof) conforming to ASTM D2000 M2AA-805 with a minimum durometer hardness of 80 or polyvinyl chloride conforming to ASTM D2287 Type PVC 654-4 with a minimum durometer hardness of 85. Form the control joint key with a solid shear section not less than 5/8 inch thick and 3/8 inch thick flanges, with a tolerance of plus or minus 1/16 inch, to fit neatly, but without forcing, in masonry unit jamb sash grooves.

PART 3 EXECUTION

3.1 EXAMINATION

Prior to start of work, verify the applicable conditions as set forth in TMS MSJC, inspection.

3.2 PREPARATION

3.2.1 Stains

Protect exposed surfaces from mortar and other stains. When mortar joints are tooled, remove mortar from exposed surfaces with fiber brushes and
wooden paddles. Protect base of walls from splash stains by covering adjacent ground with sand, sawdust, or polyethylene.

3.2.2 Loads

Do not apply uniform loads for at least 12 hours or concentrated loads for at least 72 hours after masonry is constructed. Provide temporary bracing as required.

3.2.3 Concrete Surfaces

Where masonry is to be placed, clean concrete of laitance, dust, dirt, oil, organic matter, or other foreign materials and slightly roughen to provide a surface texture with a depth of at least 1/8 inch. Sandblast, if necessary, to remove laitance from pores and to expose the aggregate.

3.2.4 Shelf Angles

Adjust shelf angles as required to keep the masonry level and at the proper elevation.

3.2.5 Bracing

Provide bracing and scaffolding necessary for masonry work. Design bracing to resist wind pressure as required by OSHA and local codes and submit bracing calculations, sealed by a registered professional engineer. Do not remove bracing in less than 10 days.

3.3 ERECTION

3.3.1 General

a. Coordinate masonry work with the work of other trades to accommodate built-in items and to avoid cutting and patching. Lay masonry units in running bond pattern. Lay facing courses level with back-up courses, unless the use of adjustable ties has been approved in which case the tolerances is plus or minus 1/2 inch. Adjust each unit to its final position while mortar is still soft and has plastic consistency.

b. Remove and clean units that have been disturbed after the mortar has stiffened, and relay with fresh mortar. Keep air spaces, cavities, chases, expansion joints, and spaces to be grouted free from mortar and other debris. Select units to be used in exposed masonry surfaces from those having the least amount of chipped edges or other imperfections detracting from the appearance of the finished work.

c. When necessary to temporarily discontinue the work, step (rack) back the masonry for joining when work resumes. Toothing may be used only when specifically approved by the Contracting Officer. Before resuming work, remove loose mortar and thoroughly clean the exposed joint. Cover the top of walls subjected to rain or snow with nonstaining waterproof covering or membrane when work is not in process. Extend the covering a minimum of 610 mm 2 feet down on each side of the wall and hold securely in place.

d. Ensure that units being laid and surfaces to receive units are free of water film and frost. Lay solid units in a nonfurrowed full bed of mortar. Bevel mortar for veneer wythes and slope down toward the cavity side. Shove units into place so that the vertical joints are
3.3.1 Jointing

Tool mortar joints when the mortar is thumbprint hard. Tool horizontal joints after tooling vertical joints. Brush mortar joints to remove loose and excess mortar.

3.3.1.1 Tooled Joints

Tool mortar joints in exposed exterior and interior masonry surfaces concave, using a jointer that is slightly larger than the joint width so that complete contact is made along the edges of the unit. Perform tooling so that the mortar is compressed and the joint surface is sealed. Use a jointer of sufficient length to obtain a straight and true mortar joint.

3.3.1.2 Door and Window Frame Joints

On the exposed interior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 3/8 inch. On the exterior side of exterior frames, joints between frames and abutting masonry walls shall be raked to a depth of 3/8 inch.

3.3.1.3 Joint Widths

a. Construct brick masonry with mortar joint widths equal to the difference between the specified and nominal dimensions of the unit, within tolerances permitted by TMS MSJC.

b. Provide 3/8 inch wide mortar joints in concrete masonry, except for prefaced concrete masonry units.

c. Provide 3/8 inch wide mortar joints on unfaced side of prefaced concrete masonry units and not less than 3/16 inch nor more than 1/4 inch wide on prefaced side.

d. Maintain mortar joint widths within tolerances permitted by TMS MSJC.

3.3.1.2 Cutting and Fitting

Use full units of the proper size wherever possible, in lieu of cut units. Locate cut units where they would have the least impact on the architectural aesthetic goals of the facility. Perform cutting and fitting, including that required to accommodate the work of others, by masonry mechanics using power masonry saws. Concrete masonry units may be wet or dry cut. Before being placed in the work, dry wet-cut units to the same surface-dry appearance as uncut units being laid in the wall. Provide cut edges that are clean, true and sharp.

a. Carefully make openings in the masonry so that wall plates, cover plates or escutcheons required by the installation will completely conceal the openings and will have bottoms parallel with the masonry bed joints. Provide reinforced masonry lintels above openings over 12
inches wide for pipes, ducts, cable trays, and other wall penetrations, unless steel sleeves are used.

b. Do not reduce masonry units in size by more than one-third in height and one-half in length. Do not locate cut products at ends of walls, corners, and other openings.

3.3.1.3 Unfinished Work

Rack back unfinished work for joining with new work. Tooothing may be resorted to only when specifically approved by the Contracting Officer. Remove loose mortar and thoroughly clean the exposed joints before laying new work.

3.3.1.4 Control Joints

Provide control joints in concrete masonry as indicated. Construct by raking out mortar within the head joint in accordance with the details shown on the Drawings. Form a continuous vertical joint at control joint locations, including through bond beams, by utilizing half blocks in alternating courses on each side of the joint. Interrupt the control joint key in courses containing continuous bond beam reinforcement. Do not interrupt the horizontal reinforcement and grout at the control joint.

Where mortar was placed in the joint, rake both faces of the control joints to a depth of 3/4 inch. Install backer rod and sealant on both faces in accordance with Section 07 92 00 JOINT SEALANTS.

3.3.2 Reinforced, Single Wythe Concrete Masonry Units Walls

3.3.2.1 Concrete Masonry Unit Placement

a. Fully bed units used to form piers, pilasters, columns, starting courses on footings, solid foundation walls, lintels, and beams, and where cells are to be filled with grout in mortar under both face shells and webs. Provide mortar beds under both face shells for other units. Mortar head joints for a distance in from the face of the unit not less than the thickness of the face shell.

b. Submit drawings showing elevations of walls exposed to view and indicating the location of all cut CMU products.

3.3.2.2 Preparation for Reinforcement

Lay units in such a manner as to preserve the unobstructed vertical continuity of cores to be grouted. Remove mortar protrusions extending 1/2 inch or more into cells before placing grout. Position reinforcing bars accurately as indicated before placing grout. Where vertical reinforcement occurs, fill cores solid with grout in accordance with paragraph PLACING GROUT in this Section.

3.3.3 ANCHORAGE

3.3.3.1 Anchorage at Intersecting Walls

Provide wire mesh anchors at maximum 16 inches spacing at intersections of interior non-bearing masonry walls.
3.3.4 Lintels

3.3.4.1 Masonry Lintels

Construct masonry lintels with lintel units filled solid with grout in all courses and reinforced with a minimum of two No. 4 bars in the bottom course unless otherwise indicated. Extend lintel reinforcement beyond each side of masonry opening 40 bar diameters or 24 inches, whichever is greater. Support reinforcing bars in place prior to grouting and locate 1/2 inch above the bottom inside surface of the lintel unit.

3.3.4.2 Precast Concrete Lintels

Provide precast concrete and steel lintels as shown on the Drawings. Set lintels in a full bed of mortar with faces plumb and true. Provide steel and precast lintels with a minimum bearing length of 8 inches unless otherwise indicated. In partially grouted masonry, provide fully grouted units under the full lintel bearing length, unless otherwise indicated.

3.4 INSTALLATION

3.4.1 Bar Reinforcement Installation

3.4.1.1 Preparation

Submit detail drawings showing bar splice locations. Identify bent bars on a bending diagram and reference and locate such bars on the drawings. Show wall dimensions, bar clearances, and wall openings. Utilize bending details that conform to the requirements of ACI SP-66. No approval will be given to the shop drawings until the Contractor certifies that all openings, including those for mechanical and electrical service, are shown. If, during construction, additional masonry openings are required, resubmit the approved shop drawings with the additional openings shown along with the proposed changes. Clearly highlight location of these additional openings. Provide wall elevation drawings with minimum scale of 1/4 inch per foot. Submit drawings including plans, elevations, and details of wall reinforcement; details of reinforcing bars at corners and wall intersections; offsets; tops, bottoms, and ends of walls; control and expansion joints; lintels; and wall openings.

Clean reinforcement of loose, flaky rust, scale, grease, mortar, grout, and other coatings that might destroy or reduce its bond prior to placing grout. Do not use bars with kinks or bends not shown on the approved shop drawings. Place reinforcement prior to grouting. Unless otherwise indicated, extend vertical wall reinforcement to within 2 inches of tops of walls.

3.4.1.2 Positioning Bars

a. Accurately place vertical bars within the cells at the positions indicated on the drawings. A minimum clearance of 1/2 inch shall be maintained between the bars and masonry units. Provide minimum clearance between parallel bars of 1/2 inch between the bars and masonry units for coarse grout and a minimum clearance of 1/4 inch between the bars and masonry units for fine grout. Provide minimum clearance between parallel bars of 1 inch or one diameter of the reinforcement, whichever is greater. Vertical reinforcement may be held in place using bar positioners located near the ends of each bar and at intermediate intervals of not more than 192 diameters of the
reinforcement or by other means to prevent displacement beyond permitted tolerances. As masonry work progresses, secure vertical reinforcement to prevent displacement beyond allowable tolerances.

b.

c. Position horizontal reinforcing bars as indicated. Stagger splices in adjacent horizontal bars, unless otherwise indicated.

d. Form splices by lapping bars as indicated. Do not cut, bend or eliminate reinforcing bars. Foundation dowel bars may be field-bent when permitted by TMS MSJC.

3.4.1.3 Splices of Bar Reinforcement

Lap splice reinforcing bars as indicated. When used, provide welded or mechanical connections that develop at least 125 percent of the specified yield strength of the reinforcement.

3.4.2 Placing Grout

3.4.2.1 General

Fill cells containing reinforcing bars with grout. Solidly grout hollow masonry units in walls or partitions supporting plumbing, heating, or other mechanical fixtures, voids at door and window jambs, and other indicated spaces. Solidly grout cells under lintel bearings on each side of openings for full height of openings. Solidly grout walls below grade, lintels, and bond beams. Units other than open end units may require grouting each course to preclude voids in the units.

Discard site-mixed grout that is not placed within 1-1/2 hours after water is first added to the batch or when the specified slump is not met without adding water after initial mixing. Discard ready-mixed grout that does not meet the specified slump without adding water other than water that was added at the time of initial discharge. Allow sufficient time between grout lifts to preclude displacement or cracking of face shells of masonry units. Provide a grout shear key between lifts when grouting is delayed and the lower lift loses plasticity. If blowouts, flowouts, misalignment, or cracking of face shells should occur during construction, tear down the wall and rebuild.

3.4.2.2 Horizontal Grout Barriers

Embed horizontal grout barriers in mortar below cells of hollow units receiving grout.

3.4.2.3 Grout Holes and Cleanouts

3.4.2.3.1 Grout Holes

Provide grouting holes in slabs, spandrel beams, and other in-place overhead construction. Locate holes over vertical reinforcing bars or as required to facilitate grout fill in bond beams. Provide additional openings spaced not more than 16 inches on centers where grouting of hollow unit masonry is indicated. Form such openings not less than 4 inches in diameter or 3 by 4 inches in horizontal dimensions. Upon completion of grouting operations, plug and finish grouting holes to match surrounding surfaces.
3.4.2.4 Grout Placement

A grout pour is the total height of masonry to be grouted prior to erection of additional masonry. A grout lift is an increment of grout placement within a grout pour. A grout pour is filled by one or more lifts of grout.

a. Lay masonry to the top of a pour permitted by TMS MSJC Table 7, based on the size of the grout space and the type of grout. Prior to grouting, remove masonry protrusions that extend 1/2 inch or more into cells or spaces to be grouted. Provide grout holes and cleanouts in accordance with paragraph GROUT HOLES AND CLEANOUTS above when the grout pour height exceeds 5 feet 4 inches. Hold reinforcement, bolts, and embedded connections rigidly in position before grouting is started. Do not prewet concrete masonry units.

b. Place grout using a hand bucket, concrete hopper, or grout pump to fill the grout space without segregation of aggregate. Operate grout pumps to produce a continuous stream of grout without air pockets, segregation, or contamination.

c. If the masonry has cured at least 4 hours, grout slump is maintained between 10 to 11 inches, and no intermediate reinforced slump bond beams are placed between the top and bottom of the pour height, place conventional grout in lifts not exceeding 12 feet 8 inches. For the same curing and slump conditions but with intermediate bond beams, limit conventional grout lift to the bottom of the lowest bond beam that is more than 5 feet 4 inches above the bottom of the lift, but do not exceed 12 feet 8 inches. If masonry has not cured at least 4 hours or grout slump is not maintained between 10 to 11 inches, place conventional grout in lifts not exceeding 5 feet 4 inches.

d. Consolidate conventional grout lift and reconsolidate after initial settlement before placing next lift. For grout pours that are 12 inches or less in height, consolidate and reconsolidate grout by mechanical vibration or puddling. For grout pours that are greater than 12 inches in height, consolidate and reconsolidate grout by mechanical vibration. Apply vibrators at uniformly spaced points not further apart than the visible effectiveness of the machine. Limit duration of vibration to time necessary to produce satisfactory consolidation without causing segregation. If previous lift is not permitted to set, dip vibrator into previous lift. Do not insert vibrators into lower lifts that are in a semi-solidified state. If lower lift sets prior to placement of subsequent lift, form a grout key by terminating grout a minimum of 1-1/2 inch below a mortar joint. Vibrate each vertical cell containing reinforcement in partially grouted masonry. Do not form grout keys within beams.

e. If the masonry has cured 4 hours, place self-consolidating grout (SCG) in lifts not exceeding the pour height. If masonry has not cured for at least 4 hours, place SCG in lifts not exceeding 5 feet 4 inches. Do not mechanically consolidate self-consolidating grout. Place self-consolidating grout in accordance with manufacturer's recommendations.

f. Upon completion of each day's grouting, remove waste materials and debris from the equipment, and dispose of outside the masonry.
3.4.3 Joint Reinforcement Installation

Install joint reinforcement at 16 inches on center unless otherwise indicated. Lap joint reinforcement not less than 6 inches. Install prefabricated sections at corners and wall intersections. Place the longitudinal wires of joint reinforcement in mortar beds to provide not less than 5/8 inch cover to either face of the unit.

3.4.4 Bond Beams

Reinforce and grout bond beams as indicated and as described in paragraphs above. Install grout barriers under bond beam units to retain the grout as required, unless wall is fully grouted or solid bottom units are used. For high lift grouting in partially grouted masonry, provide grout retaining material on the top of bond beams to prevent upward flow of grout. Ensure that reinforcement is continuous, including around corners, except through control joints or expansion joints, unless otherwise indicated.

3.5 APPLICATION

3.5.1 Interface with Other Products

3.5.1.1 Built-In Items

Fill spaces around built-in items with mortar. Point openings around flush-mount electrical outlet boxes in wet locations with mortar. Embed anchors, ties, wall plugs, accessories, flashing, pipe sleeves and other items required to be built-in as the masonry work progresses. Fully embed anchors, ties and joint reinforcement in the mortar. Fill cells receiving anchor bolts and cells of the first course below bearing plates with grout, unless otherwise indicated.

3.5.1.2 Door and Window Frame Joints

On the exposed interior and exterior sides of exterior frames, rake joints between frames and abutting masonry walls to a depth of 3/8 inch.

3.5.2 Tolerances

Lay masonry plumb, true to line, with courses level within the tolerances of TMS MSJC, Article 3.3 F.

3.6 FIELD QUALITY CONTROL

3.6.1 Tests

3.6.1.1 Field Testing of Mortar

Perform mortar testing at the following frequency: 1 times per mix. For each required mortar test, provide a minimum of three mortar samples. Perform initial mortar testing prior to construction for comparison purposes during construction.

Prepare and test mortar samples for mortar aggregate ratio in accordance with ASTM C780 Appendix A4.

3.6.1.2 Field Testing of Grout

a. Perform grout testing at the following frequency: 1 times per day.
For each required grout property to be evaluated, provide a minimum of three specimens.

b. Sample and test conventional and self-consolidating grout for compressive strength and temperature in accordance with ASTM C1019.

c. Evaluate slump in conventional grout in accordance with ASTM C1019.

d. Evaluate slump flow and visual stability index of self-consolidating grout in accordance with ASTM C1611/C1611M.

3.7 POINTING AND CLEANING

After mortar joints have attained their initial set, but prior to hardening, completely remove mortar and grout daubs and splashings from masonry-unit surfaces that will be exposed or painted. Before completion of the work, rake out defects in joints of masonry to be exposed or painted, fill with mortar, and tool to match existing joints. Immediately after grout work is completed, remove scum and stains that have percolated through the masonry work using a low pressure stream of water and a stiff bristled brush. Do not clean masonry surfaces, other than removing excess surface mortar, until mortar in joints has hardened. Leave masonry surfaces clean, free of mortar daubs, dirt, stain, and discoloration, including scum from cleaning operations, and with tight mortar joints throughout. Do not use metal tools and metal brushes for cleaning.

3.7.1 Dry-Brushing Concrete Masonry

Dry brush exposed concrete masonry surfaces at the end of each day's work and after any required pointing, using stiff-fiber bristled brushes.

3.8 PROTECTION

Protect facing materials against staining. Cover top of walls with nonstaining waterproof covering or membrane to protect from moisture intrusion when work is not in progress. Continue covering the top of the unfinished walls until the wall is waterproofed with a complete roof or parapet system. Extend covering a minimum of 2 feet down on each side of the wall and hold securely in place. Before starting or resuming work, clean top surface of masonry in place of loose mortar and foreign material.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016)
Structural Welding Code - Steel

ASME INTERNATIONAL (ASME)

ASME B18.2.1 (2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASTM INTERNATIONAL (ASTM)

ASTM A500/A500M (2013) Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2016a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM C1513 (2013) Standard Specification for Steel Tapping Screws for Cold-Formed Steel Framing Connections

ASTM D1187/D1187M (1997; E 2011; R 2011) Asphalt-Base Emulsions for Use as Protective Coatings for Metal

MASTER PAINTERS INSTITUTE (MPI)

MPI 79 (Oct 2009) Alkyd Anti-Corrosive Metal Primer

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC SP 3 (1982; E 2004) Power Tool Cleaning

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Embedded Angles and Plates, Installation Drawings; G
Submit templates, erection and installation drawings indicating thickness, type, grade, class of metal, and dimensions. Show construction details, reinforcement, anchorage, and installation with relation to the building construction.

1.3 QUALIFICATION OF WELDERS

Qualify welders in accordance with AWS D1.1/D1.1M. Use procedures, materials, and equipment of the type required for the work.

1.4 DELIVERY, STORAGE, AND PROTECTION

Protect from corrosion, deformation, and other types of damage. Store items in an enclosed area free from contact with soil and weather. Remove and replace damaged items with new items.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Structural Carbon Steel

ASTM A36/A36M.

2.1.2 Structural Tubing

ASTM A500/A500M.

2.1.3 Steel Pipe

ASTM A53/A53M, Type E or S, Grade B.

2.1.4 Fittings for Steel Pipe

Standard malleable iron fittings ASTM A47/A47M.

2.1.5 Anchor Bolts

ASTM A307. Where exposed, shall be of the same material, color, and finish as the metal to which applied.

2.1.5.1 Adhesive Anchors

Provide 3/8in. diameter adhesive anchors. Minimum masonry embedment shall be 4"in. Design values listed shall be as tested according to ASTM E488/E488M.

2.1.5.2 Lag Screws and Bolts

ASME B18.2.1, type and grade best suited for the purpose.

2.1.5.3 Bolts, Nuts, Studs and Rivets

ASME B18.2.2 or ASTM A307.
2.1.5.4 Screws

ASME B18.2.1, ASME B18.6.2, ASME B18.6.3 and ASTM C1513.

2.1.5.5 Washers

Provide plain washers to conform to ASME B18.21. Provide beveled washers for American Standard beams and channels, square or rectangular, tapered in thickness, and smooth. Provide lock washers to conform to ASME B18.21.1.

2.2 FABRICATION FINISHES

2.2.1 Galvanizing

Hot-dip galvanize items specified to be zinc-coated, after fabrication where practicable. Galvanizing: ASTM A123/A123M, ASTM A153/A153M, ASTM A653/A653M or ASTM A924/A924M, G90, as applicable.

2.2.2 Galvanize

Anchor bolts, grating fasteners, washers, and parts or devices necessary for proper installation, unless indicated otherwise.

2.2.3 Repair of Zinc-Coated Surfaces

Repair damaged surfaces with galvanizing repair method and paint conforming to ASTM A780/A780M or by application of stick or thick paste material specifically designed for repair of galvanizing, as approved by Contracting Officer. Clean areas to be repaired and remove slag from welds. Heat surfaces to which stick or paste material is applied, with a torch to a temperature sufficient to melt the metallics in stick or paste; spread molten material uniformly over surfaces to be coated and wipe off excess material.

2.2.4 Shop Cleaning and Painting

2.2.4.1 Surface Preparation

Blast clean surfaces in accordance with SSPC SP 6/NACE No.3. Surfaces that will be exposed in spaces above ceiling or in attic spaces, crawl spaces, furred spaces, and chases may be cleaned in accordance with SSPC SP 3 in lieu of being blast cleaned. Wash cleaned surfaces which become contaminated with rust, dirt, oil, grease, or other contaminants with solvents until thoroughly clean. Steel to be embedded in concrete shall be free of dirt and grease. Do not paint or galvanize bearing surfaces, including contact surfaces within slip critical joints, but coat with rust preventative applied in the shop.

2.2.4.2 Pretreatment, Priming and Painting

Apply pretreatment, primer, and paint in accordance with manufacturer's printed instructions.

2.2.5 Nonferrous Metal Surfaces

Protect by plating, anodic, or organic coatings.
2.3 MISCELLANEOUS PLATES AND SHAPES

Provide for items that do not form a part of the structural steel framework, such as lintels, sill angles, miscellaneous mountings and frames. Provide lintels fabricated from structural steel shapes over openings in masonry walls and partitions as indicated and as required to support wall loads over openings. Provide with connections and welds. Construct to have at least 8 inches bearing on masonry at each end.

Provide angles and plates, ASTM A36/A36M, for embedment as indicated. Galvanize embedded items exposed to the elements according to ASTM A123/A123M.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Install items at locations indicated, according to manufacturer's instructions. Verify all measurements and take all field measurements necessary before fabrication. Exposed fastenings shall be compatible materials, shall generally match in color and finish, and harmonize with the material to which fastenings are applied. Include materials and parts necessary to complete each item, even though such work is not definitely shown or specified. Poor matching of holes for fasteners shall be cause for rejection. Conceal fastenings where practicable. Thickness of metal and details of assembly and supports shall provide strength and stiffness. Form joints exposed to the weather shall be formed to exclude water. Items listed below require additional procedures.

3.2 WORKMANSHIP

Provide miscellaneous metalwork that is well formed to shape and size, with sharp lines and angles and true curves. Drilling and punching shall produce clean true lines and surfaces. Provide continuous welding along the entire area of contact except where tack welding is permitted. Do not tack weld exposed connections of work in place and ground smooth. Provide a smooth finish on exposed surfaces of work in place and unless otherwise approved, flush exposed riveting. Mill joints where tight fits are required. Corner joints shall be coped or mitered, well formed, and in true alignment. Accurately set work to established lines and elevations and securely fastened in place. Install in accordance with manufacturer's installation instructions and approved drawings, cuts, and details.

3.3 ANCHORAGE, FASTENINGS, AND CONNECTIONS

Provide anchorage where necessary for fastening miscellaneous metal items securely in place. Include for anchorage not otherwise specified or indicated slotted inserts, expansion shields, and powder-driven fasteners, when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; through bolts, lag bolts, and screws for wood. Do not use wood plugs in any material. Provide non-ferrous attachments for non-ferrous metal. Make exposed fastenings of compatible materials, generally matching in color and finish, to which fastenings are applied. Conceal fastenings where practicable.

3.4 BUILT-IN WORK

Form for anchorage metal work built-in with concrete or masonry, or provide with suitable anchoring devices as indicated or as required. Furnish metal
work in ample time for securing in place as the work progresses.

3.5 WELDING

Perform welding, welding inspection, and corrective welding, in accordance with AWS D1.1/D1.1M. Use continuous welds on all exposed connections. Grind visible welds smooth in the finished installation.

3.6 FINISHES

3.6.1 Dissimilar Materials

Where dissimilar metals are in contact, protect surfaces with a coat conforming to MPI 79 to prevent galvanic or corrosive action. Where aluminum is in contact with concrete, plaster, mortar, masonry, wood, or absorptive materials subject to wetting, protect with ASTM D1187/D1187M, asphalt-base emulsion.

3.6.2 Field Preparation

Remove rust preventive coating just prior to field erection, using a remover approved by the rust preventive manufacturer. Surfaces, when assembled, shall be free of rust, grease, dirt and other foreign matter.

3.6.3 Environmental Conditions

Do not clean or paint surface when damp or exposed to foggy or rainy weather, when metallic surface temperature is less than 5 degrees F above the dew point of the surrounding air, or when surface temperature is below 45 degrees F or over 95 degrees F, unless approved by the Contracting Officer.

-- End of Section --
SECTION 06 41 16.00 10
PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ARCHITECTURAL WOODWORK INSTITUTE (AWI)

AWI AWS (2nd Edition) Architectural Woodwork Standards

ASTM INTERNATIONAL (ASTM)

ASTM F547 (2006; R 2012) Nails for Use with Wood and Wood-Base Materials

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.9 (2015) Cabinet Hardware

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA LD 3 (2005) Standard for High-Pressure Decorative Laminates

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)

ANSI/WDMA I.S.1A (2013) Interior Architectural Wood Flush Doors

1.2 SYSTEM DESCRIPTION

Work in this section includes laminate clad custom casework cabinets as shown on the drawings and as described in this specification. This Section includes high-pressure laminate surfacing and cabinet hardware. All exposed and semi-exposed surfaces, whose finish is not otherwise noted on the drawings or finish schedule, shall be sanded smooth and shall receive a clear finish of polyurethane.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
1.4 QUALITY ASSURANCE

1.4.1 General Requirements

Unless otherwise noted on the drawings, all materials, construction methods, and fabrication shall conform to and comply with the custom grade quality standards as outlined in AWI AWS, Section for laminate clad cabinets. These standards shall apply in lieu of omissions or specific requirements in this specification. Contractors and their personnel engaged in the work shall be able to demonstrate successful experience with work of comparable extent, complexity and quality to that shown and specified. Submit a quality control statement which illustrates compliance with and understanding of AWI AWS requirements, in general, and the specific AWI AWS requirements provided in this specification. The quality control statement shall also certify a minimum of ten years Contractor's experience in laminate clad casework fabrication and construction. The quality control statement shall provide a list of a minimum of five successfully completed projects of a similar scope, size, and complexity.

1.5 DELIVERY, STORAGE, AND HANDLING

Casework may be delivered knockdown or fully assembled. Deliver all units to the site in undamaged condition, stored off the ground in fully enclosed areas, and protected from damage. The storage area shall be well ventilated and not subject to extreme changes in temperature or humidity.

1.6 SEQUENCING AND SCHEDULING

Coordinate work with other trades. Units shall not be installed in any room or space until painting, and ceiling installation are complete within the room where the units are located. Floor cabinets shall be installed before finished flooring materials are installed.
PART 2 PRODUCTS

2.1 WOOD MATERIALS

2.1.1 Lumber

a. All framing lumber shall be kiln-dried Grade III to dimensions as shown
on the drawings. Frame front, where indicated on the drawings, shall
be nominal 3/4 inch hardwood.

2.1.2 Panel Products

2.1.2.1 Plywood

All plywood panels used for framing purposes shall be veneer core hardwood
plywood, AWI AWS Grade AA. Nominal thickness of plywood panels shall be as
indicated in this specification and on the drawings.

2.2 HIGH PRESSURE DECORATIVE LAMINATE (HPDL)

All plastic laminates shall meet the requirements of ANSI/NEMA LD 3 and
ANSI A161.2 for high-pressure decorative laminates. Design, colors,
surface finish and texture, and locations shall be as indicated on the
drawings. Submit two samples of each plastic laminate pattern and color.
Samples shall be a minimum of 5 by 7 inches in size. Plastic laminate
types and nominal minimum thicknesses for casework components shall be as
indicated in the following paragraphs.

2.2.1 Horizontal General Purpose Standard (HGS) Grade

Horizontal general purpose standard grade plastic laminate shall be GP28
This laminate grade is intended for horizontal surfaces where postforming
is not required.

2.2.2 Vertical General Purpose Standard (VGS) Grade

Vertical general purpose standard grade plastic laminate shall be GP28
This laminate grade is intended for exposed exterior vertical surfaces of
casework components where postforming is not required.

2.2.3 Countertop

Horizontal general purpose postformable grade plastic laminate shall be G50
is required.

2.3 THERMOSET DECORATIVE OVERLAYS (MELAMINE)

Thermoset decorative overlays (melamine panels) shall be used for casework
cabinet interior, drawer interior, all semi-exposed surfaces.

2.4 CABINET HARDWARE

Submit one sample of each cabinet hardware item specified to include hinges,
pulls, drawer glides. All hardware shall conform to ANSI/BHMA A156.9,
unless otherwise noted, and shall consist of the following components:

2.4.1 Door Hinges

Fully concealed, spring loaded, self-closing and fully adjustable, chrome
steel finished. Provide "snap-on" feature and allow for door movement through minimum of 165 degrees.

2.4.2 Cabinet Pulls

Drawer and Door Pulls: Aluminum "U" shaped pull, satin finish, 4 inches wide.

2.4.3 Sliding Door Pulls

Oval shaped, aluminum with satin finish.

2.4.4 Cabinet Locks

Keyed cylinder, two keys per lock, satin finish.

2.4.5 Sliding Door Track Assemblies

Galv. steel construction, ball bearing carriers fitted within tracks, multiple pendant suspension attachments for door.

2.4.6 Door Catches

Magnetic.

2.5 FASTENERS

Nails, screws, and other suitable fasteners shall be the size and type best suited for the purpose and shall conform to ASTM F547 where applicable.

2.6 ADHESIVES, CAULKS, AND SEALANTS

2.6.1 Adhesives

Adhesives shall be of a formula and type recommended by AWI. Adhesives shall be selected for their ability to provide a durable, permanent bond and shall take into consideration such factors as materials to be bonded, expansion and contraction, bond strength, fire rating, and moisture resistance. Adhesives shall meet local regulations regarding VOC emissions and off-gassing.

2.6.1.1 Wood Joinery

Adhesives used to bond wood members shall be a Type II for interior use

Adhesives shall withstand a bond test as described in ANSI/WDMA I.S.1A.

2.6.1.2 Laminate Adhesive

Adhesive used to join high-pressure decorative laminate to wood shall be a water-based contact adhesive

2.6.2 Caulk

Caulk used to fill voids and joints between laminated components and between laminated components and adjacent surfaces shall be clear, 100 percent silicone.
2.6.3 Sealant

Sealant shall be of a type and composition recommended by the substrate manufacturer to provide a moisture barrier at sink cutouts and all other locations where unfinished substrate edges may be subjected to moisture.

2.7 ACCESSORIES

2.8 FABRICATION

Verify field measurements as indicated in the shop drawings before fabrication. Fabrication and assembly of components shall be accomplished at the shop site to the maximum extent possible. Construction and fabrication of cabinets and their components shall meet or exceed the requirements for AWI custom grade unless otherwise indicated in this specification. Cabinet style, in accordance with AWI AWS, Section 400-G descriptions, shall be reveal overlay

2.8.1 Base and Wall Cabinet Case Body

2.8.1.1 Cabinet Components

Frame members shall be glued-together, kiln-dried hardwood lumber. Top corners, bottom corners, and cabinet bottoms shall be braced with either hardwood blocks or water-resistant glue and nailed in place metal or plastic corner braces. Cabinet components shall be constructed from the following materials and thicknesses:

2.8.1.1.1 Body Members (Ends, Divisions, Bottoms, and Tops)

3/4 inch Softwood core plywood panel product

2.8.1.1.2 Face Frames and Rails

3/4 inch hardwood lumber

2.8.1.1.3 Shelving

3/4 inch veneer core plywood panel product

2.8.1.1.4 Cabinet Backs

1/4 inch veneer core plywood panel product

2.8.1.1.5 Drawer Sides, Backs, and Subfronts

3/4 inch hardwood lumber

2.8.1.1.6 Drawer Bottoms

3/8 inch veneer core plywood panel product

2.8.1.1.7 Door and Drawer Fronts

3/4-inch Verner core plywood panel product
2.8.1.2 Joinery Method for Case Body Members

2.8.1.2.1 Tops, Exposed Ends, and Bottoms

b. Doweled, glued under pressure (approx. 4 dowels per 12 inches of joint), and rabbeted to accept back panel.

c. Stop dado, glued under pressure, and either nailed, stapled or screwed (fasteners will not be visible on exposed parts).

2.8.1.2.2 Exposed End Corner and Face Frame Attachment

2.8.1.2.2.1 Mitered Joint

lock miter or spline or biscuit, glued under pressure (no visible fasteners)

2.8.1.2.2.2 Non-Mitered Joint (90 degree)

butt joint glued under pressure (no visible fasteners)

2.8.1.2.2.3 Butt Joint

 glued and nailed

2.8.1.2.3 Cabinet Backs (Wall Hung Cabinets)

Wall hung cabinet backs must not be relied upon to support the full weight of the cabinet and its anticipated load for hanging/mounting purposes. Method of back joinery and hanging/mounting mechanisms should transfer the load to case body members. Fabrication method shall be:

2.8.1.2.3.1 Full Bound

Full bound, captured in grooves on cabinet sides, top, and bottom. Cabinet backs for floor standing cabinets shall be side bound, captured in grooves; glued and fastened to top and bottom.

2.8.1.2.4 Cabinet Backs (Floor Standing Cabinets)

2.8.1.2.4.1 Side Bound with Rabbetts

Side bound, placed in rabbetts; glued and fastened in rabbetts.

2.8.1.2.5 Wall Anchor Strips

Wall Anchor Strips shall be required for all cabinets with backs less than 1/2 inch thick. Strips shall consist of minimum 1/2 inch thick lumber, minimum 2-1/2 inches width; securely attached to wall side of cabinet back - top and bottom for wall hung cabinets, top only for floor standing cabinets.

2.8.2 Cabinet Floor Base

Floor cabinets shall be mounted on a base constructed of nominal 2 inch thick lumber. Base assembly components shall be treated lumber. Finished height for each cabinet base shall be as indicated on the drawings. Bottom edge of the cabinet door or drawer face shall be flush with top of base.
2.8.3 Cabinet Door and Drawer Fronts

All door and drawer front edges shall be surfaced with high pressure plastic laminate, color and pattern to match exterior face laminate.

2.8.4 Drawer Assembly

2.8.4.1 Drawer Components

Drawer components shall consist of a removable drawer front, sides, backs, and bottom. Drawer components shall be constructed of the following materials and thicknesses:

2.8.4.1.1 Drawer Sides and Backs For Laminate Finish

3/4 inch thick hardwood veneer core substrate

2.8.4.1.2 Drawer Bottom

3/8 inch thick veneer core panel product for plastic laminate finish

2.8.4.2 Drawer Assembly Joinery Method

b. Doweled, glued under pressure.

c. Lock shoulder, glued and pin nailed.

d. Bottoms shall be set into sides, front, and back, 1/4 inch deep groove with a minimum 3/8 inch standing shoulder.

2.8.5 Shelving

2.8.5.1 General Requirements

Shelving shall be fabricated from 3/4 inch veneer core plywood. All shelving top and bottom surfaces shall be finished with HPDL plastic laminate. Shelf edges shall be finished in a HPDL plastic laminate.

2.8.5.2 Shelf Support System

The shelf support system shall be:

2.8.5.2.1 Recessed (Mortised) Metal Shelf Standards

Mortise standards flush with the finishes surface of the cabinet interior side walls, two per side. Position and space standards on the side walls to provide a stable shelf surface that eliminates tipping when shelf front is weighted. Install and adjust standards vertically to provide a level, stable shelf surface when clips are in place.

2.8.6 Laminate Clad Countertops

Construct laminate countertop substrate of 3/4 inch veneer core plywood. The substrate shall be moisture-resistant where countertops receive sinks, lavatories, or are subjected to liquids. All substrates shall have sink cutout edges sealed with appropriate sealant against moisture. No joints shall occur at any cutouts. A balanced backer sheet is required.
2.8.6.1 Edge Style

Front and exposed side countertop edges shall be in shapes and to dimensions as shown on the drawings. The countertop edge material shall be:

2.8.6.1.1 Hardwood

Species, finish, profile, shape, and dimensions shall be as indicated on the drawings. Hardwood edge shall overlap the exposed countertop laminate edge and shall be installed flush with the countertop laminate surface.

2.8.6.1.2 Plastic Laminate Self Edge

Flat, 90 degree "self " edge. Edge must be applied before top. Laminate edge shall overlap countertop laminate and shall be eased to eliminate sharp corners.

2.8.6.2 Laminate Clad Splashes

Countertop splash substrate shall be 3/4 inch veneer core plywood. Laminate clad backsplash shall be oose, to be installed at the time of countertop installation. Side splashes shall be straight profile and provided loose, to be installed at the time of countertop installation. Back and side splash laminate pattern and color shall match the adjacent countertop laminate.

2.8.7 Laminate Application

Laminate application to substrates shall follow the recommended procedures and instructions of the laminate manufacturer and ANSI/NEMA LD 3, using tools and devices specifically designed for laminate fabrication and application. Provide a balanced backer sheet (Grade BK) wherever only one surface of the component substrate requires a plastic laminate finish. Apply required grade of laminate in full uninterrupted sheets consistent with manufactured sizes using one piece for full length only, using adhesives specified herein or as recommended by the manufacturer. Fit corners and joints hairline. All laminate edges shall be machined flush, filed, sanded, or buffed to remove machine marks and eased (sharp corners removed). Clean up at easing shall be such that no overlap of the member eased is visible. Fabrication shall conform to ANSI A161.2. Laminate types and grades for component surfaces shall be as follows unless otherwise indicated on the drawings:

2.8.7.1 Base/Wall Cabinet Case Body

a. Exterior (exposed) surfaces to include exposed and semi-exposed face frame surfaces: HPDLGP28.

b. Interior (semi-exposed) surfaces to include interior back wall, bottom, and side walls:Thermoset Decorative Overlay (melamine).

2.8.7.2 Adjustable Shelving

2.8.7.2.1 Top and Bottom Surfaces

HPDL GP28
2.8.7.2.2 All Edges

HPDL GP28

2.8.7.3 Door, Drawer Fronts, Access Panels

2.8.7.3.1 Exterior (Exposed) and Interior (Semi-Exposed) Faces

HPDL GP28

2.8.7.3.2 Edges

HPDL GP28

2.8.7.4 Drawer Assembly

All interior and exterior surfaces: Thermoset Decorative Overlay (melamine).

2.8.7.5 Countertops and Splashes

All exposed and semi-exposed surfaces: HPDL GP50

2.8.7.6 Tolerances

Flushness, flatness, and joint tolerances of laminated surfaces shall meet the AWI AWS custom grade requirements.

2.8.8 Finishing

2.8.8.1 Filling

No fasteners shall be exposed on laminated surfaces. All nails, screws, and other fasteners in non-laminated cabinet components shall be countersunk and the holes filled with wood filler consistent in color with the wood species.

2.8.8.2 Sanding

All surfaces requiring coatings shall be prepared by sanding with a grit and in a manner that scratches will not show in the final system.

2.8.8.3 Coatings

Types, method of application and location of casework finishes shall be in accordance with the finish schedule, drawings and Section 09 90 00 PAINTS AND COATINGS. All cabinet reveals shall be painted. Submit descriptive data which provides narrative written verification of all types of construction materials and finishes, methods of construction, etc. not clearly illustrated on the submitted shop drawings. Data shall provide written verification of conformance with AWI AWS for the quality indicated to include materials, tolerances, and types of construction. Both the manufacturer of materials and the fabricator shall submit available literature which describes re-cycled product content, operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products.
3.1 INSTALLATION

Installation shall comply with applicable requirements for AWI AWS custom quality standards. Countertops and fabricated assemblies shall be installed level, plumb, and true to line, in locations shown on the drawings. Cabinets and other laminate clad casework assemblies shall be attached and anchored securely to the floor and walls with mechanical fasteners that are appropriate for the wall and floor construction.

3.1.1 Anchoring Systems

3.1.1.1 Floor

Base cabinets shall utilize a floor anchoring system. Anchoring and mechanical fasteners shall not be visible from the finished side of the casework assembly. Cabinet assemblies shall be attached to anchored bases without visible fasteners. Where assembly abuts a wall surface, anchoring shall include a minimum 1/2 inch thick lumber or panel product hanging strip, minimum 2-1/2 inch width; securely attached to the top of the wall side of the cabinet back.

3.1.1.2 Wall

Cabinet to be wall mounted shall utilize minimum 1/2 inch thick lumber or panel product hanging strips, minimum 2-1/2 inch width; securely attached to the wall side of the cabinet back, both top and bottom.

3.1.2 Countertops

Countertops shall be installed in locations as indicated on the drawings. Countertops shall be fastened to supporting casework structure with mechanical fasteners, hidden from view. All joints formed by the countertop or countertop splash and adjacent wall surfaces shall be filled with a clear silicone caulk. Loose back, side splashes shall be adhered to both the countertop surface perimeter and the adjacent wall surface with adhesives appropriate for the type of materials to be adhered. Joints between the countertop surface and splash shall be filled with clear silicone caulk in a smooth consistent concave bead. Bead size shall be the minimum necessary to fill the joint and any surrounding voids or cracks.

3.1.3 Hardware

Casework hardware shall be installed in types and locations as indicated on the drawings. Where fully concealed European-style hinges are specified to be used with particleboard or fiberboard doors, the use of plastic or synthetic insertion dowels shall be used to receive 3/16 inch "Euroscrews". The use of wood screws without insertion dowels is prohibited.

3.1.4 Doors, Drawers and Removable Panels

The fitting of doors, drawers and removable panels shall be accomplished within target fitting tolerances for gaps and flushness in accordance with AWI AWS custom grade requirements.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

- ASTM E136 (2016) Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

- 29 CFR 1910.134 Respiratory Protection

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Blanket Insulation
1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials to site in original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect from damage. Do not allow insulation materials to become wet, soiled, crushed, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storing, and protecting of materials before and during installation.

1.3.2 Storage

Inspect materials delivered to the site for damage; unload and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling.

1.4 SAFETY PRECAUTIONS

1.4.1 Respirators

Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) in accordance with 29 CFR 1910.134.

1.4.2 Other Safety Concerns

Consider other safety concerns and measures as outlined in ASTM C930.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Recycled Content for Insulation Materials

Provide insulation materials meeting the recycled content requirements as stated within this section.

2.1.2 Reduce Volatile Organic Compounds (VOC) for Insulation Materials

Provide insulation materials meeting the reduced VOC requirements as stated within this section.

2.2 BLANKET INSULATION

ASTM C665, Type I, blankets without membrane coverings, except a flame spread rating of 25 or less and a smoke developed rating of 150 or less.
when tested in accordance with ASTM E84.

2.2.1 Thermal Resistance Value (R-VALUE)

The R-Value must be as indicated on drawings.

2.2.2 Recycled Materials

Provide Thermal Insulation containing recycled materials to the extent practicable, provided the material meets all other requirements of this section. The minimum required recycled materials content by weight are:

Fiberglass: 20 to 25 percent glass cullet

2.2.3 Prohibited Materials

Do not provide asbestos-containing materials.

2.3 BLOCKING

Wood, metal, unfaced mineral fiber blankets in accordance with ASTM C665, Type I, or other approved materials. Use only non-combustible materials meeting the requirements of ASTM E136 for blocking around chimneys and heat producing devices.

2.4 ACCESSORIES

2.4.1 Mechanical Fasteners

Corrosion resistant fasteners as recommended by the insulation manufacturer.

PART 3 EXECUTION

3.1 EXISTING CONDITIONS

Before installing insulation, ensure that areas that will be in contact with the insulation are dry and free of projections which could cause voids, compressed insulation, or punctured vapor retarders. If moisture or other conditions are found that do not allow the workmanlike installation of the insulation, do not proceed but notify Contracting Officer of such conditions.

3.2 PREPARATION

3.2.1 Blocking Around Heat Producing Devices

Install non-combustible blocking around heat producing devices to provide the following clearances:

a. Recessed lighting fixtures, including wiring compartments, ballasts, and other heat producing devices, unless these are certified by the manufacturer for installation surrounded by insulation: 3 inches from outside face of fixtures and devices or as required by NFPA 70 and, if insulation is to be placed above fixture or device, 24 inches above fixture.

b. Masonry chimneys or masonry enclosing a flue: 2 inches from outside face of masonry. Masonry chimneys for medium and high heat operating appliances: Minimum clearances required by NFPA 211.

c. Vents and vent connectors used for venting the products of combustion,
flues, and chimneys other than masonry chimneys: Minimum clearances as required by NFPA 211.

d. Gas Fired Appliances: Clearances as required in NFPA 54.
e. Oil Fired Appliances: Clearances as required in NFPA 31.

Blocking around flues and chimneys is not required when insulation blanket, including any attached vapor retarder, passed ASTM E136, in addition to meeting all other requirements stipulated in Part 2. Blocking is also not required if the chimneys are certified by the manufacturer for use in contact with insulating materials.

3.3 INSTALLATION

3.3.1 Insulation

Install and handle insulation in accordance with manufacturer's instructions. Keep material dry and free of extraneous materials. Any materials that show visual evidence of biological growth due to presence of moisture must not be installed on the building project. Ensure personal protective clothing and respiratory equipment is used as required. Observe safe work practices.

3.3.1.1 Electrical wiring

Do not install insulation in a manner that would sandwich electrical wiring between two layers of insulation.

3.3.1.2 Continuity of Insulation

Install blanket insulation to butt tightly against adjoining blankets and to studs, rafters, joists, sill plates, headers and any obstructions. Where insulation required is thicker than depth of joist, provide full width blankets to cover across top of joists. Provide continuity and integrity of insulation at corners, wall to ceiling joints, roof, and floor. Avoid creating thermal bridges.

3.3.1.3 Installation at Bridging and Cross Bracing

Insulate at bridging and cross bracing by splitting blanket vertically at center and packing one half into each opening. Butt insulation at bridging and cross bracing; fill in bridged area with loose or scrap insulation.

3.3.1.4 Insulation without Affixed Vapor Retarder

Provide snug friction fit to hold insulation in place. Stuff pieces of insulation into cracks between trusses, joists, studs and other framing, such as at attic access doors, door and window heads, jambs, and sills, band joists, and headers.

3.3.1.5 Sizing of Blankets

Provide only full width blankets when insulating between trusses, joists, or studs. Size width of blankets for a snug fit where trusses, joists or studs are irregularly spaced.

-- End of Section --
SECTION 07 84 00

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E2174 (2014b) Standard Practice for On-Site Inspection of Installed Fire Stops

ASTM E2393 (2010a) Standard Practice for On-Site Inspection of Installed Fire Resistant Joint Systems and Perimeter Fire Barriers

FM GLOBAL (FM)

FM 4991 (2013) Approval of Firestop Contractors

UNDERWRITERS LABORATORIES (UL)

UL 1479 (2015) Fire Tests of Through-Penetration Firestops

UL 723 (2008; Reprint Aug 2013) Test for Surface Burning Characteristics of Building Materials
1.2 SYSTEM DESCRIPTION

1.2.1 General

Furnish and install tested and listed firestopping systems, combination of materials, or devices to form an effective barrier against the spread of flame, smoke and gases, and maintain the integrity of fire resistance rated walls, partitions, floors, and ceiling-floor assemblies, including through-penetrations and construction joints and gaps.

a. Through-penetrations include the annular space around pipes, tubes, conduit, wires, cables and vents.

b. Construction joints include those used to accommodate expansion, contraction, wind, or seismic movement; firestopping material shall not interfere with the required movement of the joint.

Gaps requiring firestopping include gaps between the top of the fire-rated walls and the roof or floor deck above and at the intersection of shaft assemblies and adjoining fire resistance rated assemblies.

1.2.2 Sequencing

Coordinate the specified work with other trades. Apply firestopping materials, at penetrations of pipes and ducts, prior to insulating, unless insulation meets requirements specified for firestopping. Apply firestopping materials at building joints and construction gaps, prior to completion of enclosing walls or assemblies. Cast-in-place firestop devices shall be located and installed in place before concrete placement. Pipe, conduit or cable bundles shall be installed through cast-in-place device after concrete placement but before area is concealed or made inaccessible. Firestop material shall be inspected and approved prior to final completion and enclosing of any assemblies that may conceal installed firestop.

1.2.3 Submittals Requirements

a. Submit detail drawings including manufacturer's descriptive data, typical details conforming to UL Fire Resistance or other details certified by another nationally recognized testing laboratory, installation instructions or UL listing details for a firestopping assembly in lieu of fire-test data or report. For those firestop applications for which no UL tested system is available through a manufacturer, a manufacturer's engineering judgment, derived from similar UL system designs or other tests, shall be submitted for review and approval prior to installation. Submittal shall indicate the firestopping material to be provided for each type of application. When more than a total of 5 penetrations and/or construction joints are to receive firestopping, provide drawings that indicate location, "P" "T" and "I" ratings, and type of application.

b. Submit certificates attesting that firestopping material complies with the specified requirements. For all intumescent firestop materials used in through penetration systems, manufacturer shall provide certification of compliance with UL 1479.
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
- Firestopping Materials
SD-06 Test Reports
- Inspection
- SD-07 Certificates
- Firestopping Materials
- Installer Qualifications

1.4 QUALITY ASSURANCE

1.4.1 Installer

Engage an experienced Installer who is:

a. FM Research approved in accordance with FM 4991, operating as a UL Certified Firestop Contractor, or

b. Certified, licensed, or otherwise qualified by the firestopping manufacturer as having the necessary staff, training, and a minimum of 3 years experience in the installation of manufacturer's products in accordance with specified requirements. A manufacturer's willingness to sell its firestopping products to the Contractor or to an installer engaged by the Contractor does not in itself confer installer qualifications on the buyer. The Installer shall have been trained by a direct representative of the manufacturer (not distributor or agent) in the proper selection and installation procedures. The installer shall obtain from the manufacturer written certification of training, and retain proof of certification for duration of firestop installation.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver materials in the original unopened packages or containers showing name of the manufacturer and the brand name. Store materials off the ground, protected from damage and exposure to elements and temperatures in accordance with manufacturer requirements. Remove damaged or deteriorated materials from the site. Use materials within their indicated shelf life.

PART 2 PRODUCTS

2.1 FIRESTOPPING MATERIALS

Provide firestopping materials, supplied from a single domestic manufacturer, consisting of commercially manufactured, asbestos-free, nontoxic products FM APP GUIDE approved, or UL listed, for use with applicable construction and penetrating items, complying with the following minimum requirements:

2.1.1 Fire Hazard Classification

Material shall have a flame spread of 25 or less, and a smoke developed
rating of 50 or less, when tested in accordance with ASTM E84 or UL 723. Material shall be an approved firestopping material as listed in UL Fire Resistance or by a nationally recognized testing laboratory.

2.1.2 Toxicity

Material shall be nontoxic and carcinogen free to humans at all stages of application or during fire conditions and shall not contain hazardous chemicals or require harmful chemicals to clean material or equipment. Firestop material must be free from Ethylene Glycol, PCB, MEK, or other types of hazardous chemicals.

2.1.3 Fire Resistance Rating

Firestop systems shall be UL Fire Resistance listed or FM APP GUIDE approved with "F" rating at least equal to fire-rating of fire wall or floor in which penetrated openings are to be protected. Where required, firestop systems shall also have "T" rating at least equal to the fire-rated floor in which the openings are to be protected.

2.1.3.1 Through-Penetrations

Firestopping materials for through-penetrations, as described in paragraph SYSTEM DESCRIPTION, shall provide "F", "T" and "L" fire resistance ratings in accordance with ASTM E814 or UL 1479. Fire resistance ratings shall be as follows:

2.1.3.1.1 Penetrations of Fire Resistance Rated Walls and Partitions

F Rating = Rating of wall or partition being penetrated.

2.1.3.2 Construction Joints and Gaps

Fire resistance ratings of construction joints, as described in paragraph SYSTEM DESCRIPTION, and gaps such as those between floor slabs shall be the same as the construction in which they occur. Construction joints and gaps shall be provided with firestopping materials and systems that have been tested in accordance with ASTM E119, ASTM E1966 or UL 2079 to meet the required fire resistance rating. Systems installed at construction joints shall meet the cycling requirements of ASTM E1399/E1399M or UL 2079. All joints at the intersection of the top of a fire resistance rated wall and the underside of a fire-rated floor, floor ceiling, or roof ceiling assembly shall provide a minimum class II movement capability.

PART 3 EXECUTION

3.1 PREPARATION

Areas to receive firestopping shall be free of dirt, grease, oil, or loose materials which may affect the fitting or fire resistance of the firestopping system. For cast-in-place firestop devices, formwork or metal deck to receive device prior to concrete placement shall be sound and capable of supporting device. Prepare surfaces as recommended by the manufacturer.

3.2 INSTALLATION

Completely fill void spaces with firestopping material regardless of geometric configuration, subject to tolerance established by the
manufacturer. Firestopping systems for filling floor voids 4 inches or more in any direction shall be capable of supporting the same load as the floor is designed to support or shall be protected by a permanent barrier to prevent loading or traffic in the firestopped area. Install firestopping in accordance with manufacturer's written instructions. Provide tested and listed firestop systems in the following locations, except in floor slabs on grade:

a. Penetrations of duct, conduit, tubing, cable and pipe through floors and through fire-resistance rated walls, partitions, and ceiling-floor assemblies.

b. Penetrations of vertical shafts such as pipe chases, elevator shafts, and utility chutes.

c. Gaps at the intersection of floor slabs and curtain walls, including inside of hollow curtain walls at the floor slab.

d. Gaps at perimeter of fire-resistance rated walls and partitions, such as between the top of the walls and the bottom of roof decks.

e. Construction joints in floors and fire rated walls and partitions.

f. Other locations where required to maintain fire resistance rating of the construction.

3.2.1 Insulated Pipes and Ducts

Thermal insulation shall be cut and removed where pipes or ducts pass through firestopping, unless insulation meets requirements specified for firestopping. Replace thermal insulation with a material having equal thermal insulating and firestopping characteristics.

3.2.2 Fire Dampers

Install and firestop fire dampers in accordance with Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM. Firestop installed with fire damper must be tested and approved for use in fire damper system. Firestop installed with fire damper must be tested and approved for use in fire damper system.

3.2.3 Data and Communication Cabling

Cabling for data and communication applications shall be sealed with re-enterable firestopping products and devices as indicated.

3.3 INSPECTION

3.3.1 General Requirements

For all projects, the firestopped areas shall not be covered or enclosed until inspection is complete and approved by the Contracting Officer. The inspector shall inspect the applications initially to ensure adequate preparations (clean surfaces suitable for application, etc.) and periodically during the work to assure that the completed work has been accomplished according to the manufacturer's written instructions and the specified requirements.
3.3.2 Inspection Standards

Inspect all firestopping in accordance to ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results to be submitted.

-- End of Section --
SECTION 07 92 00

JOINT SEALANTS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C509 (2006; R 2015) Elastomeric Cellular Preformed Gasket and Sealing Material
ASTM C834 (2014) Latex Sealants

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS Scientific Certification Systems (SCS) Indoor Advantage

UNDERWRITERS LABORATORIES (UL)

UL 2818 (2013) GREENGUARD Certification Program For Chemical Emissions For Building Materials, Finishes And Furnishings
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Sealants; G
Primers; G
Bond Breakers; G
Backstops; G
SD-06 Test Reports
Field Adhesion; G
SD-07 Certificates
Sealant; G
Volatile Organic Compounds (VOC) Content; G

1.3 PRODUCT DATA

Include storage requirements, shelf life, curing time, instructions for mixing and application, and accessories. Provide manufacturer's Material Safety Data Sheet (MSDS) for each solvent, primer and sealant material proposed.

1.4 CERTIFICATIONS

Provide product third-party certification for low Volatile Organic Compounds (VOC) Content in accordance with UL 2818, SCS (Scientific Certification Systems) Indoor Advantage or approved equal.

1.5 ENVIRONMENTAL CONDITIONS

Apply sealant when the ambient temperature is between 40 and 90 degrees F.

1.6 DELIVERY AND STORAGE

Deliver materials to the jobsite in unopened manufacturers' sealed shipping containers, with brand name, date of manufacture, color, and material designation clearly marked thereon. Label elastomeric sealant containers to identify type, class, grade, and use. Handle and store materials in accordance with manufacturer's printed instructions. Prevent exposure to foreign materials or subjection to sustained temperatures exceeding 90 degrees F or lower than 0 degrees F. Keep materials and containers closed and separated from absorptive materials such as wood and insulation.

1.7 QUALITY ASSURANCE

1.7.1 Compatibility with Substrate

Verify that each sealant is compatible for use with each joint substrate in accordance with sealant manufacturer's printed recommendations for each application.
1.7.2 Joint Tolerance

Provide joint tolerances in accordance with manufacturer's printed instructions.

1.7.3 Adhesion

Provide in accordance with ASTM C1193 or ASTM C1521.

PART 2 PRODUCTS

2.1 SEALANTS

Provide sealant products that have been tested, found suitable, and documented as such by the manufacturer for the particular substrates to which they will be applied.

2.1.1 Product Sustainability Criteria

Where allowed by performance criteria, provide sealants specified for interior use with reduced Volatile Organic Compounds (VOC) content.

2.1.2 Interior Sealants

Provide ASTM C834 Note, color "as selected" refers to manufacturer's full range of color options

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Small voids between walls or partitions and adjacent lockers, casework, shelving, door frames, built-in or surface mounted equipment and fixtures, and similar items.</td>
<td>As selected</td>
</tr>
<tr>
<td>b. Perimeter of frames at doors, windows, and access panels which adjoin exposed interior concrete and masonry surfaces.</td>
<td>As selected</td>
</tr>
<tr>
<td>c. Joints of interior masonry walls and partitions which adjoin columns, pilasters, concrete walls, and exterior walls unless otherwise detailed.</td>
<td>As selected</td>
</tr>
<tr>
<td>d. Joints between edge members for acoustical tile and adjoining vertical surfaces.</td>
<td>As selected</td>
</tr>
<tr>
<td>e. Interior locations, not otherwise indicated or specified, where small voids exist between materials specified to be painted.</td>
<td>As selected</td>
</tr>
</tbody>
</table>

2.1.3 Exterior Sealants

For joints in vertical surfaces, provide ASTM C920, Type S or M, Grade NS, Class 25, Use NT. For joints in horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T. Provide location(s) and color(s) of sealant as follows. Note, color "as selected" refers to manufacturer's full range of color options:
### LOCATION	COLOR
a. Joints and recesses formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Use sealant at both exterior and interior surfaces of exterior wall penetrations. | Match adjacent surface color

b. Joints between new and existing exterior masonry walls. | Match adjacent surface color
c. Masonry joints where shelf angles occur. | Match adjacent surface color
d. Expansion and control joints. | Match adjacent surface color
e. Interior face of expansion joints in exterior concrete or masonry walls where metal expansion joint covers are not required. | Match adjacent surface color

f. Voids where items pass through exterior walls. | Match adjacent surface color
g. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels. | Match adjacent surface color

l. Metal-to-metal joints where sealant is indicated or specified. | Match adjacent surface color

2.1.4 Floor Joint Sealants

ASTM C920, Type S or M, Grade P, Class 25, Use T. Provide location(s) and color(s) of sealant as follows. Note, color "as selected" refers to manufacturer's full range of color options:

LOCATION	COLOR
a. Seats of metal thresholds for exterior doors. | As selected

b. Control and expansion joints in floors, slabs, ceramic tile, and walkways. | As selected

2.2 PRIMERS

Non-staining, quick drying type and consistency as recommended by the sealant manufacturer for the particular application.
2.3 BOND BREAKERS

Type and consistency as recommended by the sealant manufacturer to prevent adhesion of the sealant to the backing or to the bottom of the joint.

2.4 BACKSTOPS

Provide glass fiber roving, neoprene, butyl, polyurethane, or polyethylene foams free from oil or other staining elements as recommended by sealant manufacturer. Provide 25 to 33 percent oversized backing for closed cell and 40 to 50 percent oversized backing for open cell material, unless otherwise indicated. Provide backstop material that is compatible with sealant. Do not use oakum or other types of absorptive materials as backstops.

2.4.1 Rubber

Provide in accordance with ASTM D1056, Type 2, closed cell, Class A, Grade 1, round cross section for cellular rubber sponge backing.

2.4.2 Synthetic Rubber

Provide in accordance with ASTM C509, Option I, Type I preformed rods or tubes for synthetic rubber backing.

2.4.3 Neoprene

Provide in accordance with ASTM D1056, closed cell expanded neoprene cord Type 2, Class C, Grade 2C2 for neoprene backing.

2.4.4 Butyl Rubber Based

Provide in accordance with ASTM C1311, from a single component, with solvent release. Color as selected from manufacturer's full range of color choices.

2.5 CAULKING

For interior use and only where there is little or no anticipated joint movement. Provide in accordance with ASTM D2452 and ASTM D2453.

2.6 CLEANING SOLVENTS

Provide type(s) recommended by the sealant manufacturer and in accordance with environmental requirements herein. Protect adjacent aluminum and bronze surfaces from solvents.

PART 3 EXECUTION

3.1 FIELD QUALITY CONTROL

Perform a field adhesion test in accordance with manufacturer's instructions and ASTM C1193, Method A or ASTM C1521, Method A, Tail Procedure. Remove sealants that fail adhesion testing; clean substrates, reapply sealants, and re-test. Test sealants adjacent to failed sealants. Submit field adhesion test report indicating tests, locations, dates, results, and remedial actions taken.
3.2 SURFACE PREPARATION

Prepare surfaces according to manufacturer's printed installation instructions. Clean surfaces from dirt, frost, moisture, grease, oil, wax, lacquer, paint, or other foreign matter that would destroy or impair adhesion. Remove oil and grease with solvent; thoroughly remove solvents prior to sealant installation. Wipe surfaces dry with clean cloths. When resealing an existing joint, remove existing caulk or sealant prior to applying new sealant. For surface types not listed below, provide in accordance with sealant manufacturer's printed instructions for each specific surface.

3.2.1 Steel Surfaces

Remove loose mill scale by sandblasting or, if sandblasting is impractical or would damage finished work, scraping and wire brushing. Remove protective coatings by sandblasting or using a residue free solvent. Remove resulting debris and solvent residue prior to sealant installation.

3.2.2 Aluminum or Bronze Surfaces

Remove temporary protective coatings from surfaces that will be in contact with sealant. When masking tape is used as a protective coating, remove tape and any residual adhesive prior to sealant application. For removing protective coatings and final cleaning, use non-staining solvents recommended by the manufacturer of the item(s) containing aluminum or bronze surfaces.

3.2.3 Concrete and Masonry Surfaces

Where surfaces have been treated with curing compounds, oil, or other such materials, remove materials by sandblasting or wire brushing. Remove laitance, efflorescence and loose mortar from the joint cavity. Remove resulting debris prior to sealant installation.

3.2.4 Wood Surfaces

Ensure wood surfaces that will be in contact with sealants are free of splinters, sawdust and other loose particles.

3.3 SEALANT PREPARATION

Do not add liquids, solvents, or powders to sealants. Mix multicomponent elastomeric sealants in accordance with manufacturer's printed instructions.

3.4 APPLICATION

3.4.1 Joint Width-To-Depth Ratios

Acceptable Ratios:

<table>
<thead>
<tr>
<th>JOINT WIDTH</th>
<th>JOINT DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Maximum</td>
</tr>
</tbody>
</table>

For metal, glass, or other nonporous surfaces:
<table>
<thead>
<tr>
<th>JOINT WIDTH</th>
<th>JOINT DEPTH</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 inch (minimum)</td>
<td>1/4 inch</td>
<td>1/4 inch</td>
<td></td>
</tr>
<tr>
<td>over 1/4 inch</td>
<td>1/2 of width</td>
<td></td>
<td>Equal to width</td>
</tr>
<tr>
<td>For wood, concrete, masonry, stone:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4 inch (minimum)</td>
<td>1/4 inch</td>
<td>1/4 inch</td>
<td></td>
</tr>
<tr>
<td>over 1/4 inch to 1/2 inch</td>
<td>1/4 inch</td>
<td>1/4 inch</td>
<td>Equal to width</td>
</tr>
<tr>
<td>over 1/2 inch to 1 inch</td>
<td>1/2 inch</td>
<td></td>
<td>5/8 inch</td>
</tr>
<tr>
<td>Over 1 inch</td>
<td>prohibited</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unacceptable Ratios: Where joints of acceptable width-to-depth ratios have not been provided, clean out joints to acceptable depths and grind or cut to acceptable widths without damage to the adjoining work. Grinding is prohibited at metal surfaces.

3.4.2 Unacceptable Sealant Use

Do not install sealants in lieu of other required building enclosure weatherproofing components such as flashing, drainage components, and joint closure accessories, or to close gaps between walls, floors, roofs, windows, and doors, that exceed acceptable installation tolerances. Remove sealants that have been used in an unacceptable manner and correct building enclosure deficiencies to comply with contract documents requirements.

3.4.3 Masking Tape

Place masking tape on the finished surface on one or both sides of joint cavities to protect adjacent finished surfaces from primer or sealant smears. Remove masking tape within 10 minutes of joint filling and tooling.

3.4.4 Backstops

Provide backstops dry and free of tears or holes. Tightly pack the back or bottom of joint cavities with backstop material to provide joints in specified depths. Provide backstops where indicated and where backstops are not indicated but joint cavities exceed the acceptable maximum depths specified in "Joint Width-to-Depth Ratios" Table.

3.4.5 Primer

Clean out loose particles from joints immediately prior to application of. Apply primer to joints in concrete masonry units, wood, and other porous surfaces in accordance with sealant manufacturer's printed instructions. Do not apply primer to exposed finished surfaces.

3.4.6 Bond Breaker

Provide bond breakers to surfaces not intended to bond in accordance with, sealant manufacturer's printed instructions for each type of surface and
3.4.7 Sealants

Provide sealants compatible with the material(s) to which they are applied. Do not use a sealant that has exceeded its shelf life or has jelled and cannot be discharged in a continuous flow from the sealant gun. Apply sealants in accordance with the manufacturer's printed instructions with a gun having a nozzle that fits the joint width. Work sealant into joints so as to fill the joints solidly without air pockets. Tool sealant after application to ensure adhesion. Apply sealant uniformly smooth and free of wrinkles. Upon completion of sealant application, roughen partially filled or unfilled joints, apply additional sealant, and tool smooth as specified. Apply sealer over sealants in accordance with the sealant manufacturer's printed instructions.

3.5 PROTECTION AND CLEANING

3.5.1 Protection

Protect areas adjacent to joints from sealant smears. Masking tape may be used for this purpose if removed 5 to 10 minutes after the joint is filled and no residual tape marks remain.

3.5.2 Final Cleaning

Upon completion of sealant application, remove remaining smears and stains and leave the work in a clean and neat condition.

a. Masonry and Other Porous Surfaces: Immediately remove fresh sealant that has been smeared on adjacent masonry, rub clean with a solvent, and remove solvent residue, in accordance with sealant manufacturer's printed instructions. Allow excess sealant to cure for 24 hour then remove by wire brushing or sanding. Remove resulting debris.

b. Metal and Other Non-Porous Surfaces: Remove excess sealant with a solvent moistened cloth. Remove solvent residue in accordance with solvent manufacturer’s printed instructions.

-- End of Section --
SECTION 08 11 13

STEEL DOORS AND FRAMES

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2016a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM C612 (2014) Mineral Fiber Block and Board Thermal Insulation

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.115 (2016) Hardware Preparation in Steel Doors and Steel Frames
STEEL DOOR INSTITUTE (SDI/DOOR)

SDI/DOOR 113 (2001; R2006) Standard Practice for Determining the Steady State Thermal Transmittance of Steel Door and Frame Assemblies

SDI/DOOR A250.11 (2001) Recommended Erection Instructions for Steel Frames

SDI/DOOR A250.6 (2003; R2009) Recommended Practice for Hardware Reinforcing on Standard Steel Doors and Frames

SDI/DOOR A250.8 (2003; R2008) Recommended Specifications for Standard Steel Doors and Frames

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Doors; G
Frames; G

Weatherstripping

Show elevations, construction details, metal gages, hardware provisions, method of glazing, and installation details.

Schedule of doors; G
Schedule of frames; G
Submit door and frame locations.

SD-03 Product Data

Doors; G
Frames; G

Weatherstripping

Submit manufacturer's descriptive literature for doors, frames, and accessories. Include data and details on door construction,
panel (internal) reinforcement, insulation, and door edge construction. When "custom hollow metal doors" are provided in lieu of "standard steel doors," provide additional details and data sufficient for comparison to SDI/DOOR A250.8 requirements.

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver doors, frames, and accessories undamaged and with protective wrappings or packaging. Strap knock-down frames in bundles. Provide temporary steel spreaders securely fastened to the bottom of each welded frame. Store doors and frames on platforms under cover in clean, dry, ventilated, and accessible locations, with 1/4 inch airspace between doors. Remove damp or wet packaging immediately and wipe affected surfaces dry. Replace damaged materials with new.

PART 2 PRODUCTS

2.1 STANDARD STEEL DOORS

SDI/DOOR A250.8, except as specified otherwise. Prepare doors to receive door hardware as specified in Section 08 71 00. Undercut where indicated. Exterior doors shall have top edge closed flush and sealed to prevent water intrusion. Doors shall be 1-3/4 inch thick, unless otherwise indicated.

2.1.1 Classification - Level, Performance, Model
2.1.1.1 Standard Duty Doors

SDI/DOOR A250.8, Level 1, physical performance Level C, Model 1, of size(s) and design(s) indicated and core construction as required by the manufacturer. Provide for interior doors.

2.1.1.2 Extra Heavy Duty Doors

SDI/DOOR A250.8, Level 3, physical performance Level A, Model 1 with core construction as required by the manufacturer for exterior doors, of size(s) and design(s) indicated. Where vertical stiffener cores are required, the space between the stiffeners shall be filled with Polyurethane insulation.

2.2 INSULATION CORES

Insulated cores shall be of type specified, and provide an apparent U-factor of .48 in accordance with SDI/DOOR 113 and shall conform to:

a. Rigid Cellular Polyisocyanurate Foam: ASTM C591, Type I or II, foamed-in-place or in board form, with oxygen index of not less than 22 percent when tested in accordance with ASTM D2863; or

b. Rigid Polystyrene Foam Board: ASTM C578, Type I or II; or

c. Mineral board: ASTM C612, Type I.

2.3 STANDARD STEEL FRAMES

SDI/DOOR A250.8, Level 1 and 3. Form frames to sizes and shapes indicated, with welded corners or knock-down field-assembled corners. Provide steel frames for doors, unless otherwise indicated.
2.3.1 Welded Frames

Continuously weld frame faces at corner joints. Mechanically interlock or continuously weld stops and rabbets. Grind welds smooth.

Weld frames in accordance with the recommended practice of the Structural Welding Code Sections 1 through 6, AWS D1.1/D1.1M and in accordance with the practice specified by the producer of the metal being welded. Provide welded frames for exterior doors.

2.3.2 Knock-Down Frames

Design corners for simple field assembly by concealed tenons, splice plates, or interlocking joints that produce square, rigid corners and a tight fit and maintain the alignment of adjoining members. Provide locknuts for bolted connections. Provide Knock-down frames for interior doors.

2.3.3 Stops and Beads

Form stops and beads from 20 gage steel. Provide for glazed and other openings in standard steel frames. Secure beads to frames with oval-head, countersunk Phillips self-tapping sheet metal screws or concealed clips and fasteners. Space fasteners approximately 12 to 16 inch on center. Miter molded shapes at corners. Butt or miter square or rectangular beads at corners.

2.3.4 Anchors

Provide anchors to secure the frame to adjoining construction. Provide steel anchors, zinc-coated or painted with rust-inhibitive paint, not lighter than 18 gage.

2.3.4.1 Wall Anchors

Provide at least three anchors for each jamb. For frames which are more than 7.5 feet in height, provide one additional anchor for each jamb for each additional 2.5 feet or fraction thereof.

 a. Masonry: Provide anchors of corrugated or perforated steel straps or 3/16 inch diameter steel wire, adjustable or T-shaped;
 b. Stud partitions: Weld or otherwise securely fasten anchors to backs of frames. Design anchors to be fastened to closed steel studs with sheet metal screws, and to open steel studs by wiring or welding;
 c. Completed openings: Secure frames to previously placed concrete or masonry with expansion bolts in accordance with SDI/DOOR 111; and
 d. Solid plaster partitions: Secure anchors solidly to back of frames and tie into the lath. Provide adjustable top strut anchors on each side of frame for fastening to structural members or ceiling construction above. Size and type of strut anchors shall be as recommended by the frame manufacturer.
2.3.4.2 Floor Anchors

Provide floor anchors drilled for 3/8 inch anchor bolts at bottom of each jamb member.

2.4 WEATHERSTRIPPING

As specified in Section 08 71 00 DOOR HARDWARE.

2.4.1 Integral Gasket

Black synthetic rubber gasket with tabs for factory fitting into factory slotted frames, or extruded neoprene foam gasket made to fit into a continuous groove formed in the frame, may be provided in lieu of head and jamb seals specified in Section 08 71 00 DOOR HARDWARE. Insert gasket in groove after frame is finish painted. Air leakage of weatherstripped doors shall not exceed 0.5 cubic feet per minute of air per square foot of door area when tested in accordance with ASTM E283.

2.5 HARDWARE PREPARATION

Provide minimum hardware reinforcing gages as specified in SDI/DOOR A250.6. Drill and tap doors and frames to receive finish hardware. Prepare doors and frames for hardware in accordance with the applicable requirements of SDI/DOOR A250.8 and SDI/DOOR A250.6. For additional requirements refer to ANSI/BHMA A156.115. Drill and tap for surface-applied hardware at the project site. Build additional reinforcing for surface-applied hardware into the door at the factory. Locate hardware in accordance with the requirements of SDI/DOOR A250.8, as applicable. Punch door frames to receive a minimum of two rubber or vinyl door silencers on lock side of single doors and one silencer for each leaf at heads of double doors. Set lock strikes out to provide clearance for silencers.

2.6 FINISHES

2.6.1 Hot-Dip Zinc-Coated and Factory-Primed Finish

Fabricate doors and frames from hot dipped zinc coated steel, alloyed type, that complies with ASTM A924/A924M and ASTM A653/A653M. The coating weight shall meet or exceed the minimum requirements for coatings having 0.4 ounces per square foot, total both sides, i.e., A40. Repair damaged zinc-coated surfaces by the application of zinc dust paint. Thoroughly clean and chemically treat to insure maximum paint adhesion. Factory prime as specified in SDI/DOOR A250.8.

2.6.2 Electrolytic Zinc-Coated Anchors and Accessories

Provide electrolytically deposited zinc-coated steel in accordance with ASTM A879/A879M, Commercial Quality, Coating Class A. Phosphate treat and factory prime zinc-coated surfaces as specified in SDI/DOOR A250.8.

2.7 FABRICATION AND WORKMANSHIP

Finished doors and frames shall be strong and rigid, neat in appearance, and free from defects, waves, scratches, cuts, dents, ridges, holes, warp, and buckle. Molded members shall be clean cut, straight, and true, with joints coped or mitered, well formed, and in true alignment. Dress exposed welded and soldered joints smooth. Design door frame sections for use with the wall construction indicated. Corner joints shall be well formed and in
true alignment. Conceal fastenings where practicable. On wraparound frames for masonry partitions, provide a throat opening 1/8 inch larger than the actual masonry thickness. Design frames in exposed masonry walls or partitions to allow sufficient space between the inside back of trim and masonry to receive caulking compound.

2.7.1 Grouted Frames

For frames to be installed in exterior walls and to be filled with mortar or grout, fill the stops with strips of rigid insulation to keep the grout out of the stops and to facilitate installation of stop-applied head and jamb seals.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Frames

Set frames in accordance with SDI/DOOR A250.11. Plumb, align, and brace securely until permanent anchors are set. Anchor bottoms of frames with expansion bolts or powder-actuated fasteners. Build in or secure wall anchors to adjoining construction.

3.1.2 Doors

Hang doors in accordance with clearances specified in SDI/DOOR A250.8. After erection and glazing, clean and adjust hardware.

3.2 PROTECTION

Protect doors and frames from damage. Repair damaged doors and frames prior to completion and acceptance of the project or replace with new, as directed. Wire brush rusted frames until rust is removed. Clean thoroughly. Apply an all-over coat of rust-inhibitive paint of the same type used for shop coat.

3.3 CLEANING

Upon completion, clean exposed surfaces of doors and frames thoroughly. Remove mastic smears and other unsightly marks.

-- End of Section --
SECTION 08 33 23
OVERHEAD COILING DOORS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASCE 7 (2010; Errata 2011; Supp 1 2013) Minimum Design Loads for Buildings and Other Structures

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2016a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Standard for Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 6 (1993; R 2011) Enclosures

NEMA MG 1 (2016) Motors and Generators

NEMA ST 1 (1988; R 1994; R 1997) Specialty Transformers (Except General Purpose Type)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 - Overhead Coiling Doors
 - Counterbalancing Mechanism
 - Electric Door Operators
 - Bottom Bars
 - Guides
 - Mounting Brackets
 - Overhead Drum
Installation Drawings
SD-03 Product Data
Overhead Coiling Doors
Hardware
Counterbalancing Mechanism
Electric Door Operators

SD-05 Design Data
Overhead Coiling Doors
Counterbalancing Mechanism
Electric Door Operators

SD-10 Operation and Maintenance Data
Operation and Maintenance Manuals
MaterialsDevicesProceduresManufacture's BrochuresParts Lists

SD-11 Closeout Submittals
Warranty

1.3 QUALITY CONTROL

Provide a permanent label for each door showing the manufacturer's name and address, and the model/serial number of the door.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver doors to the jobsite wrapped in a protective covering with the brands and names clearly marked thereon. Store doors in an adequately ventilated dry location that is free from dirt and dust, water, or other contaminants. Store in a manner that permits easy access for inspection and handling.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Doors to be coiling type, with interlocking slats, complete with anchoring and door hardware, guides, hood, and operating mechanisms, and designed for use on openings as indicated. Use grease-sealed or self-lubricating bearings for rotating members.
2.1.1 Design Requirements

2.1.1.1 Overhead Coiling Door Detail Shop Drawings

Provide installation drawings for overhead coiling door assemblies which show: elevations of each door type, shape and thickness of materials, finishes, details of joints and connections, details of guides and fittings, rough opening dimensions, location and description of hardware, anchorage locations, and counterbalancing mechanism and door operator details. Show locations of replaceable fusible links on wiring diagrams for power, signal and controls. Include a schedule showing the location of each door with the drawings.

2.1.2 Performance Requirements

2.1.2.1 Wind Loading

Design and fabricate door assembly to withstand the wind loading pressure of at least 50 pounds per square foot with a maximum deflection of 1/120 of the opening width. Provide test data showing compliance with ASTM E330/E330M. Sound engineering principles may be used to interpolate or extrapolate test results to door sizes not specifically tested. Ensure complete assembly meets or exceeds the requirements of ASCE 7.

2.1.2.2 Operational Cycle Life

Design all portions of the door, hardware and operating mechanism that are subject to movement, wear, or stress fatigue to operate through a minimum number of 10 cycles per day. One complete cycle of door operation is defined as when the door is in the closed position, moves to the fully open position, and returns to the closed position.

2.2 COMPONENTS

2.2.1 Overhead Coiling Doors

2.2.1.1 Curtain Materials and Construction

Provide curtain slats fabricated from Grade A steel sheets conforming to ASTM A653/A653M, with the additional requirement of a minimum yield point of 33,000 psi. Provide sheets, galvanized in accordance with ASTM A653/A653M and ASTM A924/A924M.

Provide slats filled with manufacturer's standard urethane thermal insulation complying with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, according to ASTM E84. Enclose insulation completely within slat faces on interior surface of slats.

2.2.1.2 Insulated Curtains

Form Curtains from manufacturer's standard shapes of interlocking slats. Supply slat system with a minimum R-value of 4 when calculated in accordance with ASHRAE FUN IP. Slats to consist of a urethane core not less than 11/16-inch thick, completely enclosed within metal facings. Ensure the exterior face of slats are the same gauge as specified for curtains. Select an interior face not lighter than 0.0219-inches. The insulated slat assembly requires a flame spread rating of not more than 25
and a smoke development factor of not more than 50 when tested in accordance with ASTM E84.

2.2.1.3 Curtain Bottom Bar

Install curtain bottom bars as pairs of angles from the manufacturer's standard steel, extrusions not less than 2.0 by 2.0-inches by 0.188-inch. Ensure steel extrusions conform to ASTM A36/A36M. Galvanize angles and fasteners in accordance with ASTM A653/A653M and ASTM A924/A924M. Coat welds and abrasions with paint conforming to ASTM A780/A780M.

2.2.1.4 Locks

Provide end and wind locks of Grade B cast steel conforming to ASTM A27/A27M, galvanized in accordance with ASTM A653/A653M, ASTM A153/A153M and ASTM A924/A924M. Secure locks at every other curtain slat.

2.2.1.5 Weather Stripping

Ensure weather-stripping at the door-head and jamb is 1/8-inch thick sheet of natural or neoprene rubber with air baffles. Secure weather stripping to the insides of hoods with galvanized-steel fasteners through continuous galvanized-steel pressure bars at least 5/8-inch wide and 1/8-inch thick.

Ensure threshold weather-stripping is 1/8-inch thick sheet natural or neoprene rubber secured to the bottom bars.

Provide weather-stripping of natural or neoprene rubber conforming to ASTM D2000.

2.2.1.6 Locking Devices

Ensure slide bolt engages through slots in tracks for locking by padlock, located on both left and right jamb sides, operable from coil side.

2.2.1.7 Safety Interlock

Equip power-operated doors with safety interlock switch to disengage power supply when door is locked.

2.2.1.8 Overhead Drum

Fabricate drums from nominal 0.028-inch thick, hot-dip galvanized steel sheet with G90 (Z275) zinc coating, complying with ASTM A653/A653M.

2.2.1.9 Slats

No. 5F, 22 gauge, Grade 40 steel, ASTM A653/A653M galvanized steel zinc coating.

2.2.2 Hardware

Ensure all hardware conforms to ASTM A153/A153M, ASTM A307, ASTM F568M, and ASTM A27/A27M.

2.2.2.1 Guides

Fabricate curtain jamb guides from the manufacturer's standard angles or channels of same material and finish as curtain slats unless otherwise
indicated. Provide guides with sufficient depth and strength to retain curtain, and to withstand loading. Ensure curtain operates smoothly. Slot bolt holes for track adjustment.

2.2.2.2 Equipment Supports

Fabricate door-operating equipment supports from the manufacturer's standard steel shapes and plates conforming to ASTM A36/A36M, galvanized in accordance with ASTM A653/A653M and ASTM A924/A924M. Size the shapes and plates in accordance with the industry standards for the size, weight, and type of door installation.

2.2.2.3 Hood

Provide a hood with a minimum 24-gauge galvanized sheet metal, flanged at top for attachment to header and flanged at bottom to provide longitudinal stiffness. The hood encloses the curtain coil and counterbalance mechanism.

2.2.3 Counterbalancing Mechanism

Counterbalance doors by means of manufacturer's standard mechanism with an adjustable-tension, steel helical torsion spring mounted, around a steel shaft and contained in a spring barrel connected to top of curtain with barrel rings. Use grease-sealed or self-lubricating bearings for rotating members.

2.2.3.1 Brackets

Provide the manufacturer's standard mounting brackets with one located at each end of the counterbalance barrel conforming to ASTM A48/A48M. Provide brackets of either cast iron or cold-rolled steel.

2.2.3.2 Counterbalance Barrels

Fabricate spring barrel of manufacturer's standard hot-formed, structural-quality, welded or seamless carbon-steel pipe, conforming to ASTM A53/A53M. Ensure the barrel is of sufficient diameter and wall thickness to support rolled-up curtain without distortion of slats. Limit barrel deflection to not more than 0.03 inch per foot of span under full load.

a. Barrel

Provide steel pipe capable of supporting curtain load with maximum deflection of 0.03 inches per foot of width.

b. Spring Balance

Provide an oil-tempered, heat-treated steel helical torsion spring assembly designed for proper balance of door. Ensure that effort to operate manually operated units does not exceed 25 lbs. Provide wheel for applying and adjusting spring torque.

2.2.3.3 Spring Balance

Install one or more oil-tempered, heat-treated steel helical torsion springs within the barrel, capable of producing sufficient torque to assure easy operation of the door curtain. Provide and size springs to counterbalance weight of curtain, with uniform adjustment accessible from...
outside barrel. Secure ends of springs to barrel and shaft with cast-steel barrel plugs.

2.2.3.4 Torsion Rod for Counter Balance

Fabricate rod from the manufacturer's standard cold-rolled steel, sized to hold fixed spring ends and carry torsional load.

2.2.3.5 Counterbalance Shaft Assembly

a. Barrel

Provide steel pipe capable of supporting the curtain load with maximum deflection of 0.03 inches per foot of width.

b. Spring Balance

Provide an oil-tempered, heat-treated steel helical torsion spring assembly designed for proper balance of door. Ensure that maximum effort to operate does not exceed 25 pounds. Provide wheel for applying and adjusting spring torque.

2.2.4 Electric Door Operators

Provide electrical wiring and door operating controls conforming to the applicable requirements of NFPA 70.

Electric door-operator assemblies needs to be the sizes and capacities recommended and provided by the door manufacturer for specified doors. Furnish complete assemblies with electric motors and factory-prewired motor controls, starter, gear reduction units, solenoid-operated brakes, clutch, remote-control stations, manual or automatic control devices, and accessories as required for proper operation of the doors.

Design the operators so that motors may be removed without disturbing the limit-switch adjustment and affecting the emergency auxiliary operators.

Provide a manual operator of chain-gear mechanism with a release clutch to permit manual operation of doors in case of power failure. Arrange the emergency manual operator so that it may be put into and out of operation from floor level, and its use does not affect the adjustment of the limit switches. Provide an electrical or mechanical device that automatically disconnects the motor from the operating mechanism when the emergency manual operating mechanism is engaged.

2.2.4.1 Door-Operator Types

Provide an operator mounted to the right or left door head plate with the operator on top of the door-hood assembly and connected to the door drive shaft with drive chain and sprockets. Headroom is required for this type of mounting.

2.2.4.2 Electric Motors

Provide motors which are the high-starting-torque, reversible, constant-duty electrical type with overload protection of sufficient torque and horsepower to move the door in either direction from any position. Ensure they produce a door-travel speed of not less than 8 nor more than 12 inches per second without exceeding the horsepower rating.
Provide motors which conform to NEMA MG 1 designation, temperature rating, service factor, enclosure type, and efficiency to the requirements specified.

2.2.4.3 Motor Bearings

Select bearings with bronze-sleeve or heavy-duty ball or roller antifriction type with full provisions for the type of thrust imposed by the specific duty load.

Pre-lubricate and factory seal bearings in motors less than 1/2 horsepower.

Equip motors coupled to worm-gear reduction units with either ball or roller bearings.

Equip bearings in motors 1/2 horsepower or larger with lubrication service fittings. Fit lubrication fittings with color-coded plastic or metal dust caps.

In any motor, bearings that are lubricated at the factory for extended duty periods do not need to be lubricated for a given number of operating hours. Display this information on an appropriate tag or label on the motor with instructions for lubrication cycle maintenance.

2.2.4.4 Motor Starters, Controls, and Enclosures

Provide each door motor with: a factory-wired, unfused, disconnect switch; a reversing, across-the-line magnetic starter with thermal overload protection; 120-volt operating coils with a control transformer limit switch; and a safety interlock assembled in a NEMA ICS 6 type enclosure as specified herein. Ensure control equipment conforms to NEMA ICS 2.

Provide adjustable switches, electrically interlocked with the motor controls and set to stop the door automatically at the fully open and fully closed position.

2.2.4.5 Control Enclosures

Provide control enclosures that conform to NEMA ICS 6 for general purpose NEMA Type 1.

2.2.4.6 Transformer

Provide starters with 230/460 to 115 volt control transformers with one secondary fuse when required to reduce the voltage on control circuits to 120 volts or less. Provide a transformer conforming to NEMA ST 1.

2.2.4.7 Safety-Edge Device

Provide each door with a pneumatic or electric safety device extending the full width of the door and located within a U-section neoprene or rubber astragal, mounted on the bottom rail of the bottom door section. Device needs to immediately stop and reverse the door upon contact with an obstruction in the door opening during downward travel and cause the door to return to full-open position. A safety device is not a substitute for a limit switch.

Connect safety device to the control circuit through a retracting safety
cord and reel.

2.2.4.8 Remote-Control Stations

Provide interior remote control stations which are full-guarded, momentary-contact three-button, heavy-duty, surface-mounted NEMA ICS 6 type enclosures as specified. Mark buttons "OPEN," "CLOSE," and "STOP." Ensure the "CLOSE" button requires a constant pressure to maintain the closing motion of the door. When the door is in motion and the "STOP" button is pressed, ensure the door stops instantly and remains in the stopped position. From the stopped position, the door may then be operated in either direction.

2.2.4.9 Speed-Reduction Units

Provide speed-reduction units consisting of hardened-steel worm and bronze worm gear assemblies running in oil or grease and inside a sealed casing, coupled to the motor through a flexible coupling. Drive shafts need to rotate on ball- or roller-bearing assemblies that are integral with the unit.

Provide minimum ratings of speed reduction units in accordance with AGMA provisions for class of service.

Ground worm gears to provide accurate thread form; machine teeth for all other types of gearing. Surface harden all gears.

Provide antifriction type bearings equipped with oil seals.

2.2.4.10 Brakes

Provide 360-degree shoe brakes or shoe and drum brakes. Ensure the brakes are solenoid-operated and electrically interlocked to the control circuit to set automatically when power is interrupted.

2.2.4.11 Clutches

Ensure clutches are either the 4-inch diameter, multiple face, externally adjustable friction type or adjustable centrifugal type.

2.2.5 Surface Finishing

Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. Noticeable variations in the same metal component are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved samples and are assembled or installed to minimize contrast. Finish color will be selected from manufacturer's custom powder-coat colors.

PART 3 EXECUTION

3.1 INSTALLATION

Install overhead coiling door assembly, anchors and inserts for guides, brackets, motors, switches, hardware, and other accessories in accordance with approved detail drawings and manufacturer's written instructions. Upon completion of installation, ensure doors are free from all distortion.
3.2 ADJUSTING AND CLEANING

3.2.1 Acceptance Provisions

After installation, adjust hardware and moving parts. Lubricate bearings and sliding parts as recommended by manufacturer to provide smooth operating functions for ease movement, free of warping, twisting, or distortion of the door assembly.

Adjust seals to provide weather-tight fit around entire perimeter.

Engage a factory-authorized service representative to perform startup service and checks according to manufacturer's written instructions.

Test the door opening and closing operation when activated by controls or alarm-connected fire-release system. Adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Reset door-closing mechanism after successful test.

Test and make final adjustment of new doors at no additional cost to the Government.

3.2.1.1 Maintenance and Adjustment

Not more than 90 calendar days after completion and acceptance of the project, examine, lubricate, test, and re-adjust doors as required for proper operation.

3.2.1.2 Cleaning

Clean doors in accordance with manufacturer's approved instructions.

3.3 CLOSEOUT ACTIVITIES

3.3.1 Warranty

Furnish a written guarantee that the helical spring and counterbalance mechanism are free from defects in material and workmanship for not less than two years after completion and acceptance of the project.

Warrant that upon notification by the Government, any defects in material, workmanship, and door operation are immediately correct within the same time period covered by the guarantee, at no cost to the Government.

3.3.2 Operation And Maintenance

Submit 3 copies of the Operation and Maintenance Manuals 30 calendar days prior to testing the Overhead Coiling Door Assemblies. Update and resubmit data for final approval no later than 30 calendar days prior to contract completion.

Submit Operation and Maintenance Manuals for Overhead Coiling Door Assemblies, including the following items:

- Materials
- Devices
- Electric Door Operators
Counterbalancing Mechanism

Procedures

Manufacture's Brochures

Parts Lists

Provide operation and maintenance manuals which are consistent with manufacturer's standard brochures, schematics, printed instructions, operating procedures, and safety precautions. Provide test data that is legible and of good quality.

-- End of Section --
SECTION 08 71 00

DOOR HARDWARE

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.1 (2013) Butts and Hinges
ANSI/BHMA A156.13 (2012) Mortise Locks & Latches Series 1000
ANSI/BHMA A156.16 (2013) Auxiliary Hardware
ANSI/BHMA A156.18 (2016) Materials and Finishes
ANSI/BHMA A156.2 (2011) Bored and Preassembled Locks and Latches
ANSI/BHMA A156.21 (2014) Thresholds
ANSI/BHMA A156.22 (2012) Door Gasketing and Edge Seal Systems
ANSI/BHMA A156.3 (2014) Exit Devices
ANSI/BHMA A156.4 (2013) Door Controls - Closers
ANSI/BHMA A156.6 (2015) Architectural Door Trim
ANSI/BHMA A156.7 (2016) Template Hinge Dimensions
ANSI/BHMA A156.8 (2015) Door Controls - Overhead Stops and Holders

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Hardware Schedule; G
 Keying System; G

SD-03 Product Data
 Hardware Items; G

SD-08 Manufacturer's Instructions
 Installation

SD-10 Operation and Maintenance Data
 Hardware Schedule Items, Data Package 1; G

SD-11 Closeout Submittals
 Key Bitting

1.3 PRODUCT DATA

Indicate fire-ratings at applicable components. Provide documentation of ABA/ADA accessibility compliance of applicable components, as required by 36 CFR 1191 Appendix D – Technical.

1.4 HARDWARE SCHEDULE

Prepare and submit hardware schedule in the following form:
In addition, submit hardware schedule data package 1 in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA.

1.5 KEY BITTING CHART REQUIREMENTS

1.5.1 Requirements

Submit key bitting charts to the Contracting Officer prior to completion of the work. Include:

a. Complete listing of all keys (e.g. AA1 and AA2).

b. Complete listing of all key cuts (AA1-123456, AA2-123458).

c. Tabulation showing which key fits which door.

d. Copy of floor plan showing doors and door numbers.

e. Listing of 20 percent more key cuts than are presently required in each master system.

1.6 QUALITY ASSURANCE

1.6.1 Hardware Manufacturers and Modifications

Provide, as far as feasible, locks, hinges, and closers of one lock, hinge, or closer manufacturer's make. Modify hardware as necessary to provide features indicated or specified.

1.6.2 Key Shop Drawings Coordination Meeting

Prior to the submission of the key shop drawing, the Contracting Officer, Contractor, Door Hardware Subcontractor, using Activity and Base Locksmith must meet to discuss and coordinate key requirements for the facility.

1.7 DELIVERY, STORAGE, AND HANDLING

Deliver hardware in original individual containers, complete with necessary appurtenances including fasteners and instructions. Mark each individual container with item number as shown on hardware schedule. Deliver permanent keys and removable cores to the Contracting Officer, either directly or by certified mail. Deliver construction master keys with the locks.

PART 2 PRODUCTS

2.1 TEMPLATE HARDWARE

Hardware applied to metal doors must be manufactured using a template.
Provide templates to door and frame manufacturers in accordance with ANSI/BHMA A156.7 for template hinges. Coordinate hardware items to prevent interference with other hardware.

2.2 HARDWARE FOR FIRE DOORS AND EXIT DOORS

Provide all hardware necessary to meet the requirements of NFPA 72 for door alarms, NFPA 80 for fire doors, NFPA 101 for exit doors, NFPA 252 for fire tests of door assemblies, ABA/ADA accessibility requirements, and all other requirements indicated, even if such hardware is not specifically mentioned in paragraph HARDWARE SCHEDULE. Provide Underwriters Laboratories, Inc. labels for such hardware in accordance with UL Bld Mat Dir or equivalent labels in accordance with another testing laboratory approved in writing by the Contracting Officer.

2.3 HARDWARE ITEMS

Clearly and permanently mark with the manufacturer's name or trademark, hinges, pivots, locks, latches, exit devices, bolts and closers where the identifying mark is visible after the item is installed. For closers with covers, the name or trademark may be beneath the cover.

2.3.1 Hinges

Provide in accordance with ANSI/BHMA A156.1. Provide hinges that are 4-1/2 by 4-1/2 inch unless otherwise indicated. Construct loose pin hinges for interior doors and reverse-bevel exterior doors so that pins are non-removable when door is closed. Other anti-friction bearing hinges may be provided in lieu of ball bearing hinges.

2.3.2 Locks and Latches

2.3.2.1 Bored Locks and Latches

Provide in accordance with ANSI/BHMA A156.2, Series 4000, Grade 1.

2.3.2.2 Combination Locks

Heavy-duty, mechanical combination lockset with five push buttons, standard sized knobs, 3/4 inch deadlocking latch, 2-3/4 inch backset. Locks to operate by pressing two or more of the buttons in unison or individually in the proper sequence. Inside knob operates the latch. Provide a keyed cylinder on the interior to permit setting the combination. Provide a keyed cylinder on the exterior to permit bypassing the combination.

2.3.3 Exit Devices

Provide in accordance with ANSI/BHMA A156.3, Grade 1. Provide adjustable strikes for rim type and vertical rod devices. Provide open back strikes for pairs of doors with mortise and vertical rod devices. Provide touch bars in lieu of conventional crossbars and arms.

2.3.4 Cylinders and Cores

Provide cylinders and cores for new locks, including locks provided under other sections of this specification. Provide cylinders and cores with seven pin tumblers. Provide cylinders from the products of one manufacturer, and provide cores from the products of one manufacturer. Rim cylinders, and knobs of bored locksets have interchangeable cores which
are removable by special control keys. Stamp each interchangeable core with a key control symbol in a concealed place on the core. All Locks shall be compatible with best lock corporation.

2.3.5 Keying System

The Government will provide permanent cylinders with cores and keys for mortise locksets, auxiliary locks, and exit devices. Provide cylinders of Grade 1 products from one manufacturer. Notify the Contracting Officer 90 days prior to the required delivery of the cylinders. Provide temporary cores and keys for the Contractor's use during construction, and for testing of locksets.

2.3.6 Lock Trim

Provide cast, forged, or heavy wrought construction and commercial plain design for lock trim.

2.3.6.1 Knobs and Roses

Provide in accordance with ANSI/BHMA A156.2 and ANSI/BHMA A156.13 for knobs, roses, and escutcheons. For unreinforced knobs, roses, and escutcheons, provide a 0.050 inch thickness. For reinforced knobs, roses, and escutcheons, provide an outer shell thickness of 0.035 inch and a combined total thickness of 0.070 inch, except at knob shanks. Provide knob shanks 0.060 inch thick.

2.3.6.2 Lever Handles

Provide lever handles. Provide in accordance with ANSI/BHMA A156.3 for mortise locks of lever handles for exit devices. Provide lever handle locks with a breakaway feature (such as a weakened spindle or a shear key) to prevent irreparable damage to the lock when force in excess of that specified in ANSI/BHMA A156.13 is applied to the lever handle. Provide lever handles return to within 1/2 inch of the door face.

2.3.6.3 Texture

Provide knurled or abrasive coated knobs or lever handles for doors which are accessible to blind persons and which lead to dangerous areas.

2.3.7 Keys

Furnish seven change keys for each interchangeable core, furnish two control keys, six maters keys, and six construction master keys. Furnish a quantity of key blanks equal to 20 percent of the total number of change keys. Stamp each key with appropriate key control symbol and "U.S. property - do not duplicate." Do not place room numbers on keys.

2.3.8 Door Bolts

Provide in accordance with ANSI/BHMA A156.16. Provide dustproof strikes for bottom bolts, except at doors having metal thresholds. Provide automatic latching flush bolts in accordance with ANSI/BHMA A156.3, Type 25.

2.3.9 Closers

Provide in accordance with ANSI/BHMA A156.4, Series C02000, Grade 1, with PT 4C. Provide with brackets, arms, mounting devices, fasteners, and
other features necessary for the particular application. Size closers in accordance with manufacturer's printed recommendations, or provide multi-size closers, Sizes 1 through 6, and list sizes in the Hardware Schedule. Provide manufacturer's 10 year warranty.

2.3.9.1 Identification Marking

Engrave each closer with manufacturer's name or trademark, date of manufacture, and manufacturer's size designation in locations that will be visible after installation.

2.3.10 Overhead Holders

Provide in accordance with ANSI/BHMA A156.8.

2.3.11 Door Protection Plates

Provide in accordance with ANSI/BHMA A156.6.

2.3.11.1 Sizes of Kick Plates

2 inch less than door width for single doors; 1 inch less than door width for pairs of doors. Provide 10 inch kick plates for flush doors.

2.3.12 Door Stops and Silencers

Provide in accordance with ANSI/BHMA A156.16. Silencers Type L03011. Provide three silencers for each single door, two for each pair.

2.3.13 Thresholds

Provide in accordance with ANSI/BHMA A156.21. Use J35100, with vinyl or silicone rubber insert in face of stop, for exterior doors opening out, unless specified otherwise.

2.3.14 Weatherstripping Gasketing

Provide in accordance with ANSI/BHMA A156.22. Provide the type and function designation where specified in paragraph HARDWARE SCHEDULE. Provide a set to include head and jamb seals, sweep strips. Air leakage of weatherstripped doors not to exceed 0.5 cubic feet per minute of air per square foot of door area when tested in accordance with ASTM E283. Provide weatherstripping with one of the following:

2.3.14.1 Extruded Aluminum Retainers

Extruded aluminum retainers not less than 0.050 inch wall thickness with vinyl, neoprene, silicone rubber, or polyurethane inserts. Provide bronze anodized aluminum.

2.3.14.2 Interlocking Type

Zinc or bronze not less than 0.018 inch thick.

2.3.14.3 Spring Tension Type

Spring bronze or stainless steel not less than 0.008 inch thick.
2.3.15 Rain Drips

Provide in accordance with ANSI/BHMA A156.22. Provide extruded aluminum rain drips, not less than 0.08 inch thick, bronze anodized finish. Provide the manufacturer's full range of color choices to the Contracting Officer for color selection. Provide rain drips with a 4 inch overlap on each side of each exterior door that is not protected by an awning, roof, eave or other horizontal projection. Set drips in sealant and fasten with stainless steel screws.

2.3.15.1 Door Rain Drips

Approximately 1-1/2 inch high by 5/8 inch projection. Align bottom with bottom edge of door.

2.3.15.2 Overhead Rain Drips

Approximately 1-1/2 inch high by 2-1/2 inch projection. Align bottom with door frame rabbet.

2.3.16 Auxiliary Hardware (Other than locks)

Provide in accordance with ANSI/BHMA A156.16, Grade 1.

2.3.17 Special Tools

Provide special tools, such as spanner and socket wrenches and dogging keys, as required to service and adjust hardware items.

2.4 FASTENERS

Provide fasteners of type, quality, size, and quantity appropriate to the specific application. Fastener finish to match hardware. Provide stainless steel or nonferrous metal fasteners in locations exposed to weather. Verify metals in contact with one another are compatible and will avoid galvanic corrosion when exposed to weather.

2.5 FINISHES

Provide in accordance with ANSI/BHMA A156.18. Provide hardware in BHMA 630 finish (satin stainless steel), unless specified otherwise. Provide items not manufactured in stainless steel in BHMA 626 finish (satin chromium plated) over brass or bronze, except aluminum paint finish for surface door closers. Provide hinges for exterior doors in stainless steel with BHMA 630 finish or chromium plated brass or bronze with BHMA 626 finish. Furnish exit devices in BHMA 626 finish in lieu of BHMA 630 finish except where BHMA 630 is specified under paragraph HARDWARE SETS. Match exposed parts of concealed closers to lock and door trim. Match hardware finish for aluminum doors to the doors.

PART 3 EXECUTION

3.1 INSTALLATION

Provide hardware in accordance with manufacturers' printed installation instructions. Fasten hardware to wood surfaces with full-threaded wood screws or sheet metal screws. Provide machine screws set in expansion shields for fastening hardware to solid concrete and masonry surfaces. Provide toggle bolts where required for fastening to hollow core.
construction. Provide through bolts where necessary for satisfactory installation.

3.1.1 Weatherstripping Installation

Provide full contact, weathertight seals that allow operation of doors without binding the weatherstripping.

3.1.1.1 Stop Applied Weatherstripping

Fasten in place with color matched sheet metal screws not more than 9 inch on center after doors and frames have been finish painted.

3.1.1.2 Interlocking Type Weatherstripping

Provide interlocking, self adjusting type on heads and jambs and flexible hook type at sills. Nail weatherstripping to door 1 inch on center and to heads and jambs at 4 inch on center.

3.1.1.3 Spring Tension Type Weatherstripping

Provide spring tension type on heads and jambs. Provide bronze nails with bronze. Provide stainless steel nails with stainless steel. Space nails not more than 1-1/2 inch on center.

3.1.2 Threshold Installation

Extend thresholds the full width of the opening and notch end for jamb stops. Set thresholds in a full bed of sealant and anchor to floor with cadmium-plated, countersunk, steel screws in expansion sleeves.

3.2 FIRE DOORS AND EXIT DOORS

Provide hardware in accordance with NFPA 72 for door alarms, NFPA 80 for fire doors, NFPA 101 for exit doors, and NFPA 252 for fire tests of door assemblies.

3.3 HARDWARE LOCATIONS

Provide in accordance with SDI/DOOR A250.8, unless indicated or specified otherwise.

3.4 FIELD QUALITY CONTROL

After installation, protect hardware from paint, stains, blemishes, and other damage until acceptance of work. Submit notice of testing 15 days before scheduled, so that testing can be witnessed by the Contracting Officer. Adjust hinges, locks, latches, bolts, holders, closers, and other items to operate properly. Demonstrate that permanent keys operate respective locks, and give keys to the Contracting Officer. Correct, repair, and finish, errors in cutting and fitting and damage to adjoining work.

3.5 HARDWARE SETS

SEE DRAWINGS.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C645 (2014; E 2015) Nonstructural Steel Framing Members

ASTM C841 (2003; R 2013) Installation of Interior Lathing and Furring

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Metal support systems; G

Submit for the erection of metal framing, furring, and ceiling suspension systems. Indicate materials, sizes, thicknesses, and fastenings.
1.3 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the job site and store in ventilated dry locations. Storage area shall permit easy access for inspection and handling. If materials are stored outdoors, stack materials off the ground, supported on a level platform, and fully protected from the weather. Handle materials carefully to prevent damage. Remove damaged items and provide new items.

PART 2 PRODUCTS

2.1 MATERIALS

Provide steel materials for metal support systems with galvanized coating ASTM A653/A653M, G-60; aluminum coating ASTM A463/A463M, T1-25; or a 55-percent aluminum-zinc coating.

2.1.1 Materials for Attachment of Lath

2.1.1.1 Suspended and Furred Ceiling Systems and Wall Furring

ASTM C841, and ASTM C847.

2.1.2 Non-loadbearing Wall Framing

NAAMM EMLA 920.

2.1.2.1 Materials for Attachment of Gypsum Wallboard

2.1.2.2 Non-load-Bearing Wall Framing and Furring

See Drawings for location. Gage and weight are minimum acceptable) Interior Stud walls (Drywall), 3 5/8” x 22 gage, DWS 1 1/4” flange, galvanized, studs, 24” o.c. Physical Properties; Wt/ft. = .415#, Area = .122 in², I = .216 in⁴, S = .105 in³, R = 1.601 in.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Systems for Attachment of Lath

3.1.1.1 Suspended and Furred Ceiling Systems and Wall Furring

ASTM C841, except as indicated otherwise.

3.1.1.2 Non-loadbearing Wall Framing

NAAMM EMLA 920, except provide framing members 16 inches o.c. unless indicated otherwise.
3.1.2 Systems for Attachment of Gypsum Wallboard

3.1.2.1 Suspended and Furred Ceiling Systems

ASTM C754, except provide framing members 16 inches o.c. unless indicated otherwise.

3.1.2.2 Non-loadbearing Wall Framing and Furring

ASTM C754, except as indicated otherwise.

3.2 ERECTION TOLERANCES

Provide framing members which will be covered by finish materials such as wallboard, plaster, or ceramic tile set in a mortar setting bed, within the following limits:

a. Layout of walls and partitions: 1/4 inch from intended position;
b. Plates and runners: 1/4 inch in 8 feet from a straight line;

c. Studs: 1/4 inch in 8 feet out of plumb, not cumulative; and
d. Face of framing members: 1/4 inch in 8 feet from a true plane.

Provide framing members which will be covered by ceramic tile set in dry-set mortar, latex-Portland cement mortar, or organic adhesive within the following limits:

a. Layout of walls and partitions: 1/4 inch from intended position;
b. Plates and runners: 1/8 inch in 8 feet from a straight line;
c. Studs: 1/8 inch in 8 feet out of plumb, not cumulative; and
d. Face of framing members: 1/8 inch in 8 feet from a true plane.

-- End of Section --
SECTION 09 29 00

GYPSUM BOARD

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C1002 (2014) Standard Specification for Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs

ASTM C475/C475M (2015) Joint Compound and Joint Tape for Finishing Gypsum Board

ASTM C954 (2015) Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness

GYPSUM ASSOCIATION (GA)

GA 214 (2010) Recommended Levels of Gypsum Board Finish

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Accessories
Gypsum Board

Submit documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project.

Joint Treatment Materials

Submit manufacturer's product data, indicating VOC content.

SD-07 Certificates

Asbestos Free Materials; G

Certify that gypsum board and joint treating materials do not contain asbestos.

SD-08 Manufacturer's Instructions

Material Safety Data Sheets

SD-10 Operation and Maintenance Data

Manufacturer maintenance instructions

1.3 DELIVERY, STORAGE, AND HANDLING

1.3.1 Delivery

Deliver materials in the original packages, containers, or bundles with each bearing the brand name, applicable standard designation, and name of manufacturer, or supplier.

1.3.2 Storage

Keep materials dry by storing inside a sheltered building. Where necessary to store gypsum board and cementitious backer units outside, store off the ground, properly supported on a level platform, and protected from direct exposure to rain, snow, sunlight, and other extreme weather conditions. Provide adequate ventilation to prevent condensation. Store per manufacturer's recommendations for allowable temperature and humidity range. Gypsum wallboard shall not be stored with materials which have high emissions of volatile organic compounds (VOCs) or other contaminants. Do not store panels near materials that may offgas or emit harmful fumes, such as kerosene heaters, fresh paint, or adhesives.

1.3.3 Handling

Neatly stack gypsum board flat to prevent sagging or damage to the edges, ends, and surfaces.
1.4 ENVIRONMENTAL CONDITIONS

1.4.1 Temperature

Maintain a uniform temperature of not less than 50 degrees F in the structure for at least 48 hours prior to, during, and following the application of gypsum board, cementitious backer units, and joint treatment materials, or the bonding of adhesives.

1.4.2 Exposure to Weather

Protect gypsum board and cementitious backer unit products from direct exposure to rain, snow, sunlight, and other extreme weather conditions.

1.4.3 Temporary Ventilation

Provide temporary ventilation for work of this section.

1.5 QUALIFICATIONS

Furnish type of gypsum board work specialized by the installer with a minimum of 3 years of documented successful experience.

PART 2 PRODUCTS

2.1 MATERIALS

Conform to specifications, standards and requirements specified. Provide gypsum board types, , and joint treating materials manufactured from asbestos free materials only. Submit Material Safety Data Sheets and manufacturer maintenance instructions for gypsum materials including adhesives.

2.1.1 Gypsum Board

ASTM C1396/C1396M. Gypsum board shall contain a minimum of 5 percent post-consumer recycled content, or a minimum of 20 percent post-industrial recycled content. Paper facings shall contain 100 percent post-consumer recycled paper content. Gypsum cores shall contain a minimum of 95 percent post-industrial recycled gypsum content. Gypsum board may contain post-consumer or post-industrial recycled content.

2.1.1.1 Type X (Special Fire-Resistant)

48 inch wide, 5/8 inch thick, taperededges.

2.1.2 Joint Treatment Materials

ASTM C475/C475M. Use all purpose joint and texturing compound containing inert fillers and natural binders, including lime compound. Pre-mixed compounds shall be free of antifreeze, vinyl adhesives, preservatives, biocides and other slow releasing compounds.

2.1.2.1 Embedding Compound

Specifically formulated and manufactured for use in embedding tape at gypsum board joints and compatible with tape, substrate and fasteners.
2.1.2.2 Finishing or Topping Compound
Specifically formulated and manufactured for use as a finishing compound.

2.1.2.3 All-Purpose Compound
Specifically formulated and manufactured to serve as both a taping and a
finishing compound and compatible with tape, substrate and fasteners.

2.1.2.4 Setting or Hardening Type Compound
Specifically formulated and manufactured for use with fiber glass mesh tape.

2.1.2.5 Joint Tape
Use cross-laminated, tapered edge, reinforced paper, or fiber glass mesh
tape recommended by the manufacturer.

2.1.3 Fasteners

2.1.3.1 Screws
ASTM C1002, Type "G", Type "S" or Type "W" steel drill screws for fastening
gypsum board to gypsum board, wood framing members and steel framing
members less than 0.033 inch thick. ASTM C954 steel drill screws for
fastening gypsum board to steel framing members 0.033 to 0.112 inch thick.

2.1.4 Accessories
ASTM C1047. Fabricate from corrosion protected steel or plastic designed
for intended use. Accessories manufactured with paper flanges are not
acceptable. Flanges shall be free of dirt, grease, and other materials
that may adversely affect bond of joint treatment.

2.1.5 Water
Provide clean, fresh, and potable water.

PART 3 EXECUTION

3.1 EXAMINATION

3.1.1 Framing and Furring
Verify that framing and furring are securely attached and of sizes and
spacing to provide a suitable substrate to receive gypsum board and
cementitious backer units. Verify that all blocking, headers and supports
are in place to support plumbing fixtures and to receive soap dishes, grab
bars, towel racks, and similar items. Do not proceed with work until
framing and furring are acceptable for application of gypsum board.

3.2 APPLICATION OF GYPSUM BOARD
Apply gypsum board to framing and furring members in accordance with
ASTM C840 or GA 216 and the requirements specified. Apply gypsum board
with separate panels in moderate contact; do not force in place. Stagger
end joints of adjoining panels. Neatly fit abutting end and edge joints.
Use gypsum board of maximum practical length; select panel sizes to
minimize waste. Cut out gypsum board to make neat, close, and tight joints
3.2.1 Application of Gypsum Board to Steel Framing and Furring

Apply in accordance with ASTM C840, System VIII or GA 216.

3.2.2 Floating Interior Angles

Minimize framing by floating corners with single studs and drywall clips. Locate the attachment fasteners adjacent to ceiling and wall intersections in accordance with ASTM C840, System XII or GA 216.

3.2.3 Control Joints

Install expansion and contraction joints in ceilings and walls in accordance with ASTM C840, System XIII or GA 216.

3.3 FINISHING OF GYPSUM BOARD

Tape and finish gypsum board in accordance with ASTM C840, GA 214 and GA 216. Finish plenum areas above ceilings to Level 1 in accordance with GA 214. Finish water resistant gypsum backing board, ASTM C1396/C1396M, to receive ceramic tile to Level 2 in accordance with GA 214. Finish walls and ceilings to receive a heavy-grade wall covering or heavy textured finish before painting to Level 3 in accordance with GA 214. Finish walls and ceilings without critical lighting to receive flat paints, light textures, or wall coverings to Level 4 in accordance with GA 214. Unless otherwise specified, finish all gypsum board walls, partitions and ceilings to Level 5 in accordance with GA 214. Provide joint, fastener depression, and corner treatment. Tool joints as smoothly as possible to minimize sanding and dust. Do not use fiber glass mesh tape with conventional drying type joint compounds; use setting or hardening type compounds only. Provide treatment for water-resistant gypsum board as recommended by the gypsum board manufacturer. Protect workers, building occupants, and HVAC systems from gypsum dust.

3.3.1 Uniform Surface

Wherever gypsum board is to receive eggshell, semigloss or gloss paint finish, or where severe, up or down lighting conditions occur, finish gypsum wall surface in accordance to GA 214 Level 5. In accordance with GA 214 Level 5, apply a thin skim coat of joint compound to the entire gypsum board surface, after the two-coat joint and fastener treatment is complete and dry.

3.4 SEALING

Seal openings around pipes, fixtures, and other items projecting through gypsum board and cementitious backer units as specified in Section 07 92 00 JOINT SEALANTS Apply material with exposed surface flush with gypsum board.
or cementitious backer units.

3.5 PATCHING

Patch surface defects in gypsum board to a smooth, uniform appearance, ready to receive finishes.

-- End of Section --
SECTION 09 51 00

ACoustical Ceilings

Part 1 General

1.1 References

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A1008/A1008M (2016) Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardened

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C423 (2009a) Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

ASTM E1264 (2014) Acoustical Ceiling Products

ASTM E1477 (1998a; R 2013) Luminous Reflectance Factor of Acoustical Materials by Use of Integrating-Sphere Reflectometers

1.2 SYSTEM DESCRIPTION

Provide sound controlling units mechanically mounted on a ceiling suspension system for acoustical treatment. The unit size, texture, finish, and color must be as specified. The location and extent of acoustical treatment shall be as shown on the approved detail drawings. Submit drawings showing suspension system, method of anchoring and fastening, details, and reflected ceiling plan. Basis of design: Acoustical Ceiling System. ACT1. Armstrong World Industries, Inc. Ultima Beveled Tegular #1911, 24" x 24" x 3/4" thick. Product shall have the following characteristics: Class A Fire Rating, .09 Light Reflectance, Type III, Form 2, Pattern E; Humigard Plus, Bio Block Plus, Certified Low VOC Emissions, 62% Recycled Content. Panels shall also be washable, scratch, impact and soil resistant. Acoustical panels shall provide resistance to sagging in high humidity conditions up to, but not including standing water and outdoor applications. Panels shall contain BioBlock Plus anti-microbial treatment and provide guaranteed resistance against growth of mold/mildew and Gram-positive and Gram-negative odor /stain-causing bacteria for 30 years. Ceiling system shall be installed with A15/16" Grid to maintain 30 year performance Guarantee and Warranty. Color: Grid and Ceiling Tiles shall be White.

1.2.1 Ceiling Attenuation Class and Test

Provide a ceiling system with an attenuation class (CAC) of 35.

1.2.2 Ceiling Sound Absorption

Determine the Noise Reduction Coefficient (NRC) in accordance with ASTM C423 Test Method.

1.2.3 Light Reflectance

Determine light reflectance factor in accordance with ASTM E1477 Test Method.

1.2.4 Other Submittals Requirements

The following shall be submitted:

a. Manufacturer’s data indicating percentage of recycle material in acoustic ceiling tiles to verify affirmative procurement compliance.

b. Total weight and volume quantities of acoustic ceiling tiles with recycle material.

c. Manufacturer’s catalog showing UL classification of fire-rated ceilings giving materials, construction details, types of floor and roof constructions to be protected, and UL design number and fire protection time rating for each required floor or roof construction and acoustic ceiling assembly.

d. Reports by an independent testing laboratory attesting that acoustical
ceiling systems meet specified fire endurance and sound transmission requirements. Data attesting to conformance of the proposed system to Underwriters Laboratories requirements for the fire endurance rating listed in UL Fire Resistance may be submitted in lieu of test reports.

e. Certificate attesting that the mineral based acoustical units furnished for the project contain recycled material and showing an estimated percent of such material.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

- SD-02 Shop Drawings
- Approved Detail Drawings
- SD-03 Product Data
- SD-04 Samples
- Acoustical Units
- Acoustic Ceiling Tiles
- SD-06 Test Reports
- Ceiling Attenuation Class and Test
- SD-07 Certificates
- Acoustic Ceiling Tiles

1.4 DELIVERY, STORAGE. AND HANDLING

Deliver materials to the site in the manufacturer's original unopened containers with brand name and type clearly marked. Carefully handle and store materials in dry, watertight enclosures. Immediately before installation, store acoustical units for not less than 24 hours at the same temperature and relative humidity as the space where they will be installed in order to assure proper temperature and moisture acclimation.

1.5 ENVIRONMENTAL REQUIREMENTS

Maintain a uniform temperature of not less than 60 degrees F nor more than 85 degrees F and a relative humidity of not more than 70 percent for 24 hours before, during, and 24 hours after installation of acoustical units.

1.6 SCHEDULING

Complete and dry interior finish work such as plastering, concrete and terrazzo work before ceiling installation. Complete mechanical, electrical, and other work above the ceiling line; install and start operating heating, ventilating, and air conditioning systems in order to maintain temperature and humidity requirements.

1.7 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a one year period. Include an agreement to repair or replace acoustical panels that fail within the warranty period in the standard
1.8 EXTRA MATERIALS

Furnish spare tiles, from the same lot as those installed, of each color at the rate of 5 tiles for each 1000 tiles installed.

PART 2 PRODUCTS

2.1 ACOUSTICAL UNITS

Submit two samples of each type of acoustical unit and each type of suspension grid tee section showing texture, finish, and color. Conform acoustical units to ASTM E1264, Class A, and the following requirements:

2.1.1 Affirmative Procurement

Mineral Wool, Cellulose, and Laminated Paperboard used in acoustic ceiling tiles are materials listed in the EPA's Comprehensive Procurement Guidelines (CPG) (http://www.epa.gov/cpg/). EPA's recommended Recovered Materials Content Levels for Mineral Wool, Cellulose, Structural Fiberboard and Laminated Paperboard are:

<table>
<thead>
<tr>
<th>Product</th>
<th>Material</th>
<th>Percent of Post Consumer Materials</th>
<th>Percent of Total Recovered Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminate Paperboard</td>
<td>Post Consumer Paper</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rock Wool</td>
<td>Slag</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>Post Consumer Paper</td>
<td>75</td>
<td>75</td>
</tr>
</tbody>
</table>

a. The recommended recovered materials content levels are based on the weight (not volume) of materials in the insulating core only.

b. Submit recycled material content data for acoustic ceiling tiles indicating compliance with affirmative procurement.

c. Submit total weight and volume quantities of acoustic ceiling tiles with recycle material.

2.1.2 Units for Exposed-Grid System

2.1.2.1 Type

III (non-asbestos mineral fiber with painted finish)

2.1.2.2 Flame Spread

Class A, 25 or less

2.1.2.3 Pattern

E
2.1.2.4 Minimum NRC

1.70 in all areas; when tested on mounting Type E-400 of ASTM E795.

2.1.2.5 Minimum Light Reflectance Coefficient

LR-1, 0.90 or greater

2.1.2.6 Nominal Size

24 by 24 inch

2.1.2.7 Edge Detail

Beveled Tegular.

2.1.2.8 Finish

Factory-applied standard finish, color white.

2.1.2.9 Minimum CAC

35

2.2 SUSPENSION SYSTEM

Provide standard exposed-grid suspension system conforming to ASTM C635/C635M for heavy-duty systems. Provide surfaces exposed to view of aluminum or steel with a factory-applied white color baked-enamel finish. Provide wall molding having a flange of not less than 15/16 inch. Provide inside and outside corner caps standard corners. Suspended ceiling framing system must have the capability to support the finished ceiling, light fixtures, air diffusers, and accessories, as shown. Provide a suspension system with a maximum deflection of 1/360 of the span length.

2.3 HANGERS

Provide hangers and attachment capable of supporting a minimum 300 pound ultimate vertical load without failure of supporting material or attachment.

2.3.1 Wires

Conform wires to ASTM A641/A641M, Class 1, 0.08 inch (12 gauge).

2.3.2 Straps

Provide straps of 1 by 3/16 inch galvanized steel conforming to ASTM A653/A653M, with a light commercial zinc coating or ASTM A1008/A1008M with an electrodeposited zinc coating conforming to ASTM B633, Type RS.

2.3.3 Rods

Provide 3/16 inch diameter threaded steel rods, zinc or cadmium coated.

2.4 FINISHES

Use manufacturer's standard textures, patterns and finishes as specified for acoustical units and suspension system members. Treat ceiling suspension system components to inhibit corrosion.
PART 3 EXECUTION

3.1 INSTALLATION

Examine surfaces to receive directly attached acoustical units for unevenness, irregularities, and dampness that would affect quality and execution of the work. Rid areas, where acoustical units will be cemented, of oils, form residue, or other materials that reduce bonding capabilities of the adhesive. Complete and dry interior finish work such as plastering, concrete, and terrazzo work before installation. Complete and approve mechanical, electrical, and other work above the ceiling line prior to the start of acoustical ceiling installation. Provide acoustical work complete with necessary fastenings, clips, and other accessories required for a complete installation. Do not expose mechanical fastenings in the finished work. Lay out hangers for each individual room or space. Provide hangers to support framing around beams, ducts, columns, grilles, and other penetrations through ceilings. Keep main runners and carrying channels clear of abutting walls and partitions. Provide at least two main runners for each ceiling span. Wherever required to bypass an object with the hanger wires, install a subsuspension system so that all hanger wires will be plumb.

3.1.1 Suspension System

Install suspension system in accordance with ASTM C636/C636M and as specified herein. Do not suspend hanger wires or other loads from underside of steel decking.

3.1.1.1 Plumb Hangers

Install hangers plumb and not pressing against insulation covering ducts and pipes. Where lighting fixtures are supported from the suspended ceiling system, provide hangers at a minimum of four hangers per fixture and located not more than 6 inch from each corner of each fixture.

3.1.1.2 Splayed Hangers

Where hangers must be splayed (sloped or slanted) around obstructions, offset the resulting horizontal force by bracing, countersplaying, or other acceptable means.

3.1.2 Wall Molding

Provide wall molding where ceilings abut vertical surfaces. Miter corners where wall moldings intersect or install corner caps. Secure wall molding not more than 3 inch from ends of each length and not more than 16 inch on centers between end fastenings. Provide wall molding springs at each acoustical unit in semi-exposed or concealed systems.

3.1.3 Acoustical Units

Install acoustical units in accordance with the approved installation instructions of the manufacturer. Ensure that edges of acoustical units are in close contact with metal supports, with each other, and in true alignment. Arrange acoustical units so that units less than one-half width are minimized. Hold units in exposed-grid system in place with manufacturer's standard hold-down clips, if units weigh less than 1 psf or if required for fire resistance rating.
3.1.4 Caulking

Seal all joints around pipes, ducts or electrical outlets penetrating the ceiling. Apply a continuous ribbon of acoustical sealant on vertical web of wall or edge moldings.

3.2 CLEANING

Following installation, clean dirty or discolored surfaces of acoustical units and leave them free from defects. Remove units that are damaged or improperly installed and provide new units as directed.

--- End of Section ---
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D4078 (2002; R 2015) Water Emulsion Floor Polish
ASTM F1482 (2015) Installation and Preparation of Panel Type Underlayments to Receive Resilient Flooring
ASTM F1869 (2016) Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride
ASTM F710 (2011) Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring

U.S. GREEN BUILDING COUNCIL (USGBC)

1.2 SYSTEM DESCRIPTION

1.2.1 Submittal Requirements

The following shall be submitted in accordance with LEED BD+C:

a. documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project.
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Resilient Flooring and Accessories; G

SD-03 Product Data
 Resilient Flooring and Accessories; G
 Adhesives; (LEED BD+C)
 Vinyl Composition Tile
 Wall Base

SD-04 Samples
 Resilient Flooring and Accessories; G
 Moisture, Alkalinity and Bond Tests; GSD-08 Manufacturer's Instructions
 Surface Preparation; G
 Installation; G

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the building site in original unopened containers bearing the manufacturer's name, style name, pattern color name and number, production run, project identification, and handling instructions. Store materials in a clean, dry, secure, and well-ventilated area free from strong contaminant sources and residues with ambient air temperature maintained above 68 degrees F and below 85 degrees F, stacked according to manufacturer's recommendations. Remove resilient flooring products from packaging to allow ventilation prior to installation. Protect materials from the direct flow of heat from hot-air registers, radiators and other heating fixtures and appliances. Observe ventilation and safety procedures specified in the MSDS.

1.5 ENVIRONMENTAL REQUIREMENTS

Maintain areas to receive resilient flooring at a temperature above 68 degrees F and below 85 degrees F for 3 days before application, during application and 2 days after application, unless otherwise directed by the flooring manufacturer for the flooring being installed. Maintain a minimum temperature of 55 degrees F thereafter. Provide adequate ventilation to remove moisture from area and to comply with regulations limiting concentrations of hazardous vapors.

1.6 SCHEDULING

Schedule resilient flooring application after the completion of other work which would damage the finished surface of the flooring.
1.7 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a one year period.

1.8 EXTRA MATERIALS

Provide extra flooring material of each color and pattern at the rate of 5 tiles for each 1000 tiles installed. Provide extra wall base material composed of 20 linear feet of each type, color and pattern. Package all extra materials in original properly marked containers bearing the manufacturer's name, brand name, pattern color name and number, production run, and handling instructions. Provide extra materials from the same lot as those installed. Leave extra stock at the site in location assigned by Contracting Officer.

PART 2 PRODUCTS

2.1 VINYL COMPOSITION TILE

Conform to ASTM F1066 Class 2, (through pattern tile), Composition 1, asbestos-free, 12 inch square and 1/8 inch thick. Provide color and pattern uniformly distributed throughout the thickness of the tile. Tile shall contain a minimum of 90 percent recycled material.

2.2 WALL BASE

Conform to ASTM F1861, Type TV (thermoplastic vinyl), Style B (coved - installed with resilient flooring. Provide 46 inch high and a minimum 1/8 inch thick wall base. Provide preformed corners in matching height, shape, and color.

2.3 MOULDING

Provide tapered mouldings of vinyl and types as recommended by flooring manufacturer for both edges and transitions of flooring materials specified. Provide vertical lip on moulding of maximum 1/4 inch. Provide bevel change in level between 1/4 and 1/2 inch with a slope no greater than 1:2.

2.4 ADHESIVES

Provide adhesives for flooring, base and accessories as recommended by the manufacturer and comply with local indoor air quality standards. VOC content shall be less than 50 grams/L. Submit manufacturer's descriptive data, documentation stating physical characteristics, and mildew and germicidal characteristics.

2.5 SURFACE PREPARATION MATERIALS

Provide surface preparation materials, such as floor crack fillers as recommended by the flooring manufacturer for the subfloor conditions.

2.6 POLISH/FINISH

Provide polish finish as recommended by the manufacturer and conform to ASTM D4078 for polish.
2.7 CAULKING AND SEALANTS

Provide caulking and sealants in accordance with Section 07 92 00 JOINT SEALANTS.

2.8 MANUFACTURER'S COLOR, PATTERN AND TEXTURE

Provide color, pattern and texture for resilient flooring and accessories as indicated on the drawings. Color listed is not intended to limit the selection of equal colors from other manufacturers. Provide flooring in any one continuous area or replacement of damaged flooring in continuous area from same production run with same shade and pattern.

PART 3 EXECUTION

3.1 EXAMINATION

Examine and verify that site conditions are in agreement with the design package. Report all conditions that will prevent a proper installation. Do not take any corrective action without written permission from the Government. Work will proceed only when conditions have been corrected and accepted by the installer. Submit manufacturer's printed installation instructions for all flooring materials and accessories, including preparation of substrate, seaming techniques, and recommended adhesives.

3.2 SURFACE PREPARATION

Provide a smooth, true, level plane for surface preparation of the flooring, except where indicated as sloped. Floor to be flat to within 3/16 inch in 10 feet. Prepare subfloor in accordance with flooring manufacturer's recommended instructions. Prepare the surfaces of lightweight concrete slabs (as defined by the flooring manufacturer) as recommended by the flooring manufacturer. Comply with ASTM F710 for concrete subfloor preparation. Floor fills or toppings may be required as recommended by the flooring manufacturer. Install underlays, when required by the flooring manufacturer, in accordance with manufacturer's recommended printed installation instructions. Comply with ASTM F1482 for panel type underlayments. Before any work under this section is begun, correct all defects such as rough or scaling concrete, chalk and dust, cracks, low spots, high spots, and uneven surfaces. Repair all damaged portions of concrete slabs as recommended by the flooring manufacturer. Remove concrete curing and sealer compounds from the slabs, other than the type that does not adversely affect adhesion. Remove paint, varnish, oils, release agents, sealers, waxes, and adhesives, as required by the flooring product in accordance with manufacturer's printed installation instructions.

3.3 MOISTURE, ALKALINITY AND BOND TESTS

Determine the suitability of the concrete subfloor for receiving the resilient flooring with regard to moisture content and pH level by moisture and alkalinity tests. Conduct moisture testing in accordance with ASTM F1869 or ASTM F2170, unless otherwise recommended by the flooring manufacturer. Conduct alkalinity testing as recommended by the flooring manufacturer. Determine the compatibility of the resilient flooring adhesives to the concrete floors by a bond test in accordance with the flooring manufacturer's recommendations. Submit copy of test reports for moisture and alkalinity content of concrete slab, and bond test stating date of test, person conducting the test, and the area tested.
3.4 PLACING MOULDING

Provide moulding where flooring termination is higher than the adjacent finished flooring and at transitions between different flooring materials. When required, locate moulding under door centerline. Moulding is not required at doorways where thresholds are provided. Secure moulding with adhesive as recommended by the manufacturer. Prepare and apply adhesives in accordance with manufacturer's printed directions.

3.5 PLACING WALL BASE

Install wall base in accordance with manufacturer's printed installation instructions. Prepare and apply adhesives in accordance with manufacturer's printed directions. Tighten base joints and make even with adjacent resilient flooring. Fill voids along the top edge of base at masonry walls with caulk. Roll entire vertical surface of base with hand roller, and press toe of base with a straight piece of wood to ensure proper alignment. Avoid excess adhesive in corners.

3.6 PLACING INTEGRAL COVED BASE

Install integral cove base in accordance with manufacturer's printed installation instructions. Prepare and apply adhesives in accordance with manufacturer's printed directions. Shape integral coved base by extending the flooring material 6 inch onto the wall surface. Support cove by a filler. Provide a cap strip at the top of the base. Fill voids along the top edge of base at masonry walls with caulk.

3.7 CLEANING

Immediately upon completion of installation of flooring in a room or an area, dry/clean the flooring and adjacent surfaces to remove all surplus adhesive. Clean flooring as recommended in accordance with manufacturer's printed maintenance instructions and within the recommended time frame. As required by the manufacturer, apply the recommended number of coats and type of polish and/or finish in accordance with manufacturer's written instructions.

3.8 PROTECTION

From the time of installation until acceptance, protect flooring from damage as recommended by the flooring manufacturer. Remove and replace flooring which becomes damaged, loose, broken, or curled and wall base which is not tight to wall or securely adhered.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH)

ACGIH 0100 (2015; Suppl 2002-2016) Documentation of the Threshold Limit Values and Biological Exposure Indices

ASTM INTERNATIONAL (ASTM)

ASTM D4263 (1983; R 2012) Indicating Moisture in Concrete by the Plastic Sheet Method

ASTM F1869 (2016) Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride

MASTER PAINTERS INSTITUTE (MPI)

MPI 10 (Oct 2009) Exterior Latex, Flat, MPI Gloss Level 1

MPI 107 (Oct 2009) Rust Inhibitive Primer (Water-Based)

MPI 134 (Oct 2009) Galvanized Primer (Waterbased)

MPI 138 (Oct 2009) Interior High Performance Latex, MPI Gloss Level 2

MPI 23 (Oct 2009) Surface Tolerant Metal Primer

MPI 4 (Oct 2009) Interior/Exterior Latex Block Filler

MPI 44 (Oct 2009) Interior Latex, MPI Gloss Level 2

MPI 50 (Oct 2009) Interior Latex Primer Sealer

MPI 79 (Oct 2009) Alkyd Anti-Corrosive Metal Primer

MPI 94 (Oct 2009) Exterior Alkyd, Semi-Gloss, MPI Gloss Level 5

MPI 95 (Oct 2009) Quick Drying Primer for Aluminum

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS Scientific Certification Systems
 (SCS) Indoor Advantage

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC 7/NACE No.4 (2007; E 2004) Brush-Off Blast Cleaning

SSPC PA 1 (2016) Shop, Field, and Maintenance Coating of Metals

SSPC SP 1 (2015) Solvent Cleaning

SSPC SP 10/NACE No. 2 (2007) Near-White Blast Cleaning

SSPC SP 3 (1982; E 2004) Power Tool Cleaning

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

FED-STD-313 (2014; Rev E) Material Safety Data, Transportation Data and Disposal Data for

SECTION 09 90 00 Page 2
Hazardous Materials Furnished to Government Activities

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.1000 Air Contaminants

UL ENVIRONMENT (ULE)

ULE Greenguard UL Greenguard Certification Program

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

The current MPI, "Approved Product List" which lists paint by brand, label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use a subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI Approved Products List is acceptable.

SD-03 Product Data

Certification

Materials;

Submit documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project.

Coating; G

Manufacturer's Technical Data Sheets;

Indicate VOC content.

SD-04 Samples

Color; G

SD-07 Certificates

Applicator's qualifications

Qualification Testing laboratory for coatings; G

SD-08 Manufacturer's Instructions

Application instructions

Mixing

Detailed mixing instructions, minimum and maximum application
temperature and humidity, potlife, and curing and drying times between coats.

Manufacturer's Material Safety Data Sheets

Submit manufacturer's Material Safety Data Sheets for coatings, solvents, and other potentially hazardous materials, as defined in FED-STD-313.

SD-10 Operation and Maintenance Data

Coatings:

1.3 APPLICATOR'S QUALIFICATIONS

1.3.1 Contractor Qualification

Submit the name, address, telephone number, FAX number, and e-mail address of the contractor that will be performing all surface preparation and coating application. Submit evidence that key personnel have successfully performed surface preparation and application of coatings on a minimum of three similar projects within the past three years. List information by individual and include the following:

a. Name of individual and proposed position for this work.

b. Information about each previous assignment including:

 Position or responsibility

 Employer (if other than the Contractor)

 Name of facility owner

 Mailing address, telephone number, and telex number (if non-US) of facility owner

 Name of individual in facility owner's organization who can be contacted as a reference

 Location, size and description of structure

 Dates work was carried out

 Description of work carried out on structure

1.4 QUALITY ASSURANCE

1.4.1 Field Samples and Tests

The Contracting Officer may choose up to two coatings that have been delivered to the site to be tested at no cost to the Government. Take samples of each chosen product as specified in the paragraph "Sampling Procedures." Test each chosen product as specified in the paragraph "Testing Procedure." Products which do not conform, shall be removed from the job site and replaced with new products that conform to the referenced specification. Testing of replacement products that failed initial testing shall be at no cost to the Government.
1.4.1.1 Sampling Procedure

The Contracting Officer will select paint at random from the products that have been delivered to the job site for sample testing. The Contractor shall provide one quart samples of the selected paint materials. The samples shall be taken in the presence of the Contracting Officer, and labeled, identifying each sample. Provide labels in accordance with the paragraph "Packaging, Labeling, and Storage" of this specification.

1.4.1.2 Testing Procedure

Provide Batch Quality Conformance Testing for specified products, as defined by and performed by MPI. As an alternative to Batch Quality Conformance Testing, the Contractor may provide Qualification Testing for specified products above to the appropriate MPI product specification, using the third-party laboratory approved under the paragraph "Qualification Testing" laboratory for coatings. The qualification testing lab report shall include the backup data and summary of the test results. The summary shall list all of the reference specification requirements and the result of each test. The summary shall clearly indicate whether the tested paint meets each test requirement. Note that Qualification Testing may take 4 to 6 weeks to perform, due to the extent of testing required.

Submit name, address, telephone number, FAX number, and e-mail address of the independent third party laboratory selected to perform testing of coating samples for compliance with specification requirements. Submit documentation that laboratory is regularly engaged in testing of paint samples for conformance with specifications, and that employees performing testing are qualified. If the Contractor chooses MPI to perform the Batch Quality Conformance testing, the above submittal information is not required, only a letter is required from the Contractor stating that MPI will perform the testing.

1.4.2 Sustainable Design Certification

Product shall be third party certified in accordance with ULE Greenguard Gold, SCS Scientific Certification Systems Indoor Advantage Gold or equal. Certification shall be performed annually and shall be current.

1.5 REGULATORY REQUIREMENTS

1.5.1 Environmental Protection

In addition to requirements specified elsewhere for environmental protection, provide coating materials that conform to the restrictions of the local Air Pollution Control District and regional jurisdiction. Notify Contracting Officer of any paint specified herein which fails to conform.

1.5.2 Lead Content

Do not use coatings having a lead content over 0.06 percent by weight of nonvolatile content.

1.5.3 Chromate Content

Do not use coatings containing zinc-chromate or strontium-chromate.
1.5.4 Asbestos Content
Materials shall not contain asbestos.

1.5.5 Mercury Content
Materials shall not contain mercury or mercury compounds.

1.5.6 Silica
Abrasive blast media shall not contain free crystalline silica.

1.5.7 Human Carcinogens
Materials shall not contain ACGIH 0100 confirmed human carcinogens (A1) or suspected human carcinogens (A2).

1.6 PACKAGING, LABELING, AND STORAGE
Paints shall be in sealed containers that legibly show the contract specification number, designation name, formula or specification number, batch number, color, quantity, date of manufacture, manufacturer's formulation number, manufacturer's directions including any warnings and special precautions, and name and address of manufacturer. Pigmented paints shall be furnished in containers not larger than 5 gallons. Paints and thinners shall be stored in accordance with the manufacturer's written directions, and as a minimum, stored off the ground, under cover, with sufficient ventilation to prevent the buildup of flammable vapors, and at temperatures between 40 to 95 degrees F. Do not store paint, polyurethane, varnish, or wood stain products in occupied spaces.

1.7 SAFETY AND HEALTH
Apply coating materials using safety methods and equipment in accordance with the following:

Work shall comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis as prepared by the contractor. The Activity Hazard Analysis shall include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.

1.7.1 Safety Methods Used During Coating Application
Comply with the requirements of SSPC PA Guide 3.

1.7.2 Toxic Materials
To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:

a. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.

b. 29 CFR 1910.1000.

c. ACGIH 0100, threshold limit values.
1.8 ENVIRONMENTAL CONDITIONS

Comply, at minimum, with manufacturer recommendations for space ventilation during and after installation.

1.8.1 Coatings

Do not apply coating when air or substrate conditions are:

a. Less than 5 degrees F above dew point;

b. Below 50 degrees F or over 95 degrees F, unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.

1.8.2 Post-Application

Vacate space for as long as possible after application. Wait a minimum of 48 hours before occupying freshly painted rooms. Maintain one of the following ventilation conditions during the curing period, or for 72 hours after application:

a. Supply 100 percent outside air 24 hours a day.

b. Supply airflow at a rate of 6 air changes per hour, when outside temperatures are between 55 degrees F and 85 degrees F and humidity is between 30 percent and 60 percent.

c. Supply airflow at a rate of 1.5 air changes per hour, when outside air conditions are not within the range stipulated above.

1.9 SCHEDULING

Allow paint, polyurethane, varnish, and wood stain installations to cure prior to the installation of materials that adsorb VOCs.

1.10 COLOR SELECTION

Colors of finish coats shall be as indicated or specified. Where not indicated or specified, colors shall be selected by the Contracting Officer. Manufacturers' names and color identification are used for the purpose of color identification only. Named products are acceptable for use only if they conform to specified requirements. Products of other manufacturers are acceptable if the colors approximate colors indicated and the product conforms to specified requirements.

Tint each coat progressively darker to enable confirmation of the number of coats.

Color, texture, and pattern of wall coating systems shall be as indicated.

1.11 LOCATION AND SURFACE TYPE TO BE PAINTED

1.11.1 Painting Included

Where a space or surface is indicated to be painted, include the following unless indicated otherwise.
a. Surfaces behind portable objects and surface mounted articles readily detachable by removal of fasteners, such as screws and bolts.

b. New factory finished surfaces that require identification or color coding and factory finished surfaces that are damaged during performance of the work.

c. Existing coated surfaces that are damaged during performance of the work.

1.11.1.1 Exterior Painting

Includes new surfaces of the building and appurtenances. Also included are existing coated surfaces made bare by cleaning operations.

1.11.1.2 Interior Painting

Includes new surfaces. Where a space or surface is indicated to be painted, include the following items, unless indicated otherwise.

1.11.2 Painting Excluded

Do not paint the following unless indicated otherwise.

a. Surfaces concealed and made inaccessible by panelboards, fixed ductwork, machinery, and equipment fixed in place.

b. Surfaces in concealed spaces. Concealed spaces are defined as enclosed spaces above suspended ceilings, furred spaces, attic spaces, crawl spaces, elevator shafts and chases.

c. Steel to be embedded in concrete.

d. Copper, stainless steel, aluminum, brass, and lead except existing coated surfaces.

e. Hardware, fittings, and other factory finished items.

1.11.3 Mechanical and Electrical Painting

Includes field coating of interior new surfaces.

a. Where a space or surface is indicated to be painted, include the following items unless indicated otherwise.

 (1) Exposed piping, conduit;

b. Do not paint the following, unless indicated otherwise:

 (1) New zinc-coated, aluminum, and copper surfaces under insulation

 (2) New aluminum jacket on piping

 (3) New interior ferrous piping under insulation.

1.11.4 Exterior Painting of Site Work Items

Field coat the following items:
New Surfaces
a. Doors and Frames
b. Handrails

1.11.5 Definitions and Abbreviations

1.11.5.1 Qualification Testing

Qualification testing is the performance of all test requirements listed in the product specification. This testing is accomplished by MPI to qualify each product for the MPI Approved Product List, and may also be accomplished by Contractor's third party testing lab if an alternative to Batch Quality Conformance Testing by MPI is desired.

1.11.5.2 Batch Quality Conformance Testing

Batch quality conformance testing determines that the product provided is the same as the product qualified to the appropriate product specification. This testing shall only be accomplished by MPI testing lab.

1.11.5.3 Coating

A film or thin layer applied to a base material called a substrate. A coating may be a metal, alloy, paint, or solid/liquid suspensions on various substrates (metals, plastics, wood, paper, leather, cloth, etc.). They may be applied by electrolysis, vapor deposition, vacuum, or mechanical means such as brushing, spraying, calendaring, and roller coating. A coating may be applied for aesthetic or protective purposes or both. The term "coating" as used herein includes emulsions, enamels, stains, varnishes, sealers, epoxies, and other coatings, whether used as primer, intermediate, or finish coat. The terms paint and coating are used interchangeably.

1.11.5.4 DFT or dft

Dry film thickness, the film thickness of the fully cured, dry paint or coating.

1.11.5.5 DSD

Degree of Surface Degradation, the MPI system of defining degree of surface degradation. Five (5) levels are generically defined under the Assessment sections in the MPI Maintenance Repainting Manual.

1.11.5.6 EPP

Environmentally Preferred Products, a standard for determining environmental preferability in support of Executive Order 13101.

1.11.5.7 EXT

MPI short term designation for an exterior coating system.

1.11.5.8 INT

MPI short term designation for an interior coating system.
1.11.5.9 micron / microns

The metric measurement for 0.001 mm or one/thousandth of a millimeter.

1.11.5.10 mil / mils

The English measurement for 0.001 in or one/thousandth of an inch, equal to 25.4 microns or 0.0254 mm.

1.11.5.11 mm

The metric measurement for millimeter, 0.001 meter or one/thousandth of a meter.

1.11.5.12 MPI Gloss Levels

MPI system of defining gloss. Seven (7) gloss levels (G1 to G7) are generically defined under the Evaluation sections of the MPI Manuals. Traditionally, Flat refers to G1/G2, Eggshell refers to G3, Semigloss refers to G5, and Gloss refers to G6.

Gloss levels are defined by MPI as follows:

<table>
<thead>
<tr>
<th>Gloss Level</th>
<th>Description</th>
<th>Units at 60 degrees</th>
<th>Units at 85 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Matte or Flat</td>
<td>0 to 5</td>
<td>10 max</td>
</tr>
<tr>
<td>G2</td>
<td>Velvet</td>
<td>0 to 10</td>
<td>10 to 35</td>
</tr>
<tr>
<td>G3</td>
<td>Eggshell</td>
<td>10 to 25</td>
<td>10 to 35</td>
</tr>
<tr>
<td>G4</td>
<td>Satin</td>
<td>20 to 35</td>
<td>35 min</td>
</tr>
<tr>
<td>G5</td>
<td>Semi-Gloss</td>
<td>35 to 70</td>
<td></td>
</tr>
<tr>
<td>G6</td>
<td>Gloss</td>
<td>70 to 85</td>
<td></td>
</tr>
<tr>
<td>G7</td>
<td>High Gloss</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gloss is tested in accordance with ASTM D523. Historically, the Government has used Flat (G1 / G2), Eggshell (G3), Semigloss (G5), and Gloss (G6).

1.11.5.13 MPI System Number

The MPI coating system number in each Division found in either the MPI Architectural Painting Specification Manual or the Maintenance Repainting Manual and defined as an exterior (EXT/REX) or interior system (INT/RIN). The Division number follows the CSI Master Format.

1.11.5.14 Paint

See Coating definition.

1.11.5.15 REX

MPI short term designation for an exterior coating system used in repainting projects or over existing coating systems.

1.11.5.16 RIN

MPI short term designation for an interior coating system used in repainting projects or over existing coating systems.
PART 2 PRODUCTS

2.1 MATERIALS

Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents. Minimum 20 percent post-consumer recycled content for light-colored paints and primers. Minimum 50 percent post-consumer recycled content for dark-colored paints and primers. All consolidated latex paints shall contain a minimum of 100 percent post-consumer recycled content. Comply with applicable regulations regarding toxic and hazardous materials.

PART 3 EXECUTION

3.1 PROTECTION OF AREAS AND SPACES NOT TO BE PAINTED

Prior to surface preparation and coating applications, remove, mask, or otherwise protect, hardware, hardware accessories, machined surfaces, radiator covers, plates, lighting fixtures, public and private property, and other such items not to be coated that are in contact with surfaces to be coated. Following completion of painting, workmen skilled in the trades involved shall reinstall removed items. Restore surfaces contaminated by coating materials, to original condition and repair damaged items.

3.2 SURFACE PREPARATION

Remove dirt, splinters, loose particles, grease, oil, disintegrated coatings, and other foreign matter and substances deleterious to coating performance as specified for each substrate before application of paint or surface treatments. Oil and grease shall be removed prior to mechanical cleaning. Cleaning shall be programmed so that dust and other contaminants will not fall on wet, newly painted surfaces. Exposed ferrous metals such as nail heads on or in contact with surfaces to be painted with water-thinned paints, shall be spot-primed with a suitable corrosion-inhibitive primer capable of preventing flash rusting and compatible with the coating specified for the adjacent areas.

3.2.1 Additional Requirements for Preparation of Surfaces With Existing Coatings

Before application of coatings, perform the following on surfaces covered by soundly-adhered coatings, defined as those which cannot be removed with a putty knife:

a. Test existing finishes for lead before sanding, scraping, or removing. If lead is present, refer to paragraph Toxic Materials.

b. Wipe previously painted surfaces to receive solvent-based coatings, except stucco and similarly rough surfaces clean with a clean, dry cloth saturated with mineral spirits, ASTM D235. Allow surface to dry. Wiping shall immediately precede the application of the first coat of any coating, unless specified otherwise.

c. Sand existing glossy surfaces to be painted to reduce gloss. Brush, and wipe clean with a damp cloth to remove dust.

d. The requirements specified are minimum. Comply also with the application instructions of the paint manufacturer.
e. Previously painted surfaces damaged during construction shall be thoroughly cleaned of all grease, dirt, dust or other foreign matter.

f. Blistering, cracking, flaking and peeling or other deteriorated coatings shall be removed.

g. Chalk shall be removed so that when tested in accordance with ASTM D4214, the chalk resistance rating is no less than 8.

h. Slick surfaces shall be roughened. Damaged areas such as, but not limited to, nail holes, cracks, chips, and spalls shall be repaired with suitable material to match adjacent undamaged areas.

i. Edges of chipped paint shall be feather edged and sanded smooth.

j. Rusty metal surfaces shall be cleaned as per SSPC requirements. Solvent, mechanical, or chemical cleaning methods shall be used to provide surfaces suitable for painting.

k. New, proposed coatings shall be compatible with existing coatings.

3.2.2 Existing Coated Surfaces with Minor Defects

Sand, spackle, and treat minor defects to render them smooth. Minor defects are defined as scratches, nicks, cracks, gouges, spalls, alligating, chalking, and irregularities due to partial peeling of previous coatings.

3.2.3 Removal of Existing Coatings

Remove existing coatings from the following surfaces:

a. Surfaces containing large areas of minor defects;

b. Surfaces containing more than 20 percent peeling area; and

c. Surfaces designated by the Contracting Officer, such as surfaces where rust shows through existing coatings.

3.2.4 Substrate Repair

a. Repair substrate surface damaged during coating removal;

b. Sand edges of adjacent soundly-adhered existing coatings so they are tapered as smooth as practical to areas involved with coating removal; and

c. Clean and prime the substrate as specified.

3.3 PREPARATION OF METAL SURFACES

3.3.1 Existing and New Ferrous Surfaces

a. Ferrous Surfaces including Shop-coated Surfaces and Small Areas That Contain Rust, Mill Scale and Other Foreign Substances: Solvent clean in accordance with SSPC SP 1 to remove oil and grease. Where shop coat is missing or damaged, clean according to SSPC SP 2, Shop-coated ferrous surfaces shall be protected from corrosion by treating and touching up corroded areas immediately upon detection.
3.3.2 Final Ferrous Surface Condition:

For tool cleaned surfaces, the requirements are stated in SSPC SP 2 and SSPC SP 3. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 3.

For abrasive blast cleaned surfaces, the requirements are stated in SSPC 7/NACE No.4, SSPC SP 6/NACE No.3, and SSPC SP 10/NACE No.2. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 1.

3.3.3 Galvanized Surfaces

a. New or Existing Galvanized Surfaces With Only Dirt and Zinc Oxidation Products: Clean with solvent, in accordance with SSPC SP 1. If the galvanized metal has been passivated or stabilized, the coating shall be completely removed by brush-off abrasive blast. New galvanized steel to be coated shall not be "passivated" or "stabilized" If the absence of hexavalent stain inhibitors is not documented, test as described in ASTM D6386, Appendix X2, and remove by one of the methods described therein.

3.3.4 Non-Ferrous Metallic Surfaces

Aluminum and aluminum-alloy, lead, copper, and other nonferrous metal surfaces.

Surface Cleaning: Solvent clean in accordance with SSPC SP 1 and wash with mild non-alkaline detergent to remove dirt and water soluble contaminants.

3.4 PREPARATION OF CONCRETE AND CEMENTITIOUS SURFACE

3.4.1 Concrete and Masonry

a. Curing: Concrete, stucco and masonry surfaces shall be allowed to cure at least 30 days before painting, except concrete slab on grade, which shall be allowed to cure 90 days before painting.

b. Surface Cleaning: Remove the following deleterious substances.

 (1) Dirt, Grease, and Oil: Wash new and existing uncoated surfaces with a solution composed of 1/2 cup trisodium phosphate, 1/4 cup household detergent, and 4 quarts of warm water. Then rinse thoroughly with fresh water. Wash existing coated surfaces with a suitable detergent and rinse thoroughly. For large areas, water blasting may be used.

 (2) Fungus and Mold: Wash new, existing coated, and existing uncoated surfaces with a solution composed of 1/2 cup trisodium phosphate, 1/4 cup household detergent, 1 quart 5 percent sodium hypochlorite solution and 3 quarts of warm water. Rinse thoroughly with fresh water.

 (3) Paint and Loose Particles: Remove by wire brushing.

 (4) Efflorescence: Remove by scraping or wire brushing followed by washing with a 5 to 10 percent by weight aqueous solution of hydrochloric (muriatic) acid. Do not allow acid to remain on the
surface for more than five minutes before rinsing with fresh water. Do not acid clean more than 4 square feet of surface, per workman, at one time.

c. Cosmetic Repair of Minor Defects: Repair or fill mortar joints and minor defects, including but not limited to spalls, in accordance with manufacturer's recommendations and prior to coating application.

d. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not to surfaces with droplets of water. Do not apply epoxies to damp vertical surfaces as determined by ASTM D4263 or horizontal surfaces that exceed 3 lbs of moisture per 1000 square feet in 24 hours as determined by ASTM F1869. In all cases follow manufacturers recommendations. Allow surfaces to cure a minimum of 30 days before painting.

3.4.2 Gypsum Board, Plaster, and Stucco

a. Surface Cleaning: Plaster and stucco shall be clean and free from loose matter; gypsum board shall be dry. Remove loose dirt and dust by brushing with a soft brush, rubbing with a dry cloth, or vacuum-cleaning prior to application of the first coat material. A damp cloth or sponge may be used if paint will be water-based.

b. Repair of Minor Defects: Prior to painting, repair joints, cracks, holes, surface irregularities, and other minor defects with patching plaster or spackling compound and sand smooth.

c. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not surfaces with droplets of water. Do not apply epoxies to damp surfaces as determined by ASTM D4263. New plaster to be coated shall have a maximum moisture content of 8 percent, when measured in accordance with ASTM D4444, Method A, unless otherwise authorized. In addition to moisture content requirements, allow new plaster to age a minimum of 30 days before preparation for painting.

3.5 APPLICATION

3.5.1 Coating Application

Painting practices shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards. Apply coating materials in accordance with SSPC PA 1. SSPC PA 1 methods are applicable to all substrates, except as modified herein.

At the time of application, paint shall show no signs of deterioration. Uniform suspension of pigments shall be maintained during application.

Unless otherwise specified or recommended by the paint manufacturer, paint may be applied by brush, roller, or spray. Use trigger operated spray nozzles for water hoses. Rollers for applying paints and enamels shall be of a type designed for the coating to be applied and the surface to be coated. Wear protective clothing and respirators when applying oil-based paints or using spray equipment with any paints.

Paints, except water-thinned types, shall be applied only to surfaces that are completely free of moisture as determined by sight or touch.

Thoroughly work coating materials into joints, crevices, and open spaces.
Special attention shall be given to insure that all edges, corners, crevices, welds, and rivets receive a film thickness equal to that of adjacent painted surfaces.

Each coat of paint shall be applied so dry film shall be of uniform thickness and free from runs, drops, ridges, waves, pinholes or other voids, laps, brush marks, and variations in color, texture, and finish. Hiding shall be complete.

Touch up damaged coatings before applying subsequent coats. Interior areas shall be broom clean and dust free before and during the application of coating material.

a. Drying Time: Allow time between coats, as recommended by the coating manufacturer, to permit thorough drying, but not to present topcoat adhesion problems. Provide each coat in specified condition to receive next coat.

b. Primers, and Intermediate Coats: Do not allow primers or intermediate coats to dry more than 30 days, or longer than recommended by manufacturer, before applying subsequent coats. Follow manufacturer's recommendations for surface preparation if primers or intermediate coats are allowed to dry longer than recommended by manufacturers of subsequent coatings. Each coat shall cover surface of preceding coat or surface completely, and there shall be a visually perceptible difference in shades of successive coats.

c. Finished Surfaces: Provide finished surfaces free from runs, drops, ridges, waves, laps, brush marks, and variations in colors.

3.5.2 Mixing and Thinning of Paints

Reduce paints to proper consistency by adding fresh paint, except when thinning is mandatory to suit surface, temperature, weather conditions, application methods, or for the type of paint being used. Obtain written permission from the Contracting Officer to use thinners. The written permission shall include quantities and types of thinners to use.

When thinning is allowed, paints shall be thinned immediately prior to application with not more than 1 pint of suitable thinner per gallon. The use of thinner shall not relieve the Contractor from obtaining complete hiding, full film thickness, or required gloss. Thinning shall not cause the paint to exceed limits on volatile organic compounds. Paints of different manufacturers shall not be mixed.

3.5.3 Coating Systems

a. Systems by Substrates: Apply coatings that conform to the respective specifications listed in the following Tables:

<table>
<thead>
<tr>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 3. Exterior Concrete Paint Table</td>
</tr>
<tr>
<td>Division 4. Exterior Concrete Masonry Units Paint Table</td>
</tr>
<tr>
<td>Division 5. Exterior Metal, Ferrous and Non-Ferrous Paint Table</td>
</tr>
<tr>
<td>Division 3. Interior Concrete Paint Table</td>
</tr>
<tr>
<td>Division 4. Interior Concrete Masonry Units Paint Table</td>
</tr>
<tr>
<td>Division 5. Interior Metal, Ferrous and Non-Ferrous Paint Table</td>
</tr>
</tbody>
</table>
Table

Division 9: Interior Plaster, Gypsum Board, Textured Surfaces
Paint Table

b. Minimum Dry Film Thickness (DFT): Apply paints, primers, varnishes, enamels, undercoats, and other coatings to a minimum dry film thickness of 1.5 mil each coat unless specified otherwise in the Tables. Coating thickness where specified, refers to the minimum dry film thickness.

c. Coatings for Surfaces Not Specified Otherwise: Coat surfaces which have not been specified, the same as surfaces having similar conditions of exposure.

d. Existing Surfaces Damaged During Performance of the Work, Including New Patches In Existing Surfaces: Coat surfaces with the following:

 (1) One coat of primer.

 (2) One coat of undercoat or intermediate coat.

 (3) One topcoat to match adjacent surfaces.

e. Existing Coated Surfaces To Be Painted: Apply coatings conforming to the respective specifications listed in the Tables herein, except that pretreatments, sealers and fillers need not be provided on surfaces where existing coatings are soundly adhered and in good condition. Do not omit undercoats or primers.

3.6 COATING SYSTEMS FOR METAL

Apply coatings of Tables in Division 5 for Exterior and Interior.

a. Apply specified ferrous metal primer on the same day that surface is cleaned, to surfaces that meet all specified surface preparation requirements at time of application.

b. Inaccessible Surfaces: Prior to erection, use one coat of specified primer on metal surfaces that will be inaccessible after erection.

c. Shop-primed Surfaces: Touch up exposed substrates and damaged coatings to protect from rusting prior to applying field primer.

d. Surface Previously Coated with Epoxy or Urethane: Apply MPI 101, 1.5 mils DFT immediately prior to application of epoxy or urethane coatings.

e. Pipes and Tubing: The semitransparent film applied to some pipes and tubing at the mill is not to be considered a shop coat, but shall be overcoated with the specified ferrous-metal primer prior to application of finish coats.

f. Exposed Nails, Screws, Fasteners, and Miscellaneous Ferrous Surfaces. On surfaces to be coated with water thinned coatings, spot prime exposed nails and other ferrous metal with latex primer MPI 107.

3.7 COATING SYSTEMS FOR CONCRETE AND CEMENTITIOUS SUBSTRATES

Apply coatings of Tables in Division 3, 4 and 9 for Exterior and Interior.
3.8 INSPECTION AND ACCEPTANCE

In addition to meeting previously specified requirements, demonstrate mobility of moving components, including swinging and sliding doors, cabinets, and windows with operable sash, for inspection by the Contracting Officer. Perform this demonstration after appropriate curing and drying times of coatings have elapsed and prior to invoicing for final payment.

3.9 WASTE MANAGEMENT

As specified in the Waste Management Plan and as follows. Do not use kerosene or any such organic solvents to clean up water based paints. Properly dispose of paints or solvents in designated containers. Close and seal partially used containers of paint to maintain quality as necessary for reuse. Store in protected, well-ventilated, fire-safe area at moderate temperature. Place materials defined as hazardous or toxic waste in designated containers.

3.10 PAINT TABLES

All DFT's are minimum values. Use only interior paints and coatings that meet VOC requirements of LEED low emitting materials credit. Acceptable products are listed in the MPI Green Approved Products List, available at http://www.specifygreen.com/APL/ProductIdxByMPInum.asp.

3.10.1 EXTERIOR PAINT TABLES

DIVISION 3: EXTERIOR CONCRETE PAINT TABLE

A. New and uncoated existing and Existing, previously painted concrete; vertical surfaces, excluding tops of slabs:

1. Latex
 New; MPI EXT 3.1A-G2 (Flat) / Existing; MPI REX 3.1A-G2 (Flat)
 Primer: Intermediate: Topcoat:
 MPI 10 MPI 10 MPI 10
 System DFT: 3.5 mils

DIVISION 4: EXTERIOR CONCRETE MASONRY UNITS PAINT TABLE

A. New and Existing concrete masonry on uncoated surface:

1. Latex
 New; MPI EXT 4.2A-G1 (Flat) / Existing; MPI REX 4.2A-G1 (Flat)
 Block Filler: Primer: Intermediate: Topcoat:
 MPI 4 N/A MPI 10 MPI 10
 System DFT: 11 mils

DIVISION 5: EXTERIOR METAL, FERROUS AND NON-FERROUS PAINT TABLE

STEEL / FERROUS SURFACES

A. New Steel that has been hand or power tool cleaned to SSPC SP 2 or SSPC SP 3

1. Alkyd
 New; MPI EXT 5.1Q-G5 (Semigloss) Existing; MPI REX 5.1D-G5
 Primer: Intermediate: Topcoat:
STEEL / FERROUS SURFACES

MPI 23 MPI 94 MPI 94
System DFT: 5.25 mils

EXTERIOR GALVANIZED SURFACES

F. New Galvanized surfaces:

1. Waterborne Primer / Waterborne Light Industrial Coating
 MPI EXT 5.3J-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 134 MPI 163 MPI 163
 System DFT: 4.5 mils

EXTERIOR SURFACES, OTHER METALS (NON-FERROUS)

I. Aluminum, aluminum alloy and other miscellaneous non-ferrous metal items
 not otherwise specified except hot metal surfaces, roof surfaces, and new
 prefinished equipment. Match surrounding finish:

1. Waterborne Light Industrial Coating
 MPI EXT 5.4G-G5(Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 95 MPI 163 MPI 163
 System DFT: 5 mils

J. Surfaces adjacent to painted surfaces; Mechanical, Electrical,
 including valves, conduit, hangers,
 supports, and miscellaneous metal items not
 otherwise specified except floors, hot metal surfaces, and new prefinished
 equipment. Match surrounding finish:

1. Alkyd

 MPI EXT 5.1D-G5 (Semigloss)
 Primer: Intermediate: Topcoat:
 MPI 79 MPI 94 MPI 94
 System DFT: 5.25 mils

3.10.2 INTERIOR PAINT TABLES

DIVISION 3: INTERIOR CONCRETE PAINT TABLE

A. New and uncoated existing and Existing, previously painted Concrete,
 vertical surfaces, not specified otherwise:

1. Latex
 New; MPI INT 3.1A-G2 (Flat) / Existing; MPI RIN 3.1A-G2 (Flat)
 Primer: Intermediate: Topcoat:
 MPI 50 MPI 44 MPI 44
 System DFT: 4 mils

DIVISION 4: INTERIOR CONCRETE MASONRY UNITS PAINT TABLE

A. New and uncoated Existing Concrete masonry:
DIVISION 4: INTERIOR CONCRETE MASONRY UNITS PAINT TABLE

1. High Performance Architectural Latex
 MPI INT 4.2D-G2 (Flat)
 Filler: Primer: Intermediate: Topcoat:
 MPI 4 N/A MPI 138 MPI 138
 System DFT: 11 mils

B. Existing, previously painted Concrete masonry:

1. High Performance Architectural Latex
 MPI RIN 4.2K-G2 (Flat)
 Spot Primer: Intermediate: Topcoat:
 MPI 50 MPI 138 MPI 138
 System DFT: 4.5 mils

DIVISION 5: INTERIOR METAL, FERROUS AND NON-FERROUS PAINT TABLE

INTERIOR STEEL / FERROUS SURFACES

A. Metal, Mechanical, Electrical, including valves, conduit, hangers, supports, Surfaces adjacent to painted surfaces (Match surrounding finish), and miscellaneous metal items not otherwise specified except floors, hot metal surfaces, and new prefinished equipment:

DIVISION 9: INTERIOR PLASTER, GYPSUM BOARD, TEXTURED SURFACES PAINT TABLE

A. New and Existing, previously painted Wallboard not otherwise specified:

1. High Performance Architectural Latex - High Traffic Areas
 New; MPI INT 9.2B-G2 (Flat) / Existing; MPI RIN 9.2B-G2 (Flat)
 Primer: Intermediate: Topcoat:
 MPI 50 MPI 138 MPI 138
 System DFT: 4 mils

 -- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Corner Guards; G

SD-04 Samples
Finish; G

SD-06 Test Reports

Corner Guards

SD-07 Certificates

Corner Guards

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the project site in manufacturer's original unopened containers with seals unbroken and labels and trademarks intact. Keep materials dry, protected from weather and damage, and stored under cover. Materials shall be stored at approximately 70 degrees F for at least 48 hours prior to installation.

1.4 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

To the maximum extent possible, corner guards shall be the standard products of a single manufacturer and shall be furnished as detailed. Drawings show general configuration of products required, and items differing in minor details from those shown will be acceptable.

2.1.1 Resilient Material

Provide resilient material consisting of high impact resistant extruded acrylic vinyl, polyvinyl chloride, or injection molded thermal plastic conforming to the following:

2.1.1.1 Minimum Impact Resistance

Minimum impact resistance shall be 18 ft-lbs/sq. inch when tested in accordance with ASTM D256, (Izod impact, ft-lbs per sq inch notched).

2.1.1.2 Fire Rating

Fire rating shall be Class 1 when tested in accordance with ASTM E84, having a maximum flame spread of 25 and a smoke developed rating of 450 or less. Material shall be rated self extinguishing when tested in accordance with ASTM D635. Material shall be labeled and tested by an approved nationally known testing laboratory. Resilient material used for protection on fire rated doors and frames shall be listed by the testing laboratory performing the tests. Resilient material installed on fire rated wood/steel door and frame assemblies shall have been tested on similar type assemblies. Test results of material tested on any other combination of door/frame assembly will not be acceptable.
2.1.1.3 Integral Color

Colored components shall have integral color and shall be matched in accordance with SAE J1545 to within plus or minus 1.0 on the CIE-LCH scales.

2.1.1.4 Chemical and Stain Resistance

Materials shall be resistant to chemicals and stains reagents in accordance with ASTM D543.

2.1.1.5 Fungal and Bacterial Resistance

Materials shall be resistant to fungi and bacteria in accordance with ASTM G21, as applicable.

2.2 CORNER GUARDS

2.2.1 Resilient Corner Guards

Corner guard units shall be surface mounted type, radius formed to profile shown. Corner guards shall extend from floor above wall base to ceiling. Mounting hardware, cushions, and base plates shall be furnished. Assembly shall consist of a snap-on corner guard formed from high impact resistant resilient material, mounted on a continuous aluminum retainer. Extruded aluminum retainer shall conform to ASTM B221, alloy 6063, temper T5 or T6. Flush mounted type guards shall act as a stop for adjacent wall finish material. Factory fabricated end closure caps shall be furnished for top and bottom of surface mounted corner guards. Flush mounted corner guards installed in fire rated wall shall maintain the rating of the wall. Insulating materials that are an integral part of the corner guard system shall be provided by the manufacturer of the corner guard system. Exposed metal portions of fire rated assemblies shall have a paintable surface.

2.3 TRIM, FASTENERS AND ANCHORS

Provide vinyl trim, fasteners and anchors for each specific installation as shown.

2.4 FINISH

Submit three samples indicating color and texture of materials requiring color and finish.

2.4.1 Resilient Material Finish

Finish for resilient material shall be embossed texture with colors in accordance with SAE J1545.

2.5 ADHESIVES

Adhesive for resilient material shall be in accordance with manufacturers recommendations.

2.6 COLOR

Color shall be selected from manufacturers standard colors.
PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Corner Guards

Material shall be mounted at location indicated in accordance with manufacturer's recommendations.

-- End of Section --
SECTION 21 13 13.00 10

WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASME INTERNATIONAL (ASME)

ASME B16.11 (2011) Forged Fittings, Socket-Welding and Threaded

ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300

ASME B16.4 (2011) Standard for Gray Iron Threaded Fittings; Classes 125 and 250

ASTM INTERNATIONAL (ASTM)

1.2 SYSTEM DESCRIPTION

Furnish piping offsets, fittings, and any other accessories as required to provide a complete installation and to eliminate interference with other construction. Install sprinkler system over and under ducts, piping and platforms when such equipment can negatively effect or disrupt the sprinkler discharge pattern and coverage. Provide wet pipe sprinkler system in areas indicated on the drawings. Except as modified herein, the system shall be designed and installed in accordance with UFC 3-600-01 and NFPA 13. The piping to the new office area, electrical room, and comm room that will have new sprinkler coverage can be calculated using the pipe schedule method of NFPA 13.

1.2.1 Pipe Schedule Design

The new heads shall be laid out to cover a maximum of 150 square feet per head. Submit pipe size calculations.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
1.4 QUALITY ASSURANCE

Compliance with referenced NFPA standards is mandatory. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification governs. Interpret reference to "authority having jurisdiction" to mean the Contracting Officer.

1.4.1 Fire Protection Specialist

Perform work specified in this section under the supervision of and certified by the Fire Protection Specialist who is an individual registered professional engineer who has passed the fire protection engineering written examination administered by the National Council of Examiners for Engineering and Surveys (NCEES). The FPS shall be a subcontractor to the Fire Sprinkler Contractor. Submit the name and documentation of certification of the proposed Fire Protection Specialists, no later than 14 days after the Notice to Proceed and prior to the submittal of the sprinkler system drawings and hydraulic calculations. The Fire Protection Specialist shall be regularly engaged in the design and installation of the type and complexity of system specified in the contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months.

1.4.2 Sprinkler System Installer

Work specified in this section shall be performed by the Sprinkler System Installer who is regularly engaged in the installation of the type and complexity of system specified in the contract documents, and who has served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months. Submit the name and documentation of certification of the proposed Sprinkler System Installer, concurrent with submittal of the Fire Protection Specialist Qualifications.
1.4.3 Shop Drawings

Shop Drawings shall conform to the requirements established for working plans as prescribed in NFPA 13. Submit 3 copies of the Sprinkler System shop drawings, no later than 21 days prior to the start of sprinkler system installation. Drawings shall include plan and elevation views demonstrating that the equipment will fit the allotted spaces with clearance for installation and maintenance. Each set of drawings shall include the following:

a. Descriptive index of drawings in the submittal with drawings listed in sequence by drawing number. A legend identifying device symbols, nomenclature, and conventions used.

b. Floor plans drawn to a scale not less than 1/8" = 1'-0" which clearly show locations of sprinklers, risers, pipe hangers, inspector's test connections, drains, and other applicable details necessary to clearly describe the proposed arrangement. Each type of fitting used and the locations of bushings, reducing couplings, and welded joints shall be indicated.

c. Actual center-to-center dimensions between sprinklers on branch lines and between branch lines; from end sprinklers to adjacent walls; from walls to branch lines; from sprinkler feed mains, cross-mains and branch lines to finished floor and roof or ceiling. A detail shall show the dimension from the sprinkler and sprinkler deflector to the ceiling in finished areas.

d. Longitudinal and transverse building sections showing typical branch line and cross-main pipe routing as well as elevation of each typical sprinkler above finished floor.

e. Details of each type of riser assembly and pipe hanger.

1.5 DELIVERY, STORAGE, AND HANDLING

All equipment delivered and placed in storage shall be housed in a manner to preclude any damage from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall either be capped or plugged until installed.

1.6 EXTRA MATERIALS

Submit spare parts data for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. Include a list of special tools and test equipment required for maintenance and testing of the products supplied.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide materials and equipment which are standard products of a manufacturer regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.
2.2 NAMEPLATES

All equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number.

2.3 REQUIREMENTS FOR FIRE PROTECTION SERVICE

Provide Materials and Equipment that have been tested by Underwriters Laboratories, Inc. and are listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM APP GUIDE. Submit manufacturer's catalog data included with the Sprinkler System Drawings for all items specified herein. The data shall be highlighted to show model, size, options, etc., that are intended for consideration. Data shall be adequate to demonstrate compliance with all contract requirements. In addition, provide a complete equipment list that includes equipment description, model number and quantity.

2.4 ABOVEGROUND PIPING COMPONENTS

Aboveground piping shall be steel.

2.4.1 Steel Piping Components

2.4.1.1 Steel Pipe

Except as modified herein, steel pipe shall be black as permitted by NFPA 13 and shall conform to applicable provisions of ASTM A795/A795M, ASTM A53/A53M, or ASTM A135/A135M. Pipe in which threads or grooves are cut or rolled formed shall be Schedule 40. Pipe shall be marked with the name of the manufacturer, kind of pipe, and ASTM designation.

2.4.1.2 Fittings for Non-Grooved Steel Pipe

Fittings shall be cast iron conforming to ASME B16.4, steel conforming to ASME B16.9 or ASME B16.11, or malleable iron conforming to ASME B16.3. Steel press fittings shall be approved for fire protection systems. Fittings into which sprinklers, drop nipples or riser nipples (sprigs) are screwed shall be threaded type. Plain-end fittings with mechanical couplings, fittings that use steel gripping devices to bite into the pipe and segmented welded fittings shall not be used.

2.4.1.3 Grooved Mechanical Joints and Fittings

Joints and fittings shall be designed for not less than 175 psi service and shall be the product of the same manufacturer; segmented welded fittings shall not be used. Fitting and coupling houses shall be malleable iron conforming to ASTM A47/A47M, Grade 32510; ductile iron conforming to ASTM A536, Grade 65-45-12. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A183 and shall be cadmium plated or zinc electroplated.

2.4.1.4 Flanges

Flanges shall conform to NFPA 13 and ASME B16.1. Gaskets shall be non-asbestos compressed material in accordance with ASME B16.21, 1/16 inch thick, and full face or self-centering flat ring type.
2.4.1.5 Bolts, Nut, and Washers

Bolts shall be conform to ASTM A449, Type 1 and shall extend no less than three full threads beyond the nut with bolts tightened to the required torque. Nuts shall be hexagon type conforming to ASME B18.2.2. Washers shall meet the requirements of ASTM F436. Flat circular washers shall be provided under all bolt heads and nuts.

2.5 SPRINKLERS

Sprinklers with internal O-rings shall not be used. Sprinklers shall be used in accordance with their listed coverage limitations. Temperature classification shall be ordinary Light Hazard. Sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with NFPA 13. Extended coverage sprinklers shall not be used.

2.5.1 Concealed Sprinkler

Concealed sprinkler shall be white polyester quick-response type and shall have a nominal 1/2 inch or 17/32 inch orifice.

2.5.2 Pendent Sprinkler

Pendent sprinkler shall be of the fusible strut or glass bulb type, recessed quick-response type with nominal 1/2 inch or 17/32 inch orifice. Pendent sprinklers shall have a white polyester finish.

2.6 ACCESSORIES

2.6.1 Sprinkler Cabinet

Spare sprinklers shall be provided in accordance with NFPA 13 and shall be packed in a suitable metal or plastic cabinet. Spare sprinklers shall be representative of, and in proportion to, the number of each type and temperature rating of the sprinklers installed. At least one wrench of each type required shall be provided.

2.6.2 Identification Sign

Valve identification sign shall be minimum 6 inches wide by 2 inches high with enamel baked finish on minimum 18 gauge steel or 0.024 inch aluminum with red letters on a white background or white letters on red background. Wording of sign shall include, but not be limited to "main drain," "auxiliary drain," "inspector's test," "alarm test," "alarm line," and similar wording as required to identify operational components.

PART 3 EXECUTION

3.1 FIELD MEASUREMENTS

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION REQUIREMENTS

The installation shall be in accordance with the applicable provisions of
3.3 ABOVEGROUND PIPING INSTALLATION

3.3.1 Piping in Exposed Areas

Install exposed piping without diminishing exit access widths, corridors or equipment access. Exposed horizontal piping, including drain piping, shall be installed to provide maximum headroom.

3.3.2 Piping in Finished Areas

In areas with suspended or dropped ceilings and in areas with concealed spaces above the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed.

3.3.3 Pendent Sprinklers

Drop nipples to pendent sprinklers shall consist of minimum 1 inch pipe with a reducing coupling into which the sprinkler shall be threaded. Hangers shall be provided on arm-overs to drop nipples supplying pendent sprinklers when the arm-over exceeds 12 inches for steel pipe or 6 inches for copper tubing. Where sprinklers are installed below suspended or dropped ceilings, drop nipples shall be cut such that sprinkler ceiling plates or escutcheons are of a uniform depth throughout the finished space. The outlet of the reducing coupling shall not extend more than 1 inch below the underside of the ceiling. On pendent sprinklers installed below suspended or dropped ceilings, the distance from the sprinkler deflector to the underside of the ceiling shall not exceed 4 inches. Recessed pendent sprinklers shall be installed such that the distance from the sprinkler deflector to the underside of the ceiling shall not exceed the manufacturer's listed range and shall be of uniform depth throughout the finished area. Pendent sprinklers in suspended ceilings shall be a minimum of 6 inches from ceiling grid.

3.3.4 Pipe Joints

Pipe joints shall conform to NFPA 13, except as modified herein. Not more than four threads shall show after joint is made up. Welded joints will be permitted, only if welding operations are performed as required by NFPA 13 at the Contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published specification according to pipe material, wall thickness and size. Grooved couplings, fittings and grooving tools shall be products of the same manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, narrow-land micrometer, or other method specifically approved by the coupling manufacturer for the intended application. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations, such as behind solid walls or ceilings, unless an access panel is shown on the drawings for servicing or adjusting the joint.
3.3.5 Reducers

Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved-end or rubber-gasketed reducing couplings will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 1/2 inch.

3.3.6 Pipe Penetrations

Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes penetrate fire walls, fire partitions, or floors, pipes shall be fire stopped. In penetrations that are not fire-rated or not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement that will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal.

3.3.7 Escutcheons

Escutcheons shall be provided for pipe penetration of ceilings and walls. Escutcheons shall be securely fastened to the pipe at surfaces through which piping passes.

3.4 PRELIMINARY TESTS

The system, including the underground water mains, and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. Submit proposed procedures for Preliminary Tests, no later than 14 days prior to the proposed start of the tests and proposed date and time to begin the preliminary tests. The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be tested in accordance with NFPA 13 and NFPA 24. Upon completion of specified tests, submit 3 copies of the completed Preliminary Test Report, no later than 7 days after the completion of the Tests. The Report shall include both the Contractor's Material and Test Certificate for Underground Piping and the Contractor's Material and Test Certificate for Aboveground Piping. All items in the Preliminary Tests Report shall be signed by the Fire Protection Specialist.

3.4.1 Aboveground Piping

3.4.1.1 Hydrostatic Testing

Aboveground piping shall be hydrostatically tested in accordance with NFPA 13 at not less than 200 psi or 50 psi in excess of maximum system operating pressure and shall maintain that pressure without loss for 2 hours. There shall be no drop in gauge pressure or visible leakage when the system is subjected to the hydrostatic test. The test pressure shall
be read from a gauge located at the low elevation point of the system or portion being tested.

3.5 FINAL ACCEPTANCE TEST

Begin the Final Acceptance Test only when the Preliminary Test Report has been approved. Submit proposed procedures for Final Acceptance Test, no later than 14 days prior to the proposed start of the tests, and proposed date and time to begin the Test, submitted with the procedures. Notification shall be provided at least 14 days prior to the proposed start of the test. Notification shall include a copy of the Contractor's Material & Test Certificates. Submit as-built shop drawings, at least 14 days after completion of the Final Tests, updated to reflect as-built conditions after all related work is completed. Drawings shall be on reproducible full-size mylar film. In addition, the representative shall have available copies of as-built drawings and certificates of tests previously conducted. The installation shall not be considered accepted until identified discrepancies have been corrected and test documentation is properly completed and received. Submit 3 copies of the completed Final Acceptance Test Report no later than 7 days after the completion of the Final Acceptance Tests. All items in the Final Acceptance Report shall be signed by the Fire Protection Specialist as specified.

-- End of Section --
SECTION 23 00 00

AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 500-D (2012) Laboratory Methods of Testing Dampers for Rating

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI 410 (2001; Addendum 1 2002; Addendum 2 2005; Addendum 3 2011) Forced-Circulation Air-Cooling and Air-Heating Coils

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE 70 (2006; R 2011) Method of Testing for Rating the Performance of Air Outlets and Inlets

ASTM INTERNATIONAL (ASTM)

ASTM A924/A924M (2016a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM D3359 (2009; E 2010; R 2010) Measuring Adhesion by Tape Test

ASTM D520 (2000; R 2011) Zinc Dust Pigment

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

40 CFR 82 Protection of Stratospheric Ozone

UNDERWRITERS LABORATORIES (UL)

UL 181 (2013) Factory-Made Air Ducts and Air Connectors
1.2 SYSTEM DESCRIPTION

Furnish ductwork, piping offsets, fittings, and accessories as required to provide a complete installation. Coordinate the work of the different trades to avoid interference between piping, equipment, structural, and electrical work. Provide complete, in place, all necessary offsets in piping and ductwork, and all fittings, and other components, required to install the work as indicated and specified.

1.2.1 Mechanical Equipment Identification

Provide chart listing of equipment by designation numbers and capacities such as flow rates, pressure and temperature differences, heating and cooling capacities, horsepower, pipe sizes, and voltage and current characteristics. Diagrams shall be neat mechanical drawings provided with extruded aluminum frames and 1/8-inch acrylic plastic protection. Location is as directed by the Contracting Officer. The number of charts and diagrams shall be equal to or greater than the number of mechanical equipment rooms. Where more than one chart per space is required, mount these in edge pivoted, swinging leaf, extruded aluminum frame holders which open to 170 degrees.

1.2.2 Service Labeling

Label equipment, including fans, air handlers, terminal units, etc. with labels made of self-sticking, plastic film designed for permanent installation. Labels shall be in accordance with the typical examples below:

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>LABEL AND TAG DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air handling unit Number</td>
<td>AHU - _____</td>
</tr>
<tr>
<td>Control and instrument air</td>
<td>CONTROL AND INSTR.</td>
</tr>
</tbody>
</table>

Identify similar services with different temperatures or pressures. Where pressures could exceed 125 pounds per square inch, gage, include the maximum system pressure in the label. Label and arrow piping in accordance with the following:
a. Each point of entry and exit of pipe passing through walls.

b. Each change in direction, i.e., elbows, tees.

c. In congested or hidden areas and at all access panels at each point required to clarify service or indicated hazard.

d. In long straight runs, locate labels at distances within eyesight of each other not to exceed 75 feet. All labels shall be visible and legible from the primary service and operating area.

For Bare or Insulated Pipes

<table>
<thead>
<tr>
<th>For Outside Diameters of</th>
<th>Lettering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 thru 1-3/8 inch</td>
<td>1/2 inch</td>
</tr>
<tr>
<td>1-1/2 thru 2-3/8 inch</td>
<td>3/4 inch</td>
</tr>
<tr>
<td>2-1/2 inch and larger</td>
<td>1-1/4 inch</td>
</tr>
</tbody>
</table>

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detail Drawings

Drawings as specified in Paragraph Detail Drawings and throughout this Section.

SD-03 Product Data

Standard Products: Manufacturer's catalog data included with the detail drawings for the following items. Highlight the data to show model, size, options, etc., that are intended for consideration. Provide adequate data to demonstrate compliance with contract requirements for the following:

Insulated Nonmetallic Flexible Duct Runouts
Duct Connectors
Duct Access Doors
Manual Balancing Dampers
Diffusers
Registers and Grilles
Louvers
Air Vents, Penthouses, and Goosenecks

Diagrams

Proposed diagrams, at least 2 weeks prior to start of related testing. Frame under glass or laminated plastic, system diagrams that show the layout of equipment, piping, and ductwork, and typed condensed operation manuals explaining preventative maintenance procedures, methods of checking the system for normal, safe operation, and procedures for safely starting and stopping the system. After approval, post these items where directed.
Operation and Maintenance Training

Proposed On-site Training schedule, submitted concurrently with the Operation and Maintenance Manuals.

SD-06 Test Reports

Performance Tests

Test reports for the performance tests in booklet form, upon completion of testing. Document phases of tests performed including initial test summary, repairs/adjustments made, and final test results in the reports.

Damper Acceptance Test

Proposed schedule, at least 2 weeks prior to the start of test.

SD-08 Manufacturer's Instructions

Manufacturer's Installation Instructions
Operation and Maintenance Training

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals

Six manuals at least 2 weeks prior to field training. Submit Data Package 3 for the following:

Manual Balancing Dampers

1.4 QUALITY ASSURANCE

Except as otherwise specified, approval of materials and equipment is based on manufacturer's published data.

a. Where materials and equipment are specified to conform to the standards of the Underwriters Laboratories, the label of or listing with reexamination in UL Bld Mat Dir, and UL 6 is acceptable as sufficient evidence that the items conform to Underwriters Laboratories requirements. In lieu of such label or listing, submit a written certificate from any nationally recognized testing agency, adequately equipped and competent to perform such services, stating that the items have been tested and that the units conform to the specified requirements. Outline methods of testing used by the specified agencies.

b. Where materials or equipment are specified to be constructed or tested, or both, in accordance with the standards of the ASTM International (ASTM), the ASME International (ASME), or other standards, a manufacturer's certificate of compliance of each item is acceptable as proof of compliance.

c. Conformance to such agency requirements does not relieve the item from compliance with other requirements of these specifications.
1.4.1 Prevention of Corrosion

Protect metallic materials against corrosion. Manufacturer shall provide rust-inhibiting treatment and standard finish for the equipment enclosures. Do not use aluminum in contact with earth, and where connected to dissimilar metal. Protect aluminum by approved fittings, barrier material, or treatment. Ferrous parts such as anchors, bolts, braces, boxes, bodies, clamps, fittings, guards, nuts, pins, rods, shims, thimbles, washers, and miscellaneous parts not of corrosion-resistant steel or nonferrous materials shall be hot-dip galvanized in accordance with ASTM A 123/A123M for exterior locations and cadmium-plated in conformance with ASTM B766 for interior locations.

1.4.2 Asbestos Prohibition

Do not use asbestos and asbestos-containing products.

1.4.3 Ozone Depleting Substances Used as Refrigerants

Minimize releases of Ozone Depleting Substances (ODS) during repair, maintenance, servicing or disposal of appliances containing ODS's by complying with all applicable sections of 40 CFR 82 Part 82 Subpart F. Any person conducting repair, maintenance, servicing or disposal of appliances owned by NASA shall comply with the following:

a. Do not knowingly vent or otherwise release into the environment, Class I or Class II substances used as a refrigerant.

b. Do not open appliances without meeting the requirements of 40 CFR 82 Part 82.156 Subpart F, regarding required practices for evacuation and collection of refrigerant, and 40 CFR 82 Part 82.158 Subpart F, regarding standards of recycling and recovery equipment.

c. Only persons who comply with 40 CFR 82 Part 82.161 Subpart F, regarding technician certification, can conduct work on appliances containing refrigerant.

In addition, provide copies of all applicable certifications to the Contracting Officer at least 14 calendar days prior to initiating maintenance, repair, servicing, dismantling or disposal of appliances, including:

a. Proof of Technician Certification

b. Proof of Equipment Certification for recovery or recycling equipment.

c. Proof of availability of certified recovery or recycling equipment.

1.4.4 Use of Ozone Depleting Substances, Other than Refrigerants

The use of Class I or Class II ODS's listed as nonessential in 40 CFR 82 Part 82.66 Subpart C is prohibited. These prohibited materials and uses include:

a. Any plastic party spray streamer or noise horn which is propelled by a chlorofluorocarbon

b. Any cleaning fluid for electronic and photographic equipment which contains a chlorofluorocarbon; including liquid packaging, solvent
wipes, solvent sprays, and gas sprays

c. Any plastic flexible or packaging foam product which is manufactured with or contains a chlorofluorocarbon, including, open cell foam, open cell rigid polyurethane poured foam, closed cell extruded polystyrene sheet foam, closed cell polyethylene foam and closed cell polypropylene foam except for flexible or packaging foam used in coaxial

d. Any aerosol product or other pressurized dispenser which contains a chlorofluorocarbon, except for those listed in 40 CFR 82 Part 82.66 Subpart C.

Request a waiver if a facility requirement dictates that a prohibited material is necessary to achieve project goals. Submit the waiver request in writing to the Contracting Officer. The waiver will be evaluated and dispositioned.

1.4.5 Detail Drawings

Submit detail drawings showing equipment layout, including assembly and installation details and electrical connection diagrams; ductwork layout showing the location of all supports and hangers, typical hanger details, gauge reinforcement, reinforcement spacing rigidity classification, and static pressure and seal classifications. Include any information required to demonstrate that the system has been coordinated and functions properly as a unit on the drawings and show equipment relationship to other parts of the work, including clearances required for operation and maintenance. Submit drawings showing bolt-setting information, and foundation bolts prior to concrete foundation construction for all equipment indicated or required to have concrete foundations. Submit function designation of the equipment and any other requirements specified throughout this Section with the shop drawings.

1.5 DELIVERY, STORAGE, AND HANDLING

Protect stored equipment at the jobsite from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, cap or plug all pipes until installed.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide components and equipment that are "standard products" of a manufacturer regularly engaged in the manufacturing of products that are of a similar material, design and workmanship. "Standard products" is defined as being in satisfactory commercial or industrial use for 2 years before bid opening, including applications of components and equipment under similar circumstances and of similar size, satisfactorily completed by a product that is sold on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a 2-year field service record are acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. Provide equipment items that are supported by a service organization. Where applicable, provide equipment that is an ENERGY STAR Qualified product or a Federal Energy Management Program (FEMP) designated product.
2.2 IDENTIFICATION PLATES

In addition to standard manufacturer's identification plates, provide engraved laminated phenolic identification plates for each piece of mechanical equipment. Identification plates are to designate the function of the equipment. Submit designation with the shop drawings. Identification plates shall be three layers, black-white-black, engraved to show white letters on black background. Letters shall be upper case. Identification plates 1-1/2-inches high and smaller shall be 1/16-inch thick, with engraved lettering 1/8-inch high; identification plates larger than 1-1/2-inches high shall be 1/8-inch thick, with engraved lettering of suitable height. Identification plates 1-1/2-inches high and larger shall have beveled edges. Install identification plates using a compatible adhesive.

2.3 EQUIPMENT GUARDS AND ACCESS

Fully enclose or guard belts, pulleys, chains, gears, couplings, projecting set screws, keys, and other rotating parts exposed to personnel contact according to OSHA requirements. Properly guard or cover with insulation of a type specified, high temperature equipment and piping exposed to contact by personnel or where it creates a potential fire hazard.

2.4 ELECTRICAL WORK

a. Provide motors, controllers, integral disconnects, contactors, and controls with their respective pieces of equipment, except controllers indicated as part of motor control centers. Provide electrical equipment, including motors and wiring, as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide manual or automatic control and protective or signal devices required for the operation specified and control wiring required for controls and devices specified, but not shown. For packaged equipment, include manufacturer provided controllers with the required monitors and timed restart.

b. For single-phase motors, provide high-efficiency type, fractional-horsepower alternating-current motors, including motors that are part of a system, in accordance with NEMA MG 11. Integral size motors shall be the premium efficiency type in accordance with NEMA MG 1.

c. For polyphase motors, provide squirrel-cage medium induction motors, including motors that are part of a system, and that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1. Select premium efficiency polyphase motors in accordance with NEMA MG 10.

d. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor. Provide motors rated for continuous duty with the enclosure specified. Provide motor duty that allows for maximum frequency start-stop operation and minimum encountered interval between start and stop. Provide motor torque capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Provide motor starters complete with thermal overload protection and other necessary appurtenances. Fit motor bearings with grease supply fittings and grease relief to outside of the enclosure.

e. Where two-speed or variable-speed motors are indicated, solid-state
variable-speed controllers are allowed to accomplish the same function. Use solid-state variable-speed controllers for motors rated 10 hp or less and adjustable frequency drives for larger motors.

2.5 ANCHOR BOLTS

Provide anchor bolts for equipment placed on concrete equipment pads or on concrete slabs. Bolts to be of the size and number recommended by the equipment manufacturer and located by means of suitable templates. Installation of anchor bolts shall not degrade the surrounding concrete.

2.6 PAINTING

Paint equipment units in accordance with approved equipment manufacturer's standards unless specified otherwise. Field retouch only if approved. Otherwise, return equipment to the factory for refinishing.

2.7 INDOOR AIR QUALITY

Provide equipment and components that comply with the requirements of ASHRAE 62.1 unless more stringent requirements are specified herein.

2.8 DUCT SYSTEMS

2.8.1 Metal Ductwork

Provide metal ductwork construction, including all fittings and components, that complies with SMACNA 1966, as supplemented and modified by this specification.

a. Ductwork shall be constructed meeting the requirements for the duct system static pressure specified in APPENDIX D of Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC.

b. Provide radius type elbows with a centerline radius of 1.5 times the width or diameter of the duct where space permits. Otherwise, elbows having a minimum radius equal to the width or diameter of the duct or square elbows with factory fabricated turning vanes are allowed.

c. Provide ductwork that meets the requirements of Seal Class A.

d. Provide sealants that conform to fire hazard classification specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS and are suitable for the range of air distribution and ambient temperatures to which it is exposed. Do not use pressure sensitive tape as a sealant.

e. Make spiral lock seam duct, and flat oval with duct sealant and lock with not less than 3 equally spaced drive screws or other approved methods indicated in SMACNA 1966. Apply the sealant to the exposed male part of the fitting collar so that the sealer is on the inside of the joint and fully protected by the metal of the duct fitting. Apply one brush coat of the sealant over the outside of the joint to at least 2 inch band width covering all screw heads and joint gap. Dents in the male portion of the slip fitting collar are not acceptable. Fabricate outdoor air intake ducts and plenums with watertight soldered or brazed joints and seams.
2.8.1.1 Insulated Nonmetallic Flexible Duct Runouts

Use flexible duct runouts only where indicated. Runout length is indicated on the drawings, and is not to exceed 5 feet. Provide runouts that are preinsulated, factory fabricated, and that comply with NFPA 90A and UL 181. Provide either field or factory applied vapor barrier. Provide not less than 20 ounce glass fiber duct connectors coated on both sides with neoprene. Where coil induction or high velocity units are supplied with vertical air inlets, use a streamlined, vaned and mitered elbow transition piece for connection to the flexible duct or hose. Provide a die-stamped elbow and not a flexible connector as the last elbow to these units other than the vertical air inlet type. Insulated flexible connectors are allowed as runouts. Provide insulated material and vapor barrier that conform to the requirements of Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Do not expose the insulation material surface to the air stream.

2.8.1.2 General Service Duct Connectors

Provide a flexible duct connector approximately 6 inches in width where sheet metal connections are made to fans or where ducts of dissimilar metals are connected. For round/oval ducts, secure the flexible material by stainless steel or zinc-coated, iron clinch-type draw bands. For rectangular ducts, install the flexible material locked to metal collars using normal duct construction methods. Provide a composite connector system that complies with UL 214 and is classified as "flame-retarded fabrics" in UL Bld Mat Dir.

2.8.2 Duct Access Doors

Provide hinged access doors conforming to SMACNA 1966 in ductwork and plenums where indicated and at all air flow measuring primaries, automatic dampers, fire dampers, coils, thermostats, and other apparatus requiring service and inspection in the duct system. Provide access doors upstream and downstream of air flow measuring primaries and heating and cooling coils. Provide doors that are a minimum 15 by 18 inches, unless otherwise shown. Where duct size does not accommodate this size door, make the doors as large as practicable. Equip doors 24 by 24 inches or larger with fasteners operable from inside and outside the duct. Use insulated type doors in insulated ducts.

2.8.3 Manual Balancing Dampers

Furnish manual balancing dampers with accessible operating mechanisms. Use chromium plated operators (with all exposed edges rounded) in finished portions of the building. Provide manual volume control dampers that are operated by locking-type quadrant operators. Install dampers that are 2 gauges heavier than the duct in which installed. Unless otherwise indicated, provide opposed blade type multileaf dampers with maximum blade width of 12 inches. Provide access doors or panels for all concealed damper operators and locking setscrews. Provide stand-off mounting brackets, bases, or adapters not less than the thickness of the insulation when the locking-type quadrant operators for dampers are installed on ducts to be thermally insulated, to provide clearance between the duct surface and the operator. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer.
2.8.4 Air Supply And Exhaust Air Dampers

Where outdoor air supply and exhaust air dampers are required they shall have a maximum leakage rate when tested in accordance with AMCA 500-D as required by ASHRAE 90.1 - IP, including:

Maximum Damper Leakage for:

1) Climate Zones 1,2,6,7,8 the maximum damper leakage at 1.0 inch w.g. for motorized dampers is 4 cfm per square foot of damper area and non-motorized dampers are not allowed.

2) All other Climate Zones the maximum damper leakage at 1.0 inch w.g. is 10 cfm per square foot and for non-motorized dampers is 20 cfm per square foot of damper area.

Dampers smaller than 24 inches in either direction may have leakage of 40 cfm per square foot.

2.8.5 Air Deflectors and Branch Connections

Provide air deflectors at all duct mounted supply outlets, at takeoff or extension collars to supply outlets, at duct branch takeoff connections, and at 90 degree elbows, as well as at locations as indicated on the drawings or otherwise specified. Conical branch connections or 45 degree entry connections are allowed in lieu of deflectors for branch connections. Furnish all air deflectors, except those installed in 90 degree elbows, with an approved means of adjustment. Provide easily accessible means for adjustment inside the duct or from an adjustment with sturdy lock on the face of the duct. When installed on ducts to be thermally insulated, provide external adjustments with stand-off mounting brackets, integral with the adjustment device, to provide clearance between the duct surface and the adjustment device not less than the thickness of the thermal insulation. Provide factory-fabricated air deflectors consisting of curved turning vanes or louver blades designed to provide uniform air distribution and change of direction with minimum turbulence or pressure loss. Provide factory or field assembled air deflectors. Make adjustment from the face of the diffuser or by position adjustment and lock external to the duct. Provide stand-off brackets on insulated ducts as described herein. Provide fixed air deflectors, also called turning vanes, in 90 degree elbows.

2.8.6 Diffusers, Registers, and Grilles

Provide factory-fabricated units of steel that distribute the specified quantity of air evenly over space intended without causing noticeable drafts, air movement faster than 50 fpm in occupied zone, or dead spots anywhere in the conditioned area. Provide outlets for diffusion, spread, throw, and noise level as required for specified performance. Certify performance according to ASHRAE 70. Provide sound rated and certified inlets and outlets according to ASHRAE 70. Provide sound power level as indicated. Provide diffusers and registers with volume damper with accessible operator, unless otherwise indicated; or if standard with the manufacturer, an automatically controlled device is acceptable. Provide opposed blade type volume dampers for all diffusers and registers, except linear slot diffusers. Provide linear slot diffusers with round or elliptical balancing dampers. Where the inlet and outlet openings are located less than 7 feet above the floor, protect them by a grille or screen according to NFPA 90A.
2.8.6.1 Diffusers

Provide diffuser types indicated. Furnish ceiling mounted units with anti-smudge devices, unless the diffuser unit minimizes ceiling smudging through design features. Provide diffusers with air deflectors of the type indicated. Provide air handling troffers or combination light and ceiling diffusers conforming to the requirements of UL Electrical Construct for the interchangeable use as cooled or heated air supply diffusers or return air units. Install ceiling mounted units with rims tight against ceiling. Provide sponge rubber gaskets between ceiling and surface mounted diffusers for air leakage control. Provide suitable trim for flush mounted diffusers. For connecting the duct to diffuser, provide duct collar that is airtight and does not interfere with volume controller. Provide return or exhaust units that are similar to supply diffusers.

2.8.6.2 Registers and Grilles

Provide units that are four-way directional-control type, except provide return and exhaust registers that are fixed horizontal or vertical louver type similar in appearance to the supply register face. Furnish registers with sponge-rubber gasket between flanges and wall or ceiling. Install wall supply registers at least 6 inches below the ceiling unless otherwise indicated. Locate return and exhaust registers 6 inches above the floor unless otherwise indicated. Achieve four-way directional control by a grille face which can be rotated in 4 positions or by adjustment of horizontal and vertical vanes. Provide grilles as specified for registers, without volume control damper.

2.8.7 Louvers

Provide louvers for installation in exterior walls that are associated with the air supply and distribution system.

2.8.8 Air Vents, Penthouses, and Goosenecks

Fabricate air vents, penthouses, and goosenecks from galvanized steel or aluminum sheets with galvanized or aluminum structural shapes. Provide sheet metal thickness, reinforcement, and fabrication that conform to SMACNA 1966. Accurately fit and secure louver blades to frames. Fold or bead edges of louver blades for rigidity and baffle these edges to exclude driving rain. Provide air vents, penthouses, and goosenecks with bird screen.

2.8.9 Bird Screens and Frames

Provide bird screens that conform to ASTM E2016, No. 2 mesh, aluminum or stainless steel. Provide "medium-light" rated aluminum screens. Provide "light" rated stainless steel screens. Provide removable type frames fabricated from either stainless steel or extruded aluminum.

2.9 AIR SYSTEMS EQUIPMENT

2.9.1 Coils

Provide fin-and-tube type coils constructed of seamless copper tubes and aluminum or copper fins mechanically bonded or soldered to the tubes. Provide copper tube wall thickness that is a minimum of 0.020 inches. Provide aluminum fins that are 0.0055 inch minimum thickness or provide
copper fins that are 0.0045 inch minimum thickness. Provide casing and tube support sheets that are not lighter than 16 gauge galvanized steel, formed to provide structural strength. When required, provide multiple tube supports to prevent tube sag. Test each coil at the factory under water at not less than 400 psi air pressure and make suitable for 200 psi working pressure and 300 degrees F operating temperature unless otherwise stated. Mount coils for countercflow service. Rate and certify coils to meet the requirements of AHRI 410.

2.9.1.1 Direct-Expansion Coils

Provide suitable direct-expansion coils for the refrigerant involved. Provide refrigerant piping that conforms to ASTM B280 and clean, dehydrate and seal. Provide seamless copper tubing suction headers or seamless or resistance welded steel tube suction headers with copper connections. Provide supply headers that consist of a distributor which distributes the refrigerant through seamless copper tubing equally to all circuits in the coil. Provide circuited tubes to ensure minimum pressure drop and maximum heat transfer. Provide circuiting that permits refrigerant flow from inlet to suction outlet without causing oil slugging or restricting refrigerant flow in coil. Provide field installed coils which are completely dehydrated and sealed at the factory upon completion of pressure tests.

2.9.1.2 Electric Heating Coil

Provide an electric duct heater coil in accordance with UL 1995 and NFPA 70. Provide duct- or unit-mounted coil. Provide nickel chromium resistor, single stage, strip type coil. Provide coil with a built-in or surface-mounted high-limit thermostat interlocked electrically so that the coil cannot be energized unless the fan is energized. Provide galvanized steel or aluminum coil casing and support brackets. Mount coil to eliminate noise from expansion and contraction and for complete accessibility for service.

2.9.2 Air Filters

List air filters according to requirements of UL 900, except list high efficiency particulate air filters of 99.97 percent efficiency by the DOP Test method under the Label Service to meet the requirements of UL 586.

2.9.2.1 Replaceable Media Filters

Provide the dry-media type replaceable media filters, of the size required to suit the application. Provide filtering media that is not less than 2 inches thick fibrous glass media pad supported by a structural wire grid or woven wire mesh. Enclose pad in a holding frame of not less than 16 gauge galvanized steel, equipped with quick-opening mechanism for changing filter media. Base the air flow capacity of the filter on net filter face velocity not exceeding 300 fpm, with initial resistance of 0.13 inches water gauge. Provide MERV that is not less than 8 when tested according to ASHRAE 52.2.

2.10 FACTORY PAINTING

Factory paint new equipment, which are not of galvanized construction. Paint with a corrosion resisting paint finish according to ASTM A123/A123M or ASTM A924/A924M. Clean, phosphatize and coat internal and external ferrous metal surfaces with a paint finish which has been tested according to ASTM B117, ASTM D1654, and ASTM D3359. Submit evidence of satisfactory
paint performance for a minimum of 125 hours for units to be installed indoors and 500 hours for units to be installed outdoors. Provide rating of failure at the scribe mark that is not less than 6, average creepage not greater than 1/8 inch. Provide rating of the inscribed area that is not less than 10, no failure. On units constructed of galvanized steel that have been welded, provide a final shop docket of zinc-rich protective paint on exterior surfaces of welds or welds that have burned through from the interior according to ASTM D520 Type I.

Factory painting that has been damaged prior to acceptance by the Contracting Officer shall be field painted in compliance with the requirements of paragraph FIELD PAINTING OF MECHANICAL EQUIPMENT.

2.11 SUPPLEMENTAL COMPONENTS/SERVICES

2.11.1 Condensate Drain Lines

Provide and install condensate drainage for each item of equipment that generates condensate in accordance with manufacturer's recommendations.

2.11.2 Insulation

The requirements for shop and field applied insulation are specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION

a. Install materials and equipment in accordance with the requirements of the contract drawings and approved manufacturer's installation instructions. Accomplish installation by workers skilled in this type of work. Perform installation so that there is no degradation of the designed fire ratings of walls, partitions, ceilings, and floors.

b. No installation is permitted to block or otherwise impede access to any existing machine or system. Install all hinged doors to swing open a minimum of 120 degrees. Provide an area in front of all access doors that clears a minimum of 3 feet. In front of all access doors to electrical circuits, clear the area the minimum distance to energized circuits as specified in OSHA Standards, part 1910.333 (Electrical-Safety Related work practices).

c. Except as otherwise indicated, install emergency switches and alarms in conspicuous locations. Mount all indicators, to include gauges, meters, and alarms in order to be easily visible by people in the area.

3.2.1 Condensate Drain Lines

Provide water seals in the condensate drain from all units. Provide a depth of each seal of 2 inches plus the number of inches, measured in water gauge, of the total static pressure rating of the unit to which the drain is connected. Provide water seals that are constructed of 2 tees and an
appropriate U-bend with the open end of each tee plugged. Provide pipe cap or plug cleanouts where indicated. Connect drains indicated to connect to the sanitary waste system using an indirect waste fitting. Insulate air conditioner drain lines as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

3.2.2 Equipment and Installation

Provide frames and supports for tanks, compressors, pumps, valves, air handling units, fans, coils, dampers, and other similar items requiring supports. Floor mount or ceiling hang air handling units as indicated. Anchor and fasten as detailed. Set floor-mounted equipment on not less than 6 inch concrete pads or curbs doweled in place unless otherwise indicated. Make concrete foundations for circulating pumps heavy enough to minimize the intensity of the vibrations transmitted to the piping and the surrounding structure, as recommended in writing by the pump manufacturer.

3.2.3 Access Panels

Install access panels for concealed valves, vents, controls, dampers, and items requiring inspection or maintenance of sufficient size, and locate them so that the concealed items are easily serviced and maintained or completely removed and replaced.

3.2.4 Flexible Duct

Install pre-insulated flexible duct in accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Provide hangers, when required to suspend the duct, of the type recommended by the duct manufacturer and set at the intervals recommended.

3.2.5 Metal Ductwork

Install according to SMACNA 1966 unless otherwise indicated. Install duct supports for sheet metal ductwork according to SMACNA 1966, unless otherwise specified. Do not use friction beam clamps indicated in SMACNA 1966. Anchor risers on high velocity ducts in the center of the vertical run to allow ends of riser to move due to thermal expansion. Erect supports on the risers that allow free vertical movement of the duct. Attach supports only to structural framing members and concrete slabs. Do not anchor supports to metal decking unless a means is provided and approved for preventing the anchor from puncturing the metal decking. Where supports are required between structural framing members, provide suitable intermediate metal framing. Where C-clamps are used, provide retainer clips.

3.2.6 Dust Control

To prevent the accumulation of dust, debris and foreign material during construction, perform temporary dust control protection. Protect the distribution system (supply and return) with temporary seal-offs at all inlets and outlets at the end of each day's work. Keep temporary protection in place until system is ready for startup.

3.2.7 Insulation

Provide thickness and application of insulation materials for ductwork, piping, and equipment according to Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Externally insulate outdoor air intake ducts and
plenums up to the point where the outdoor air reaches the conditioning unit.

3.2.8 Duct Test Holes

Provide holes with closures or threaded holes with plugs in ducts and plenums as indicated or where necessary for the use of pitot tube in balancing the air system. Provide extensions, complete with cap or plug, where the ducts are insulated.

3.2.9 Power Transmission Components Adjustment

Test V-belts and sheaves for proper alignment and tension prior to operation and after 72 hours of operation at final speed. Uniformly load belts on drive side to prevent bouncing. Make alignment of direct driven couplings to within 50 percent of manufacturer's maximum allowable range of misalignment.

3.3 EQUIPMENT PADS

Provide equipment pads to the dimensions shown or, if not shown, to conform to the shape of each piece of equipment served with a minimum 3-inch margin around the equipment and supports. Allow equipment bases and foundations, when constructed of concrete or grout, to cure a minimum of 14 calendar days before being loaded.

3.4 CUTTING AND PATCHING

Install work in such a manner and at such time that a minimum of cutting and patching of the building structure is required. Make holes in exposed locations, in or through existing floors, by drilling and smooth by sanding. Use of a jackhammer is permitted only where specifically approved. Make holes through masonry walls to accommodate sleeves with an iron pipe masonry core saw.

3.5 CLEANING

Thoroughly clean surfaces of piping and equipment that have become covered with dirt, plaster, or other material during handling and construction before such surfaces are prepared for final finish painting or are enclosed within the building structure. Before final acceptance, clean mechanical equipment, including piping, ducting, and fixtures, and free from dirt, grease, and finger marks. When the work area is in an occupied space such as office, laboratory or warehouse protect all furniture and equipment from dirt and debris. Incorporate housekeeping for field construction work which leaves all furniture and equipment in the affected area free of construction generated dust and debris; and, all floor surfaces vacuum-swept clean.

3.6 PENETRATIONS

Provide sleeves and prepared openings for duct mains, branches, and other penetrating items, and install during the construction of the surface to be penetrated. Cut sleeves flush with each surface. Place sleeves for round duct 15 inches and smaller. Build framed, prepared openings for round duct larger than 15 inches and square, rectangular or oval ducts. Sleeves and framed openings are also required where grilles, registers, and diffusers are installed at the openings. Provide one inch clearance between penetrating and penetrated surfaces except at grilles, registers, and diffusers. Pack spaces between sleeve or opening and duct or duct
insulation with mineral fiber conforming with ASTM C553, Type 1, Class B-2.

a. Sleeves: Fabricate sleeves, except as otherwise specified or indicated, from 20 gauge thick mill galvanized sheet metal. Where sleeves are installed in bearing walls or partitions, provide black steel pipe conforming with ASTM A53/A53M, Schedule 20.

b. Framed Prepared Openings: Fabricate framed prepared openings from 20 gauge galvanized steel, unless otherwise indicated.

c. Insulation: Provide duct insulation in accordance with Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS continuous through sleeves and prepared openings except firewall penetrations. Terminate duct insulation at fire dampers and flexible connections. For duct handling air at or below 60 degrees F, provide insulation continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air.

3.7 FIELD PAINTING OF MECHANICAL EQUIPMENT

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except clean to bare metal on metal surfaces subject to temperatures in excess of 120 degrees F. Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Provide aluminum or light gray finish coat.

a. Temperatures less than 120 degrees F: Immediately after cleaning, apply one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat to metal surfaces subject to temperatures less than 120 degrees F.

b. Temperatures between 120 and 400 degrees F: Apply two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of two mils to metal surfaces subject to temperatures between 120 and 400 degrees F.

c. Temperatures greater than 400 degrees F: Apply two coats of 315 degrees C 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of two mils to metal surfaces subject to temperatures greater than 400 degrees F.

3.7.1 Finish Painting

The requirements for finish painting of items only primed at the factory, and surfaces not specifically noted otherwise, are specified in Section 09 90 00 PAINTS AND COATINGS.

3.8 DAMPER ACCEPTANCE TEST

Operate all fire dampers and smoke dampers under normal operating conditions, prior to the occupancy of a building to determine that they function properly. Test each fire damper equipped with fusible link. Test dynamic fire dampers with the air handling and distribution system.
running. Reset all fire dampers with the fusible links connected after acceptance testing. To ensure optimum operation and performance, install the damper so it is square and free from racking.

3.9 TESTING, ADJUSTING, AND BALANCING

The requirements for testing, adjusting, and balancing are specified in Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC. Begin testing, adjusting, and balancing only when the air supply and distribution, including controls, has been completed, with the exception of performance tests.

3.10 PERFORMANCE TESTS

After testing, adjusting, and balancing is complete as specified, test each system as a whole to see that all items perform as integral parts of the system and temperatures and conditions are evenly controlled throughout the building. Make corrections and adjustments as necessary to produce the conditions indicated or specified. Conduct capacity tests and general operating tests by an experienced engineer. Provide tests that cover a period of not less than 2 days and demonstrate that the entire system is functioning according to the specifications. Make coincidental chart recordings at points indicated on the drawings for the duration of the time period and record the temperature at space thermostats or space sensors, the humidity at space humidistats or space sensors and the ambient temperature and humidity in a shaded and weather protected area.

3.11 CLEANING AND ADJUSTING

Provide a temporary bypass for water coils to prevent flushing water from passing through coils. Inside of air terminal units and unit ventilators, thoroughly clean ducts, plenums, and casing of debris and blow free of small particles of rubbish and dust before installing outlet faces. Wipe equipment clean, with no traces of oil, dust, dirt, or paint spots. Provide temporary filters prior to startup of all fans that are operated during construction, and install new filters after all construction dirt has been removed from the building, and the ducts, plenums, casings, and other items specified have been vacuum cleaned. Maintain system in this clean condition until final acceptance. Properly lubricate bearings with oil or grease as recommended by the manufacturer. Tighten belts to proper tension. Adjust control valves and other miscellaneous equipment requiring adjustment to setting indicated or directed. Adjust fans to the speed indicated by the manufacturer to meet specified conditions.

3.12 OPERATION AND MAINTENANCE TRAINING

Conduct a training course for the members of the operating staff as designated by the Contracting Officer. Make the training period consist of a total of 8 hours of normal working time and start it after all work specified herein is functionally completed and the Performance Tests have been approved. Conduct field instruction that covers all of the items contained in the Operation and Maintenance Manuals as well as demonstrations of routine maintenance operations. Notify the Contracting Officer at least 14 days prior to the date of proposed conduct of the training course.

-- End of Section --
SECTION 23 05 93
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 203 (1990; R 2011) Field Performance Measurements of Fan Systems

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASSOCIATED AIR BALANCE COUNCIL (AABC)

AABC MN-4 (1996) Test and Balance Procedures

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)

NEBB PROCEDURAL STANDARDS (2005) Procedural Standards for TAB (Testing, Adjusting and Balancing) Environmental Systems

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

1.2 DEFINITIONS

b. COTR: Contracting Officer's Technical Representative.
c. HVAC: Heating, ventilating, and air conditioning; or heating, ventilating, and cooling.
d. NEBB: National Environmental Balancing Bureau

e. Out-of-tolerance data: Pertains only to field acceptance testing of FinalTAB report. When applied to TAB work this phase means "a measurement taken during TAB field acceptance testing which does not fall within the range of plus 10 to minus 10 percent of the original measurement reported on the TAB Report for a specific parameter."

f. Season of maximum heating load: The time of year when the outdoor temperature at the project site remains within plus or minus 30 degrees Fahrenheit of the project site's winter outdoor design temperature, throughout the period of TAB data recording.

g. Season of maximum cooling load: The time of year when the outdoor temperature at the project site remains within plus or minus 5 degrees Fahrenheit of the project site's summer outdoor design temperature, throughout the period of TAB data recording.

h. Season 1, Season 2: Depending upon when the project HVAC is completed and ready for TAB, Season 1 is defined, thereby defining Season 2. Season 1 could be the season of maximum heating load, or the season of maximum cooling load.

k. Sound measurements terminology: Defined in AABC MN-1, NEBB MASV, or SMACNA 1858 (TABB).

l. TAB: Testing, adjusting, and balancing (of HVAC systems).

m. TAB'd: HVAC Testing/Adjusting/Balancing procedures performed.

n. TAB Agency: TAB Firm

o. TAB team field leader: TAB team field leader

p. TAB team supervisor: TAB team engineer.

q. TAB team technicians: TAB team assistants.

r. TABB: Testing Adjusting and Balancing Bureau.

1.2.1 Similar Terms

In some instances, terminology differs between the Contract and the TAB Standard primarily because the intent of this Section is to use the industry standards specified, along with additional requirements listed herein to produce optimal results.

The following table of similar terms is provided for clarification only. Contract requirements take precedent over the corresponding AABC, NEBB, or TABB requirements where differences exist.
SIMILAR TERMS

<table>
<thead>
<tr>
<th>Contract Term</th>
<th>AABC Term</th>
<th>NEBB Term</th>
<th>TABB Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB Specialist</td>
<td>TAB Engineer</td>
<td>TAB Supervisor</td>
<td>TAB Supervisor</td>
</tr>
<tr>
<td>Systems Readiness Check</td>
<td>Construction Phase Inspection</td>
<td>Field Readiness Check & Preliminary Field Procedures</td>
<td>Field Readiness Check & Prelim. Field Procedures</td>
</tr>
</tbody>
</table>

1.3 WORK DESCRIPTION

The work includes and testing, adjusting, and balancing (TAB) of new heating, ventilating, and cooling (HVAC) air distribution systems including equipment and performance data, and ducts which are located within, on, under, between, and adjacent to buildings.

Perform TAB in accordance with the requirements of the TAB procedural standard recommended by the TAB trade association that approved the TAB Firm's qualifications. Comply with requirements of AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 (TABB) as supplemented and modified by this specification section. All recommendations and suggested practices contained in the TAB procedural standards are considered mandatory.

1.3.1 Air Distribution Systems

Test, adjust, and balance systems (TAB) in compliance with this section. Obtain Contracting Officer's written approval before applying insulation to exterior of air distribution systems as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

1.3.2 TAB SCHEMATIC DRAWINGS

Show the following information on TAB Schematic Drawings:

1. A unique number or mark for each piece of equipment or terminal.
2. Air quantities at air terminals.
3. Air quantities and temperatures in air handling unit schedules.
4. Water quantities and temperatures in thermal energy transfer equipment schedules.
5. Water quantities and heads in pump schedules.
6. Water flow measurement fittings and balancing fittings.
The Testing, Adjusting, and Balancing (TAB) Specialist must review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the effective and accurate TAB of the system and systems readiness check. The TAB Specialist must provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

Submit three copies of the TAB Schematic Drawings and Report Forms to the Contracting Officer, no later than 21 days prior to the start of TAB field measurements.

1.3.3 Related Requirements

Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS applies to work specified in this section.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals
 TAB Firm; G
 Designation of TAB team assistants; G
 Designation of TAB team engineer; Gor TAB Specialist; G
 Designation of TAB team field leader; G

SD-02 Shop Drawings
 TAB Schematic Drawings and Report Forms; G

SD-03 Product Data
 Equipment and Performance Data; G
 TAB Related HVAC Submittals; G
 A list of the TAB Related HVAC Submittals, no later than 7 days after the approval of the TAB team engineer and assistant.
 TAB Procedures; G
 Proposed procedures for TAB, submitted with the TAB Schematic Drawings and Report Forms.
 Calibration; G
 Systems Readiness Check; G
 TAB Execution; G

SD-06 Test Reports
1.5 QUALITY ASSURANCE

1.5.1 Independent TAB Agency and Personnel Qualifications

To secure approval for the proposed agency, submit information certifying that the TAB agency is a first tier subcontractor who is not affiliated with any other company participating in work on this contract, including design, furnishing equipment, or construction. Further, submit the following, for the agency, to Contracting Officer for approval:

a. Independent AABC or NEBB or TABB TAB agency:

 TAB agency: AABC registration number and expiration date of current certification; or NEBB certification number and expiration date of current certification; or TABB certification number and expiration date of current certification.

 TAB team supervisor: Name and copy of AABC or NEBB or TABB TAB supervisor certificate and expiration date of current certification.

 TAB team field leader: Name and documented evidence that the team field leader has satisfactorily performed full-time supervision of TAB work in the field for not less than 3 years immediately preceding this contract's bid opening date.

 TAB team field technicians: Names and documented evidence that each field technician has satisfactorily assisted a TAB team field leader in performance of TAB work in the field for not less than one year immediately preceding this contract's bid opening date.
Current certificates: Registrations and certifications are current, and valid for the duration of this contract. Renew Certifications which expire prior to completion of the TAB work, in a timely manner so that there is no lapse in registration or certification. TAB agency or TAB team personnel without a current registration or current certification are not to perform TAB work on this contract.

b. TAB Team Members: TAB team approved to accomplish work on this contract are full-time employees of the TAB agency. No other personnel is allowed to do TAB work on this contract.

c. Replacement of TAB team members: Replacement of members may occur if each new member complies with the applicable personnel qualifications and each is approved by the Contracting Officer.

1.5.2 TAB Standard

Perform TAB in accordance with the requirements of the standard under which the TAB Firm's qualifications are approved, i.e., AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 unless otherwise specified herein. All recommendations and suggested practices contained in the TAB Standard are considered mandatory. Use the provisions of the TAB Standard, including checklists, report forms, etc., as nearly as practical, to satisfy the Contract requirements. Use the TAB Standard for all aspects of TAB, including qualifications for the TAB Firm and Specialist and calibration of TAB instruments. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the TAB Standard, adhere to the manufacturer's recommendations.

All quality assurance provisions of the TAB Standard such as performance guarantees are part of this contract. For systems or system components not covered in the TAB Standard, TAB procedures must be developed by the TAB Specialist. Where new procedures, requirements, etc., applicable to the Contract requirements have been published or adopted by the body responsible for the TAB Standard used (AABC, NEBB, or TABB), the requirements and recommendations contained in these procedures and requirements are considered mandatory, including the latest requirements of ASHRAE 62.1.

1.5.3 Qualifications

1.5.3.1 TAB Firm

The TAB Firm must be either a member of AABC or certified by the NEBB or the TABB and certified in all categories and functions where measurements or performance are specified on the plans and specifications.

Certification must be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, the Contractor must immediately notify the Contracting Officer and submit another TAB Firm for approval. Any firm that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections to be performed by the TAB Firm will be considered invalid if the TAB Firm loses its certification prior to Contract completion and must be performed by an approved successor.
These TAB services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The TAB Firm must be a prime subcontractor of the Contractor and be financially and corporately independent of the mechanical subcontractor, reporting directly to and paid by the Contractor.

1.5.3.2 TAB Specialist

The TAB Specialist must be either a member of AABC, an experienced technician of the Firm certified by the NEBB, or a Supervisor certified by the TABB. The certification must be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, immediately notify the Contracting Officer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB Specialist will be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor.

1.5.3.3 TAB Specialist Responsibilities

TAB Specialist responsibilities include all TAB work specified herein and in related sections under his direct guidance. The TAB specialist is required to be onsite on a daily basis to direct TAB efforts. The TAB Specialist must participate in the commissioning process.

1.5.3.4 TAB Related HVAC Submittals

The TAB Specialist must prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. Accompany the submittals identified on this list with a letter of approval signed and dated by the TAB Specialist when submitted to the Government. Ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals.

1.5.4 Responsibilities

The Contractor is responsible for ensuring compliance with the requirements of this section. The following delineation of specific work responsibilities is specified to facilitate TAB execution of the various work efforts by personnel from separate organizations. This breakdown of specific duties is specified to facilitate adherence to the schedule listed in paragraph entitled "TAB Submittal and Work Schedule."

1.5.4.1 Contractor

a. TAB personnel: Ensure that the TAB work is accomplished by a group meeting the requirements specified in paragraph entitled "TAB Personnel Qualification Requirements."

b. Pre-TAB meeting: Attend the meeting with the TAB Supervisor, and ensure that a representative is present for the sheetmetal contractor, mechanical contractor, electrical contractor, and automatic temperature controls contractor.
by the TAB Specialist will be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor.

1.5.3.3 TAB Specialist Responsibilities

TAB Specialist responsibilities include all TAB work specified herein and in related sections under his direct guidance. The TAB specialist is required to be onsite on a daily basis to direct TAB efforts. The TAB Specialist must participate in the commissioning process.

1.5.3.4 TAB Related HVAC Submittals

The TAB Specialist must prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. Accompany the submittals identified on this list with a letter of approval signed and dated by the TAB Specialist when submitted to the Government. Ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals.

1.5.4 Responsibilities

The Contractor is responsible for ensuring compliance with the requirements of this section. The following delineation of specific work responsibilities is specified to facilitate TAB execution of the various work efforts by personnel from separate organizations. This breakdown of specific duties is specified to facilitate adherence to the schedule listed in paragraph entitled "TAB Submittal and Work Schedule."

1.5.4.1 Contractor

a. TAB personnel: Ensure that the TAB work is accomplished by a group meeting the requirements specified in paragraph entitled "TAB Personnel Qualification Requirements."

b. Pre-TAB meeting: Attend the meeting with the TAB Supervisor, and ensure that a representative is present for the sheetmetal contractor, mechanical contractor, electrical contractor, and automatic temperature controls contractor.

c. HVAC documentation: Furnish one complete set of the following HVAC-related documentation to the TAB agency:

 (1) Contract drawings and specifications
 (2) Approved submittal data for equipment
 (3) Construction work schedule
 (4) Up-to-date revisions and change orders for the previously listed items

d. Submittal and work schedules: Ensure that the schedule for submittals and work required by this section and specified in paragraph entitled "TAB Submittal and Work Schedule," is met.
(3) HVAC system filters are clean for TAB field work.

i. Advance notice: Furnish to the Contracting Officer with advance written notice for the commencement of the TAB field work.

j. Insulation work: Ensure that openings in duct and machinery insulation covers for TAB test ports are marked, closed and sealed.

1.5.4.2 TAB Agency

Provide the services of a TAB team which complies with the requirements of paragraph entitled "Independent TAB Agency Personnel Qualifications". The work to be performed by the TAB agency is limited to testing, adjusting, and balancing of HVAC air and water systems to satisfy the requirements of this specification section.

1.5.4.3 TAB Team Supervisor

a. Overall management: Supervise and manage the overall TAB team work effort, including preliminary and technical TAB procedures and TAB team field work.

b. Pre-TAB meeting: Attend meeting with Contractor.

c. Design review report: Review project specifications and accompanying drawings to verify that the air systems and water systems are designed in such a way that the TAB engineer can accomplish the work in compliance with the requirements of this section. Verify the presence and location of permanently installed test ports and other devices needed, including gauge cocks, thermometer wells, flow control devices, circuit setters, balancing valves, and manual volume dampers.

d. Support required: Specify the technical support personnel required from the Contractor other than the TAB agency; such as factory representatives for temperature controls or for complex equipment. Inform the Contractor in writing of the support personnel needed and when they are needed. Furnish the notice as soon as the need is anticipated, either with the design review report, or the pre-field engineering report, the during the TAB field work.

e. Pre-field engineering report: Utilizing the following HVAC-related documentation; contract drawings and specifications, approved submittal data for equipment, up-to-date revisions and change orders; prepare this report.

f. Prerequisite HVAC work checklist: Ensure the Contractor gets a copy of this checklist at the same time as the pre-field engineering report is submitted.

g. Technical Assistance for TAB Work: Provide immediate technical assistance to the TAB field team for the TAB work.

(1) TAB field visit: Near the end of the TAB field work effort, visit the contract site to inspect the HVAC installation and the progress of the TAB field work. Conduct site visit full-time for a minimum of one 8 hour workday duration. Review the TAB final report data and certify the TAB final report.

h. Certified TAB report: Certify the TAB report. This certification
includes the following work:

(1) Review: Review the TAB field data report. From this field report, prepare the certified TAB report.

(2) Verification: Verify adherence, by the TAB field team, to the TAB plan prescribed by the pre-field engineering report and verify adherence to the procedures specified in this section.

i. Design/Construction deficiencies: Within 3 working days after the TAB Agency has encountered any design or construction deficiencies, the TAB Supervisor must submit written notification directly to the Contracting Officer, with a separate copy to the Contractor, of all such deficiencies. Provide in this submittal a complete explanation, including supporting documentation, detailing deficiencies. Where deficiencies are encountered that are believed to adversely impact successful completion of TAB, the TAB Agency must issue notice and request direction in the notification submittal.

j. TAB Field Check: The TAB team supervisor must attend and supervise TAB field check.

1.5.4.4 TAB Team Field Leader

a. Field manager: Manage, in the field, the accomplishment of the work specified in Part 3, "Execution."

b. Full time: Be present at the contract site when TAB field work is being performed by the TAB team; ensure day-to-day TAB team work accomplishments are in compliance with this section.

c. Prerequisite HVAC work: Do not bring the TAB team to the contract site until a copy of the prerequisite HVAC Checklist, with all work items certified by the Contractor to be working as designed, reaches the office of the TAB Agency.

1.5.5 Test Reports

1.5.5.1 Certified TAB Reports

Submit: TAB Report in the following manner:

a. Report format: Submit the completed pre-field data forms approved in the pre-field TAB Engineering Report completed by TAB field team, reviewed and certified by the TAB supervisor. Bind the report with a waterproof front and back cover. Include a table of contents identifying by page number the location of each report. Report forms and report data must be typewritten. Handwritten report forms or report data are not acceptable.

b. Temperatures: On each TAB report form reporting TAB work accomplished on HVAC thermal energy transfer equipment, include the indoor and outdoor dry bulb temperature range and indoor and outdoor wet bulb temperature range within which the TAB data was recorded. Include in the TAB report continuous time versus temperature recording data of wet and dry bulb temperatures for the rooms, or zones, as designated in the following list:

(1) Measure and compile data on a continuous basis for the period in
which TAB work affecting those rooms is being done.

(2) Measure and record data only after the HVAC systems installations are complete, the systems fully balanced and the HVAC systems controls operating in fully automatic mode.

(3) Data may be compiled using direct digital controls trend logging where available. Otherwise, temporarily install calibrated time versus temperature/humidity recorders for this purpose. The HVAC systems and controls must be fully operational a minimum of 24 hours in advance of commencing data compilation. Include the specified data in the TAB Report.

c. System Diagrams: Provide updated diagrams with final installed locations of all terminals and devices, any numbering changes, and actual test locations. Use a key numbering system on the diagram which identifies each outlet contained in the outlet airflow report sheets.

d. Static Pressure Profiles: Report static pressure profiles for air duct systems. Report static pressure data for all supply, return, relief, exhaust and outside air ducts for the systems listed. Include the following in the static pressure report data, in addition to AABC/NEBB/TABB required data:

(1) Report supply fan, return fan, relief fan, and exhaust fan inlet and discharge static pressures.

(2) Report static pressure drop across chilled water coils, DX coils, hot water coils, steam coils, electric resistance heating coils and heat reclaim devices installed in unit cabinery or the system ductwork.

(3) Report static pressure drop across outside air, return air, and supply air automatic control dampers, both proportional and two-position, installed in unit cabinery.

(4) Report static pressure drop across air filters, acoustic silencers, moisture eliminators, air flow straighteners, air flow measuring stations or other pressure drop producing specialty items installed in unit cabinery, or in the system ductwork. Examples of these specialty items are smoke detectors, white sound generators, RF shielding, wave guides, security bars, blast valves, small pipes passing through ductwork, and duct mounted humidifiers.

Do not report static pressure drop across duct fittings provided for the sole purpose of conveying air, such as elbows, transitions, offsets, plenums, manual dampers, and branch takes-offs.

(5) Report static pressure drop across outside air and relief/exhaust air louvers.

e. Duct Traverses: Report duct traverses for main supply, return, exhaust, relief and outside air ducts. This includes all ducts, including those which lack 7 1/2 duct diameters upstream and 2 1/2 duct diameters downstream of straight duct unobstructed by duct fittings/offsets/elbows. The TAB Agency must evaluate and report findings on the duct traverses taken. Evaluate the suitability of the
duct traverse measurement based on satisfying the qualifications for a pilot traverse plane as defined by AMCA 203, "Field Measurements", Section 8, paragraph 8.3, "Location of Traverse Plane."

f. Instruments: List the types of instruments actually used to measure the tab data. Include in the listing each instrument’s unique identification number, calibration date, and calibration expiration date.

Instrumentation, used for taking wet bulb temperature readings must provide accuracy of plus or minus 5 percent at the measured face velocities. Submit instrument manufacturer's literature to document instrument accuracy performance is in compliance with that specified.

g. Certification: Include the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

h. Performance Curves: The TAB Supervisor must include, in the TAB Reports, factory pump curves and fan curves for pumps and fans TAB'd on the job.

i. Calibration Curves: The TAB Supervisor must include, in the TAB Reports, a factory calibration curve for installed flow control balancing valves, flow venturi's and flow orifices TAB'd on the job.

1.6 SEQUENCING AND SCHEDULING

1.6.1 TAB Submittal and Work Schedule

Submit this schedule, and TAB Schematic Drawings, adapted for this particular contract, to the Contracting Officer (CO) for review and approval. Include with the submittal the planned calendar dates for each submittal or work item. Resubmit an updated version for CO approval every 90 calendar days days. Compliance with the following schedule is the Contractor's responsibility.

Qualify TAB Personnel: Within 45 calendar days after date of contract award, submit TAB agency and personnel qualifications.

Pre-TAB Meeting: Within 30 calendar days after the date of approval of the TAB agency and personnel, meet with the COTR.

Design Review Report: Within 60 calendar days after the date of the TAB agency personnel qualifications approval, submit design review report.

Pre-Field TAB Engineering Report: Within 21 calendar days after approval of the TAB agency Personnel Qualifications, submit the Pre-Field TAB Engineering Report.

Prerequisite HVAC Work Check Out List and Advanced Notice For TAB Field Work: At a minimum of 115 calendar days prior to CCD, submit prerequisite HVAC work check out list certified as complete, and submit advance notice of commencement of TAB field work.

TAB Field Work: At a minimum of 90 calendar days prior to CCD, and when the ambient temperature is within limits, accomplish TAB field work; submit TAB report; and conduct field check.

Complete TAB Work: Prior to CCD, complete all TAB work.
1.6.1.1 Design Review Report

Submit typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the duct leakage testing work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. State that no deficiencies are evident if that is the case.

1.6.1.2 Pre-Field TAB Engineering Report

Submit report containing the following information:

a. Step-by-step TAB procedure:

(1) Strategy: Describe the method of approach to the TAB field work from start to finish. Include in this description a complete methodology for accomplishing each seasonal TAB field work session.

(2) Air System Diagrams: Use the contract drawings and duct fabrication drawings if available to provide air system diagrams in the report showing the location of all terminal outlet supply, return, exhaust and transfer registers, grilles and diffusers. Use a key numbering system on the diagrams which identifies each outlet contained in the outlet airflow report sheets. Show intended locations of all traverses and static pressure readings.

(3) Procedural steps: Delineate fully the intended procedural steps to be taken by the TAB field team to accomplish the required TAB work of each air distribution system and each water distribution system. Include intended procedural steps for TAB work for subsystems and system components.

b. Pre-field data: Submit AABC or NEBB or SMACNA 1780 data report forms with the following pre-field information filled in:

(1) Design data obtained from system drawings, specifications, and approved submittals.

(2) Notations detailing additional data to be obtained from the contract site by the TAB field team.

(3) Designate the actual data to be measured in the TAB field work.

(4) Provide a list of the types of instruments, and the measuring range of each, which are anticipated to be used for measuring in the TAB field work. By means of a keying scheme, specify on each TAB data report form submitted, which instruments will be used for measuring each item of TAB data. If the selection of which instrument to use, is to be made in the field, specify from which instruments the choice will be made. Place the instrument key number in the blank space where the measured data would be entered.

c. Prerequisite HVAC work checkout list: Provide a list of inspections and work items which are to be completed by the Contractor. This list must be acted upon and completed by the Contractor and then submitted and approved by the Contracting Officer prior to the TAB team coming to the contract site.
At a minimum, a list of the applicable inspections and work items listed in the NEBB PROCEDURAL STANDARDS, Section III, "Preliminary TAB Procedures" under paragraphs titled, "Air Distribution System Inspection" and "Hydronic Distribution System Inspection" must be provided for each separate system to be TAB'd.

1.7 WARRANTY

Furnish workmanship and performance warranty for the TAB system work performed for a period not less than 1 year from the date of Government acceptance of the work; issued directly to the Government. Include provisions that if within the warranty period the system shows evidence of major performance deterioration, or is significantly out of tolerance, resulting from defective TAB workmanship, the corrective repair or replacement of the defective materials and correction of the defective workmanship is the responsibility of the TAB firm. Perform corrective action that becomes necessary because of defective materials and workmanship while system TAB is under warranty 7 days after notification, unless additional time is approved by the Contracting Officer. Failure to perform repairs within the specified period of time constitutes grounds for having the corrective action and repairs performed by others and the cost billed to the TAB firm. The Contractor must also provide a 1 year contractor installation warranty.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

3.1 WORK DESCRIPTIONS OF PARTICIPANTS

Comply with requirements of this section as specified in Appendix A WORK DESCRIPTIONS OF PARTICIPANTS.

3.2 PRE-TAB MEETING

Meet with the Contracting Officer's technical representative (COTR) to develop a mutual understanding relative to the details of the TAB work requirements. Ensure that the TAB supervisor is present at this meeting. Requirements to be discussed include required submittals, work schedule, and field quality control.

3.3 TAB PROCEDURES

3.3.1 TAB Field Work

Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents.

That is, comply with the the requirements of AABC MN-1 or SMACNA 1780 (TABB) and SMACNA 1858 (TABB), except as supplemented and modified by this section.

Provide instruments and consumables required to accomplish the TAB work. Calibrate and maintain instruments in accordance with manufacturer's written procedures.
Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents. Conduct TAB work, including measurement accuracy, and sound measurement work in conformance with the AABC MN-1 and AABC MN-4, or NEBB TABES and NEBB MASM, or SMACNA 1780 (used by TABB) and SMACNA 1858 sound measurement procedures, except as supplemented and modified by this section.

3.3.2 Preliminary Procedures

Use the approved pre-field engineering report as instructions and procedures for accomplishing TAB field work. TAB engineer is to locate, in the field, test ports required for testing. It is the responsibility of the sheet metal contractor to provide and install test ports as required by the TAB engineer.

3.3.3 TAB Air Distribution Systems

3.3.3.1 Units With Coils

Report heating and cooling performance capacity tests for hot water, chilled water, DX and steam coils for the purpose of verifying that the coils meet the indicated design capacity. Submit the following data and calculations with the coil test reports:

a. For air handlers with capacities greater than 7.5 tons (90,000 Btu) cooling, such as factory manufactured units, central built-up units and rooftop units, conduct capacity tests in accordance with AABC MN-4, procedure 3.5, "Coil Capacity Testing."

Do not determine entering and leaving wet and dry bulb temperatures by single point measurement, but by the average of multiple readings in compliance with paragraph 3.5-5, "Procedures", (in subparagraph d.) of AABC MN-4, Procedure 3.5, "Coil Capacity Testing."

Submit part-load coil performance data from the coil manufacturer converting test conditions to design conditions; use the data for the purpose of verifying that the coils meet the indicated design capacity in compliance with AABC MN-4, Procedure 3.5, "Coil Capacity Testing," paragraph 3.5.7, "Actual Capacity Vs. Design Capacity" (in subparagraph c.).

b. For units with capacities of 7.5 tons (90,000 Btu) or less, such as fan coil units, duct mounted reheat coils associated with VAV terminal units, and unitary units, such as through-the-wall heat pumps:

Determine the apparent coil capacity by calculations using single point measurement of entering and leaving wet and dry bulb temperatures; submit the calculations with the coil reports.

3.3.3.2 Fan Coils

Fan coil unit systems including fans, coils, ducts, plenums, and air distribution devices for supply air, return air, and outside air.
3.3.4 TAB Work on Performance Tests Without Seasonal Limitations

3.3.4.1 Performance Tests

In addition to the TAB proportionate balancing work on the air distribution systems and the water distribution systems, accomplish TAB work on the HVAC systems which directly transfer thermal energy. TAB the operational performance of the heating systems and cooling systems.

3.3.4.2 Ambient Temperatures

On each tab report form used for recording data, record the outdoor and indoor ambient dry bulb temperature range and the outdoor and indoor ambient wet bulb temperature range within which the report form's data was recorded. Record these temperatures at beginning and at the end of data taking.

3.3.5 Workmanship

Conduct TAB work on the HVAC systems until measured flow rates are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents. This TAB work includes adjustment of balancing valves, balancing dampers, and sheaves. Further, this TAB work includes changing out fan sheaves and pump impellers if required to obtain air and water flow rates specified or indicated. If, with these adjustments and equipment changes, the specified or indicated design flow rates cannot be attained, contact the Contracting Officer for direction.

3.3.6 Deficiencies

Strive to meet the intent of this section to maximize the performance of the equipment as designed and installed. However, if deficiencies in equipment design or installation prevent TAB work from being accomplished within the range of design values specified in the paragraph entitled "Workmanship," provide written notice as soon as possible to the Contractor and the Contracting Officer describing the deficiency and recommended correction.

Responsibility for correction of installation deficiencies is the Contractor's. If a deficiency is in equipment design, call the TAB team supervisor for technical assistance. Responsibility for reporting design deficiencies to Contractor is the TAB team supervisor's.

3.3.7 TAB Reports

Additional requirements for TAB Reports are specified in Appendix B REPORTS – TAB

After completion of the TAB work, prepare a pre-final TAB report using the reporting forms approved in the pre-field engineering report. Data required by those approved data report forms is to be furnished by the TAB team. Except as approved otherwise in writing by the Contracting Officer, the TAB work and the TAB report is considered incomplete until the TAB work is accomplished to within the accuracy range specified in the paragraph entitled "Workmanship" of this section.

Prepare the report neatly and legibly; the pre-final TAB report is the final TAB report minus the TAB supervisor's review and certification. Obtain, at the contract site, the TAB supervisor's review and certification.
of the TAB report.

Verbally notify the COTR that the field check of the TAB report data can commence; give this verbal notice 48 hours in advance of field check commencement. Do not schedule field check of the TAB report until the specified workmanship requirements have been met or written approval of the deviations from the requirements have been received from the Contracting Officer.

3.3.8 Quality Assurance - COTR TAB Field Acceptance Testing

3.3.8.1 TAB Field Acceptance Testing

During the field acceptance testing, verify, in the presence of the COTR, random selections of data (water, air quantities, air motion, recorded in the TAB Report. Points and areas for field acceptance testing are to be selected by the COTR. Measurement and test procedures are the same as approved for TAB work for the TAB Report.

Field acceptance testing includes verification of TAB Report data recorded for the following equipment groups:

Group 1: All air handling units.

Group 2: 25 percent of the supply diffusers, registers, grilles associated with constant volume air handling units.

Group 3: 100 percent of the supply fans.

Further, if any data on the TAB Report for Groups 2 through 4 is found not to fall within the range of plus 10 to minus 10 percent of the TAB Report data, additional group data verification is required in the presence of the COTR. Verify TAB Report data for one additional piece of equipment in that group. Continue this additional group data verification until out-of-tolerance data ceases to be found.

3.3.8.2 Additional COTR TAB Field Acceptance Testing

If any of the acceptance testing measurements for a given equipment group is found not to fall within the range of plus 10 to minus 10 percent of the TAB Report data, terminate data verification for all affected data for that group. The affected data for the given group will be disapproved. Make the necessary corrections and prepare a revised TAB Report. Reschedule acceptance testing of the revised report data with the COTR. Further, if any data on the TAB Report for a given field acceptance test group is out-of-tolerance, then field test data for one additional field test group as specified herein. Continue this increase field test work until out-of-tolerance data ceases to be found. This additional field testing is up and above the original 25 percent of the of reported data entries to be field tested.

If there are no more similar field test groups from which to choose, additional field testing from another, but different, type of field testing group must be tested.

3.3.8.3 Prerequisite for Approval

Compliance with the field acceptance testing requirements of this section is a prerequisite for the final Contracting Officer approval of the TAB
3.4 MARKING OF SETTINGS

Upon the final TAB work approval, permanently mark the settings of HVAC adjustment devices including valves, gauges, splitters, and dampers so that adjustment can be restored if disturbed at any time. Provide permanent markings clearly indicating the settings on the adjustment devices which result in the data reported on the submitted TAB report.

3.5 MARKING OF TEST PORTS

The TAB team is to permanently and legibly mark and identify the location points of the duct test ports. If the ducts have exterior insulation, make these markings on the exterior side of the duct insulation. Show the location of test ports on the as-built mechanical drawings with dimensions given where the test port is covered by exterior insulation.

3.6 APPENDICES

Appendix A WORK DESCRIPTIONS OF PARTICIPANTS
Appendix B REPORTS - TAB
Appendix C TAB SUBMITTAL AND WORK SCHEDULE
Appendix A

WORK DESCRIPTIONS OF PARTICIPANTS

The Contractor is responsible for ensuring compliance with all requirements of this specification section. However, the following delineation of specific work items is provided to facilitate and co-ordinate execution of the various work efforts by personnel from separate organizations.

1. Contractor

a. HVAC documentation: Provide pertinent contract documentation to the TAB Firm, to include the following: the contract drawings and specifications; copies of the approved submittal data for all HVAC equipment, air distribution devices, and air/water measuring/balancing devices; the construction work schedule; and other applicable documents requested by the TAB Firm. Provide the TAB Firm copies of contract revisions and modifications as they occur.

b. Schedules: Ensure the requirements specified under the paragraph "TAB Schedule" are met.

c. Pre-TAB meeting: Arrange and conduct the Pre-TAB meeting. Ensure that a representative is present for the sheet metal contractor, the mechanical contractor, the electrical contractor, and the automatic temperature controls contractor.

d. Coordinate Support: Provide and coordinate support personnel required by the TAB Firm in order to accomplish the TAB field work. Support personnel may include factory representatives, HVAC controls installers, HVAC equipment mechanics, sheet metal workers, pipe fitters, and insulators. Ensure support personnel are present at the work site at the times required.

e. Correct Deficiencies: Ensure the notifications of Construction Deficiencies are provided as specified herein. Refer to the paragraph entitled "Construction Deficiencies." Correct each deficiency as soon as practical with the Contracting Officer, and submit revised schedules and other required documentation.

f. Pre-TAB Work Checklists: Complete check out and debugging of HVAC equipment, ducts, and controls prior to the TAB engineer arriving at the project site to begin the TAB work. Debugging includes searching for and eliminating malfunctioning elements in the HVAC system installations, and verifying all adjustable devices are functioning as designed. Include as pre-TAB work checklist items, the deficiencies pointed out by the TAB team supervisor in the design review report.

Prior to the TAB field team's arrival, ensure completion of the applicable inspections and work items listed in the TAB team supervisor's TAB Work Procedures Summary. Do not allow the TAB team to commence TAB field work until all of the following are completed.

g. Give Notice of Testing: Submit advance notice of TAB field work accompanied by completed prerequisite HVAC Work List

h. Insulation work: Ensure the duct and piping systems are properly insulated and vapor sealed upon the successful completion and
acceptance of the TAB work.

2. TAB Team Supervisor

a. Overall management: Supervise and manage the overall TAB team work effort, including preliminary and technical TAB procedures and TAB team field work.

b. Schedule: Ensure the requirements specified under the paragraph "TAB Schedule" are met.

c. Submittals: Provide the submittals specified herein.

d. Pre-TAB meeting: Attend meeting with Contractor. Ensure TAB personnel that will be involved in the TAB work under this contract attend the meeting.

e. Design Review Report: Submit typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the duct leakage testing work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. State that no deficiencies are evident if that is the case.

f. Support required: Specify the technical support personnel required from the Contractor other than the TAB agency; such as factory representatives for temperature controls or for complex equipment.

Inform the Contractor in writing of the support personnel needed and when they are needed. Furnish the notice as soon as the need is anticipated, either with the design review report, or the TAB Procedures Summary, the during the TAB field work.

Ensure the Contractor is properly notified and aware of all support personnel needed to perform the TAB work. Maintain communication with the Contractor regarding support personnel throughout the duration of the TAB field work, including the TAB field acceptance testing checking.

Ensure all inspections and verifications for the Pre-TAB Checklists are completely and successfully conducted before TAB field work is performed.

g. Technical Assistance: Provide technical assistance to the TAB field work.

h. Deficiencies Notification: Ensure the notifications of Construction Deficiencies are provided as specified herein. Comply with requirements of the paragraph entitled "Construction Deficiencies." Resolve each deficiency as soon as practical and submit revised schedules and other required documentation.

i. Procedures: Develop the required TAB procedures for systems or system components not covered in the TAB Standard.

3. TAB Team Field Leader

a. Field manager: Manage, in the field, the accomplishment of the work specified in Part 3, "Execution."

b. Full time: Be present at the contract site when TAB field work is
being performed by the TAB team; ensure day-to-day TAB team work accomplishments are in compliance with this section.

c. Prerequisite HVAC work: Do not bring the TAB team to the contract site until a copy of the prerequisite HVAC work list, with all work items certified by the Contractor to be working as designed, reaches the office of the TAB Agency.
Appendix B

REPORTS - TAB

All submitted documentation must be typed, neat, and organized. All reports must have a waterproof front and back cover, a title page, a certification page, sequentially numbered pages throughout, and a table of contents. Tables, lists, and diagrams must be titled. Generate and submit for approval the following documentation:

1. TAB Work Execution Schedule

Submit a detailed schedule indicating the anticipated calendar date for each submittal and each portion of work required under this section. For each work entry, indicate the support personnel (such as controls provider, HVAC mechanic, etc.) that are needed to accomplish the work. Arrange schedule entries chronologically.

2. TAB Procedures Summary

Submit a detailed narrative describing all aspects of the TAB field work to be performed. Include the following:

a. A list of the intended procedural steps for the TAB field work from start to finish. Indicate how each type of data measurement will be obtained. Include what Contractor support personnel are required for each step, and the tasks they need to perform.

b. A list of the project's submittals that are needed by the TAB Firm in order to meet this Contract's requirements.

c. The schematic drawings to be used in the required reports, which may include building floor plans, mechanical room plans, duct system plans, and equipment elevations. Indicate intended TAB measurement locations, including where test ports need to be provided by the Contractor.

d. The data presentation forms to be used in the report, with the preliminary information and initial design values filled in.

e. A list of TAB instruments to be used, edited for this project, to include the instrument name and description, manufacturer, model number, scale range, published accuracy, most recent calibration date, and what the instrument will be used for on this project.

f. A thorough checklist of the work items and inspections that need to be accomplished before the TAB field work can be performed. The Contractor must complete, submit, and receive approval of the Completed Pre-TAB Work Checklist before the TAB field work can be accomplished.

i. The checklists specified above shall be individually developed and tailored specifically for the work under this contract. Refer to NEBB PROCEDURAL STANDARDS, Section III, "Preliminary TAB Procedures" under the paragraphs titled, "Air Distribution System Inspection" and "Hydronic Distribution System Inspection" for examples of items to include in the checklists.

3. Design Review Report
Submit report containing the following information:

a. Review the contract specifications and drawings to verify that the TAB work can be successfully accomplished in compliance with the requirements of this section. Verify the presence and location of permanently installed test ports and other devices needed, including gauge cocks, thermometer wells, flow control devices, circuit setters, balancing valves, and manual volume dampers.

b. Submit a typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. If no deficiencies are evident, state so in the report.

4. TAB Reports: Submit TAB Report in the following manner:

a. Procedure Summary: Submit a copy of the approved TAB Procedures Summary. When applicable, provide notations describing how actual field procedures differed from the procedures listed.

b. Report format: Submit the completed data forms approved in the pre-field TAB Engineering Report completed by TAB field team, reviewed, approved and signed by the TAB supervisor. Bind the report with a waterproof front and back cover. Include a table of contents identifying by page number the location of each report. Report forms and report data shall be typewritten. Handwritten report forms or report data are not acceptable.

c. Temperatures: On each TAB report form reporting TAB work accomplished on HVAC thermal energy transfer equipment, include the indoor and outdoor dry bulb temperature range and indoor and outdoor wet bulb temperature range within which the TAB data was recorded.

 (1) Data shall be measured and compiled on a continuous basis for the period in which TAB work affecting those rooms is being done.

 (2) Data shall be measured/recorded only after the HVAC systems installations are complete, the systems fully balanced and the HVAC systems controls operating in fully automatic mode. Provide a detailed explanation wherever a final measurement did not achieve the required value.

 (3) Data may be compiled using direct digital controls trend logging where available. Otherwise, the Contractor shall temporarily install calibrated time versus temperature/humidity recorders for this purpose. The HVAC systems and controls shall have been fully operational a minimum of 24 hours in advance of commencing data compilation. The specified data shall be included in the TAB Report.

d. Air System Diagrams: Provided updated diagrams with final installed locations of all terminals and devices, any numbering changes, and actual test locations.

e. Air Static Pressure Profiles: Report static pressure profiles for air duct systems including: AHU-OA and AHU-5. Report static pressure data for all supply, return, relief, exhaust and outside air ducts for the
systems listed. The static pressure report data shall include, in addition to AABC or NEBB or TABB required data, the following:

(1) Report supply fan, return fan, relief fan, and exhaust fan inlet and discharge static pressures.

(2) Report static pressure drop across chilled water coils, DX coils, hot water coils, steam coils, electric resistance heating coils and heat reclaim devices installed in unit cabinetry or the system ductwork.

(3) Report static pressure drop across outside air, return air, and supply air automatic control dampers, both proportional and two-position, installed in unit cabinetry.

(4) Report static pressure drop across air filters, acoustic silencers, moisture eliminators, air flow straighteners, air flow measuring stations or other pressure drop producing specialty items installed in unit cabinetry, or in the system ductwork. Examples of these specialty items are smoke detectors, white sound generators, RF shielding, wave guides, security bars, blast valves, small pipes passing through ductwork, and duct mounted humidifiers.

Do not report static pressure drop across duct fittings provided for the sole purpose of conveying air, such as elbows, transitions, offsets, plenums, manual dampers, and branch takes-offs.

(5) Report static pressure drop across outside air and relief/exhaust air louvers.

(6) Report static pressure readings of supply air, return air, exhaust/relief air, and outside air in duct at the point where these ducts connect to each air moving unit.

f. Duct Transverses: Report duct traverses for main and branch main supply, return, exhaust, relief and outside air ducts. This shall include all ducts, including those which lack 7 1/2 duct diameters upstream and 2 1/2 duct diameters downstream of straight duct unobstructed by duct fittings/offsets/elbows. The TAB Agency shall evaluate and report findings on the duct traverses taken. Evaluate the suitability of the duct traverse measurement based on satisfying the qualifications for a pitot traverse plane as defined by AMCA 203, "Field Measurements", Section 8, paragraph 8.3, "Location of Traverse Plane".

g. Instruments: List the types of instruments actually used to measure the tab data. Include in the listing each instrument’s unique identification number, calibration date, and calibration expiration date.

Instrumentation, used for taking wet bulb temperature readings shall provide accuracy of plus or minus 5 percent at the measured face velocities. Submit instrument manufacturer's literature to document instrument accuracy performance is in compliance with that specified.

h. Performance Curves: The TAB Supervisor shall include, in the TAB Reports, factory pump curves and fan curves for pumps and fans TAB'd on the job.
i. Calibration Curves: The TAB Supervisor shall include, in the TAB Reports, a factory calibration curve for installed flow control balancing valves, flow venturis and flow orifices TAB'd on the job.

j. Data From TAB Field Work: After completion of the TAB field work, prepare the TAB field data for TAB supervisor's review and approval signature, using the reporting forms approved in the pre-field engineering report. Data required by those approved data report forms shall be furnished by the TAB team. Except as approved otherwise in writing by the Contracting Officer, the TAB work and thereby the TAB report shall be considered incomplete until the TAB work is accomplished to within the accuracy range specified in the paragraph entitled "Workmanship."
Appendix C

TAB SUBMITTAL AND WORK SCHEDULE

Perform the following items of work in the order listed adhering to the dates schedule specified below. Include the major items listed in this schedule in the project schedule required by Section 01 32 01.00 10 PROJECT SCHEDULE.

Submit TAB Agency and TAB Personnel Qualifications: Within 42 calendar days after date of contract award.

Submit the TAB Work Execution Schedule: within 14 days after receipt of the TAB agency and TAB personnel qualifications approval. Revise and re-submit this schedule 28 days prior to commencement of TAB work.

Submit the TAB Work Procedures Summary: within 14 days after receipt of the initial approved TAB Work Execution Schedule.

Meet with the COTR at the PreTAB Meeting: Within 28 calendar days after receipt of the approved initial TAB Execution Schedule.

Submit Design Review Report: Within 56 calendar days after the receipt of the approved initial TAB Work Execution Schedule.

Conduct measurements and submit the Record of Existing Facility Conditions: within 28 days after receipt of approved TAB Work Procedures Summary.

Advance Notice of TAB Field Work: At a minimum of 14 calendar days prior to TAB Field Work, submit advance notice of TAB field work accompanied by completed Pre-TAB Work Checklist.

TAB Field Work: At a minimum of 84 calendar days prior to CCD, accomplish TAB field work.

Submit TAB Report: Within 14 calendar days after completion of TAB field work, submit initial TAB report.

Quality Assurance - COTR TAB Field Check: 30 calendar days after initial TAB report is approved by the Contracting Officer, conduct field check.

Complete TAB Work: Prior to CCD, complete all TAB work and submit final.

Receive the approved TAB report: Within 21 calendar days, receive the report from Contracting Officer approved TAB report.

-- End of Section --
SECTION 23 07 00

THERMAL INSULATION FOR MECHANICAL SYSTEMS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. At the discretion of the Government, the manufacturer of any material supplied will be required to furnish test reports pertaining to any of the tests necessary to assure compliance with the standard or standards referenced in this specification.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASTM INTERNATIONAL (ASTM)

ASTM C612 (2014) Mineral Fiber Block and Board Thermal Insulation

ASTM D882 (2012) Tensile Properties of Thin Plastic Sheeting

ASTM E2231 (2015) Specimen Preparation and Mounting of Pipe and Duct Insulation Materials to Assess Surface Burning Characteristics

1.2 SYSTEM DESCRIPTION

1.2.1 General

Provide field-applied insulation and accessories on mechanical systems as specified herein; factory-applied insulation is specified under the piping, duct or equipment to be insulated.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

Submit the three SD types, SD-02 Shop Drawings, SD-03 Product Data, and SD-08 Manufacturer's Instructions at the same time for each system.
SD-02 Shop Drawings

Pipe Insulation Systems and Associated Accessories
Duct Insulation Systems and Associated Accessories
Equipment Insulation Systems and Associated Accessories

SD-03 Product Data

Pipe Insulation Systems; G, AFCEC
Duct Insulation Systems; G, AFCEC
Equipment Insulation Systems

SD-08 Manufacturer's Instructions

Pipe Insulation Systems
Duct Insulation Systems
Equipment Insulation Systems

1.4 QUALITY ASSURANCE

1.4.1 Installer Qualification

Qualified installers shall have successfully completed three or more similar type jobs within the last 5 years.

1.5 DELIVERY, STORAGE, AND HANDLING

Materials shall be delivered in the manufacturer's unopened containers. Materials delivered and placed in storage shall be provided with protection from weather, humidity, dirt, dust and other contaminants. The Contracting Officer may reject insulation material and supplies that become dirty, dusty, wet, or contaminated by some other means. Packages or standard containers of insulation, jacket material, cements, adhesives, and coatings delivered for use, and samples required for approval shall have manufacturer's stamp or label attached giving the name of the manufacturer and brand, and a description of the material, date codes, and approximate shelf life (if applicable). Insulation packages and containers shall be asbestos free.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide materials which are the standard products of manufacturers regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Submit a complete list of materials, including manufacturer's descriptive technical literature, performance data, catalog cuts, and installation instructions. The product number, k-value, thickness and furnished accessories including adhesives, sealants and jackets for each mechanical system requiring insulation shall be included. The product data must be copyrighted, have an identifying or publication number, and shall have been published prior to the issuance date of this solicitation.

2.1.1 Insulation System

Provide insulation systems in accordance with this specification. Provide
field-applied insulation for heating, ventilating, and cooling (HVAC) air distribution systems and piping systems that are located within, on, under, and adjacent to buildings; and for plumbing systems. Insulation shall be CFC and HCFC free.

2.1.2 Surface Burning Characteristics

Unless otherwise specified, insulation shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flame spread, and smoke developed indexes, shall be determined by ASTM E84 or UL 723. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Test specimens shall be prepared and mounted according to ASTM E2231.

2.2 MATERIALS

Provide insulation that meets or exceed the requirements of ASHRAE 90.1 - IP. Insulation exterior shall be cleanable, grease resistant, non-flaking and non-peeling. Materials shall be compatible and shall not contribute to corrosion, soften, or otherwise attack surfaces to which applied in either wet or dry state. Materials to be used on stainless steel surfaces shall meet ASTM C795 requirements. Calcium silicate shall not be used on chilled or cold water systems. Materials shall be asbestos free. Provide product recognized under UL 94 (if containing plastic) and listed in FM APP GUIDE.

2.2.1 Adhesives

2.2.1.1 Acoustical Lining Insulation Adhesive

Adhesive shall be a nonflammable, fire-resistant adhesive conforming to ASTM C916, Type I.

2.2.1.2 Mineral Fiber Insulation Cement

Cement shall be in accordance with ASTM C195.

2.2.1.3 Lagging Adhesive

Lagging is the material used for thermal insulation, especially around a cylindrical object. This may include the insulation as well as the cloth/material covering the insulation. Lagging adhesives shall be nonflammable and fire-resistant and shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Adhesive shall be MIL-A-3316, Class 1, pigmented white and be suitable for bonding fibrous glass cloth to faced and unfaced fibrous glass insulation board; for bonding cotton brattice cloth to faced and unfaced fibrous glass insulation board; for sealing edges of and bonding glass tape to joints of fibrous glass board; for bonding lagging cloth to thermal insulation; or Class 2 for attaching fibrous glass insulation to metal surfaces. Lagging adhesives shall be applied in strict accordance with the manufacturer's recommendations for pipe and duct insulation.

2.2.1.4 Contact Adhesive

Adhesives may be any of, but not limited to, the neoprene based, rubber based, or elastomeric type that have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. The adhesive shall not adversely affect, initially or in
service, the insulation to which it is applied, nor shall it cause any corrosive effect on metal to which it is applied. Any solvent dispersing medium or volatile component of the adhesive shall have no objectionable odor and shall not contain any benzene or carbon tetrachloride. The dried adhesive shall not emit nauseous, irritating, or toxic volatile matters or aerosols when the adhesive is heated to any temperature up to 212 degrees F. The dried adhesive shall be nonflammable and fire resistant. Flexible Elastomeric Adhesive: Comply with MIL-A-24179, Type II, Class I. Provide product listed in FM APP GUIDE.

2.2.2 Caulking

ASTM C920, Type S, Grade NS, Class 25, Use A.

2.2.3 Corner Angles

Nominal 0.016 inch aluminum 1 by 1 inch with factory applied kraft backing. Aluminum shall be ASTM B209, Alloy 3003, 3105, or 5005.

2.2.4 Fittings

Fabricated Fittings are the prefabricated fittings for flexible elastomeric pipe insulation systems in accordance with ASTM C1710. Together with the flexible elastomeric tubes, they provide complete system integrity for retarding heat gain and controlling condensation drip from chilled-water and refrigeration systems. Flexible elastomeric, fabricated fittings provide thermal protection (0.25 k) and condensation resistance (0.05 Water Vapor Transmission factor). For satisfactory performance, properly installed protective vapor retarder/barriers and vapor stops shall be used on high relative humidity and below ambient temperature applications to reduce movement of moisture through or around the insulation to the colder interior surface.

2.2.5 Finishing Cement

ASTM C450: Mineral fiber hydraulic-setting thermal insulating and finishing cement. All cements that may come in contact with Austenitic stainless steel must comply with ASTM C795.

2.2.6 Fibrous Glass Cloth and Glass Tape

Fibrous glass cloth, with 20X20 maximum mesh size, and glass tape shall have maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Tape shall be 4 inch wide rolls. Class 3 tape shall be 4.5 ounces/square yard. Elastomeric Foam Tape: Black vapor-retarder foam tape with acrylic adhesive containing an anti-microbial additive.

2.2.7 Staples

Outward clinching type monel or ASTM A167, Type 304 or 316 stainless steel.

2.2.8 Jackets

2.2.8.1 Aluminum Jackets

Aluminum jackets shall be corrugated, embossed or smooth sheet, 0.016 inch nominal thickness; ASTM B209, Temper H14, Temper H16, Alloy 3003, 5005, or 3105. Corrugated aluminum jacket shall not be used outdoors. Aluminum
jacket securing bands shall be Type 304 stainless steel, 0.015 inch thick, 1/2 inch wide for pipe under 12 inch diameter and 3/4 inch wide for pipe over 12 inch and larger diameter. Aluminum jacket circumferential seam bands shall be 2 by 0.016 inch aluminum matching jacket material. Bands for insulation below ground shall be 3/4 by 0.020 inch thick stainless steel, or fiberglass reinforced tape. The jacket may, at the option of the Contractor, be provided with a factory fabricated Pittsburgh or "Z" type longitudinal joint. When the "Z" joint is used, the bands at the circumferential joints shall be designed by the manufacturer to seal the joints and hold the jacket in place.

2.2.8.2 Polyvinyl Chloride (PVC) Jackets

Polyvinyl chloride (PVC) jacket and fitting covers shall have high impact strength, ultraviolet (UV) resistant rating or treatment and moderate chemical resistance with minimum thickness 0.030 inch.

2.2.8.3 Vapor Barrier/Weatherproofing Jacket

Vapor barrier/weatherproofing jacket shall be laminated self-adhesive, greater than 3 plies standard grade, silver, white, black and embossed or greater than 8 ply (minimum 2.9 mils adhesive); with 0.0000 permeability when tested in accordance with ASTM E96/E96M, using the water transmission rate test method; heavy duty, white or natural; and UV resistant. Flexible Elastomeric exterior foam with factory applied, UV Jacket made with a cold weather acrylic adhesive. Construction of laminate designed to provide UV resistance, high puncture, tear resistance and excellent Water Vapor Transmission (WVT) rate.

2.2.8.4 Vapor Barrier/Vapor Retarder

Apply the following criteria to determine which system is required.

a. On ducts, piping and equipment operating below 70 degrees F or located outside shall be equipped with a vapor barrier.

b. Ducts, pipes and equipment that are located inside and that always operate above 70 degrees F shall be installed with a vapor retarder where required as stated in paragraph VAPOR RETARDER REQUIRED.

2.2.9 Vapor Retarder Required

ASTM C921, Type I, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork, where a minimum puncture resistance of 25 Beach units is acceptable. Minimum tensile strength, 35 pounds/inch width. ASTM C921, Type II, minimum puncture resistance 25 Beach units, tensile strength minimum 20 pounds/inch width. Jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing. Based on the application, insulation materials that require manufacturer or fabricator applied pipe insulation jackets are cellular glass, when all joints are sealed with a vapor barrier mastic, and mineral fiber. All non-metallic jackets shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flexible elastomers require (in addition to vapor barrier skin) vapor retarder jacketing for high relative humidity and below ambient temperature applications.
2.2.9.1 White Vapor Retarder All Service Jacket (ASJ)

ASJ is for use on hot/cold pipes, ducts, or equipment indoors or outdoors if covered by a suitable protective jacket. The product shall meet all physical property and performance requirements of ASTM C1136, Type I, except the burst strength shall be a minimum of 85 psi. ASTM D2863 Limited Oxygen Index (LOI) shall be a minimum of 31.

In addition, neither the outer exposed surface nor the inner-most surface contacting the insulation shall be paper or other moisture-sensitive material. The outer exposed surface shall be white and have an emittance of not less than 0.80. The outer exposed surface shall be paintable.

2.2.9.2 Vapor Retarder/Vapor Barrier Mastic Coatings

2.2.9.2.1 Vapor Barrier

The vapor barrier shall be self adhesive (minimum 2 mils adhesive, 3 mils embossed) greater than 3 plies standard grade, silver, white, black and embossed white jacket for use on hot/cold pipes. Permeability shall be less than 0.02 when tested in accordance with ASTM E96/E96M. Products shall meet UL 723 or ASTM E84 flame and smoke requirements and shall be UV resistant.

2.2.9.2.2 Vapor Retarder

The vapor retarder coating shall be fire and water resistant and appropriately selected for either outdoor or indoor service. Color shall be white. The water vapor permeance of the compound shall be 0.013 perms or less at 43 mils dry film thickness as determined according to procedure B of ASTM E96/E96M utilizing apparatus described in ASTM E96/E96M. The coating shall be nonflammable, fire resistant type. Coating shall meet MIL-PRF-19565 Type II (if selected for indoor service) and be Qualified Products Database listed. All other application and service properties shall be in accordance with ASTM C647.

2.2.9.3 Laminated Film Vapor Retarder

ASTM C1136, Type I, maximum moisture vapor transmission 0.02 perms, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork; where Type II, maximum moisture vapor transmission 0.02 perms, a minimum puncture resistance of 25 Beach units is acceptable. Vapor retarder shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flexible Elastomeric exterior foam with factory applied UV Jacket. Construction of laminate designed to provide UV resistance, high puncture, tear resistance and an excellent WVT rate.

2.2.9.4 Polyvinylidene Chloride (PVDC) Film Vapor Retarder

The PVDC film vapor retarder shall have a maximum moisture vapor transmission of 0.02 perms, minimum puncture resistance of 150 Beach units, a minimum tensile strength in any direction of 30 lb/inch when tested in accordance with ASTM D882, and a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.2.9.5 Polyvinylidene Chloride Vapor Retarder Adhesive Tape

Requirements must meet the same as specified for Laminated Film Vapor
Retarder above.

2.2.9.6 Vapor Barrier/Weather Barrier

The vapor barrier shall be greater than 3 ply self adhesive laminate -white vapor barrier jacket- superior performance (less than 0.0000 permeability when tested in accordance with ASTM E96/E96M). Vapor barrier shall meet UL 723 or ASTM E84 25 flame and 50 smoke requirements; and UV resistant. Minimum burst strength 185 psi in accordance with TAPPI T403 OM. Tensile strength 68 lb/inch width (PSTC-1000). Tape shall be as specified for laminated film vapor barrier above.

2.2.10 Vapor Retarder Not Required

ASTM C921, Type II, Class D, minimum puncture resistance 50 Beach units on all surfaces except ductwork, where Type IV, maximum moisture vapor transmission 0.10, a minimum puncture resistance of 25 Beach units is acceptable. Jacket shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.2.11 Wire

Soft annealed ASTM A580/A580M Type 302, 304 or 316 stainless steel, 16 or 18 gauge.

2.2.12 Insulation Bands

Insulation bands shall be 1/2 inch wide; 26 gauge stainless steel.

2.2.13 Sealants

Sealants shall be chosen from the butyl polymer type, the styrene-butadiene rubber type, or the butyl type of sealants. Sealants shall have a maximum permeance of 0.02 perms based on Procedure B for ASTM E96/E96M, and a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.3 PIPE INSULATION SYSTEMS

Insulation materials shall conform to Table 1. Insulation thickness shall be as listed in Table 2 and meet or exceed the requirements of ASHRAE 90.1 - IP. Pipe insulation materials shall be limited to those listed herein and shall meet the following requirements:

2.3.1 Aboveground Cold Pipeline (-30 to 60 deg. F)

Insulation for outdoor, indoor, exposed or concealed applications, shall be as follows:

2.3.1.1 Cellular Glass

ASTM C552, Type II, and Type III. Supply the insulation from the fabricator with (paragraph WHITE VAPOR RETARDER ALL SERVICE JACKET (ASJ)) ASJ vapor retarder and installed with all longitudinal overlaps sealed and all circumferential joints ASJ taped or supply the insulation unfaced from the fabricator and install with all longitudinal and circumferential joints sealed with vapor barrier mastic.
2.3.1.2 Flexible Elastomeric Cellular Insulation

Closed-cell, foam- or expanded-rubber materials containing anti-microbial additive, complying with ASTM C534/C534M, Grade 1, Type I or II. Type I, Grade 1 for tubular materials. Type II, Grade 1, for sheet materials. Type I and II shall have vapor retarder/vapor barrier skin on one or both sides of the insulation, and require an additional exterior vapor retarder covering for high relative humidity and below ambient temperature applications.

2.3.1.3 Mineral Fiber

ASTM C547, Types I, II or III, supply the insulation with manufacturer's recommended factory-applied jacket.

2.3.2 Aboveground Hot Pipeline (Above 60 deg. F)

Insulation for outdoor, indoor, exposed or concealed applications shall meet the following requirements. Supply the insulation with manufacturer's recommended factory-applied jacket/vapor barrier.

2.3.2.1 Mineral Fiber

ASTM C547, Types I, II or III, supply the insulation with manufacturer's recommended factory-applied jacket.

2.3.2.2 Calcium Silicate

ASTM C533, Type I indoor only, or outdoors above 250 degrees F pipe temperature. Supply insulation with the manufacturer's recommended factory-applied jacket/vapor barrier.

2.3.2.3 Cellular Glass

ASTM C552, Type II and Type III. Supply the insulation with manufacturer's recommended factory-applied jacket.

2.3.2.4 Flexible Elastomeric Cellular Insulation

Closed-cell, foam- or expanded-rubber materials containing anti-microbial additive, complying with ASTM C534/C534M, Grade 1, Type I or II to 220 degrees F service. Type I for tubular materials. Type II for sheet materials.

2.3.2.5 Phenolic Insulation

ASTM C1126 Type III to 250 degrees F service shall comply with ASTM C795. Supply the insulation with manufacturer's recommended factory-applied jacket/vapor barrier.

2.3.2.6 Perlite Insulation

ASTM C610

2.4 DUCT INSULATION SYSTEMS

2.4.1 Factory Applied Insulation

Provide factory-applied ASTM C552, cellular glass thermal insulation
according to manufacturer's recommendations for insulation with insulation manufacturer's standard reinforced fire-retardant vapor barrier, with identification of installed thermal resistance (R) value and out-of-package R value.

2.4.1.1 Rigid Insulation

Rigid fiber in accordance with ASTM C612, Class 2 (maximum surface temperature 400 degrees F), 3 pcf average, 1-1/2 inch thick, Type IA, IB, II, III, and IV.

2.4.1.2 Blanket Insulation

Blanket flexible mineral fiber insulation conforming to ASTM C585, Type 1, Class B-3, 3/4 pcf nominal, 2.0 inches thick or Type II up to 250 degrees F. Also ASTM C1290 Type III may be used. Alternately, minimum thickness may be calculated in accordance with ASHRAE 90.1 - IP.

2.4.2 Duct Insulation

2.4.2.1 Vapor Barrier/Weatherproofing Jacket

Vapor barrier/weatherproofing jacket shall be laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply (minimum 2.9 mils adhesive), heavy duty white or natural).

2.4.3 Weatherproof Duct Insulation

Provide ASTM C552, cellular glass thermal insulation, and weatherproofing as specified in manufacturer's instruction. Multi-ply, Polymeric Blend Laminate Jacketing: Construction of laminate designed to provide UV resistance, high puncture, tear resistance and an excellent WVT rate.

2.5 EQUIPMENT INSULATION SYSTEMS

Insulate equipment and accessories as specified in Tables 5 and 6. In outside locations, provide insulation 1/2 inch thicker than specified. Increase the specified insulation thickness for equipment where necessary to equal the thickness of angles or other structural members to make a smooth, exterior surface.

PART 3 EXECUTION

3.1 APPLICATION - GENERAL

Insulation shall only be applied to unheated and uncooled piping and equipment. Flexible elastomeric cellular insulation shall not be compressed at joists, studs, columns, ducts, hangers, etc. The insulation shall not pull apart after a one hour period; any insulation found to pull apart after one hour, shall be replaced.

3.1.1 Installation

Except as otherwise specified, material shall be installed in accordance with the manufacturer's written instructions. Insulation materials shall not be applied until tests specified in other sections of this specification are completed. Material such as rust, scale, dirt and
moisture shall be removed from surfaces to receive insulation. Insulation shall be kept clean and dry. Insulation shall not be removed from its shipping containers until the day it is ready to use and shall be returned to like containers or equally protected from dirt and moisture at the end of each workday. Insulation that becomes dirty shall be thoroughly cleaned prior to use. If insulation becomes wet or if cleaning does not restore the surfaces to like new condition, the insulation will be rejected, and shall be immediately removed from the jobsite. Joints shall be staggered on multi layer insulation. Mineral fiber thermal insulating cement shall be mixed with demineralized water when used on stainless steel surfaces. Insulation, jacketing and accessories shall be installed in accordance with the drawings.

3.1.2 Painting and Finishing

Painting shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.1.3 Installation of Flexible Elastomeric Cellular Insulation

Install flexible elastomeric cellular insulation with seams and joints sealed with rubberized contact adhesive. Flexible elastomeric cellular insulation shall not be used on surfaces greater than 220 degrees F. Stagger seams when applying multiple layers of insulation. Protect insulation exposed to weather and not shown to have vapor barrier weatherproof jacketing with two coats of UV resistant finish or PVC or metal jacketing as recommended by the manufacturer after the adhesive is dry and cured.

3.1.3.1 Adhesive Application

Apply a brush coating of adhesive to both butt ends to be joined and to both slit surfaces to be sealed. Allow the adhesive to set until dry to touch but tacky under slight pressure before joining the surfaces. Insulation seals at seams and joints shall not be capable of being pulled apart one hour after application. Insulation that can be pulled apart one hour after installation shall be replaced.

3.1.3.2 Adhesive Safety Precautions

Use natural cross-ventilation, local (mechanical) pickup, and/or general area (mechanical) ventilation to prevent an accumulation of solvent vapors, keeping in mind the ventilation pattern must remove any heavier-than-air solvent vapors from lower levels of the workspaces. Gloves and spectacle-type safety glasses are recommended in accordance with safe installation practices.

3.1.4 Welding

No welding shall be done on piping, duct or equipment without written approval of the Contracting Officer. The capacitor discharge welding process may be used for securing metal fasteners to duct.

3.1.5 Pipes/Ducts/Equipment That Require Insulation

Insulation is required on all pipes, ducts, or equipment, except for omitted items as specified.
3.2 PIPE INSULATION SYSTEMS INSTALLATION

Install pipe insulation systems in accordance with the approved manufacturer's published installation instructions.

3.2.1 Pipe Insulation

3.2.1.1 General

Pipe insulation shall be installed on aboveground hot and cold pipeline systems as specified below to form a continuous thermal retarder/barrier, including straight runs, fittings and appurtenances unless specified otherwise. Installation shall be with full length units of insulation and using a single cut piece to complete a run. Cut pieces or scraps abutting each other shall not be used. Pipe insulation shall be omitted on the following:

a. Pipe used solely for fire protection.

b. Chromium plated pipe to plumbing fixtures. However, fixtures for use by the physically handicapped shall have the hot water supply and drain, including the trap, insulated where exposed.

c. Sanitary drain lines.

d. Air chambers.

e. Adjacent insulation.

f. ASME stamps.

g. Access plates of fan housings.

h. Cleanouts or handholes.

3.2.1.2 Pipes Passing Through Walls, Roofs, and Floors

Pipe insulation shall be continuous through the sleeve.

An aluminum jacket or vapor barrier/weatherproofing jacket or Vapor Barrier/Weatherproofing — self adhesive jacket (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, greater than 3 ply standard grade, silver, white, black and embossed with factory applied moisture retarder shall be provided over the insulation wherever penetrations require sealing.

3.2.1.2.1 Penetrate Interior Walls

The aluminum jacket or vapor barrier/weatherproofing — self adhesive jacket (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, greater than 3 plies standard grade, silver, white, black and embossed shall extend 2 inches beyond either side of the wall and shall be secured on each end with a band.

3.2.1.2.2 Penetrating Floors

Extend the aluminum jacket from a point below the backup material to a point 10 inches above the floor with one band at the floor and one not more than 1 inch from the end of the aluminum jacket.
3.2.1.2.3 Penetrating Waterproofed Floors

Extend the aluminum jacket rom below the backup material to a point 2 inches above the flashing with a band 1 inch from the end of the aluminum jacket.

3.2.1.2.4 Penetrating Exterior Walls

Continue the aluminum jacket required for pipe exposed to weather through the sleeve to a point 2 inches beyond the interior surface of the wall.

3.2.1.3 Pipes Passing Through Hangers

Insulation, whether hot or cold application, shall be continuous through hangers. All horizontal pipes 2 inches and smaller shall be supported on hangers with the addition of a Type 40 protection shield to protect the insulation in accordance with MSS SP-69. Whenever insulation shows signs of being compressed, or when the insulation or jacket shows visible signs of distortion at or near the support shield, insulation inserts as specified below for piping larger than 2 inches shall be installed, or factory insulated hangers (designed with a load bearing core) can be used.

3.2.1.3.1 Inserts

Covered with a jacket material of the same appearance and quality as the adjoining pipe insulation jacket, overlap the adjoining pipe jacket 1-1/2 inches, and seal as required for the pipe jacket. The jacket material used to cover inserts in flexible elastomeric cellular insulation shall conform to ASTM C1136, Type 1, and is allowed to be of a different material than the adjoining insulation material.

3.2.1.4 Flexible Elastomeric Cellular Pipe Insulation

Flexible elastomeric cellular pipe insulation shall be tubular form for pipe sizes 6 inches and less. Grade 1, Type II sheet insulation used on pipes larger than 6 inches shall not be stretched around the pipe. On pipes larger than 12 inches, the insulation shall be adhered directly to the pipe on the lower 1/3 of the pipe. Seams shall be staggered when applying multiple layers of insulation. Sweat fittings shall be insulated with miter-cut pieces the same size as on adjacent piping. Screwed fittings shall be insulated with sleeved fitting covers fabricated from miter-cut pieces and shall be overlapped and sealed to the adjacent pipe insulation. Type II requires an additional exterior vapor retarder/barrier covering for high relative humidity and below ambient temperature applications.

3.2.1.5 Pipes in high abuse areas.

In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, welded PVC, aluminum or flexible laminate cladding (comprised of elastomeric, plastic or metal foil laminate) laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket, - less than 0.0000 permeability; (greater than 3 ply, standard grade, silver, white, black and embossed) jackets shall be utilized. Pipe insulation to the 6 foot level shall be protected.
3.2.1.6 Pipe Insulation Material and Thickness

TABLE 1

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Specification</th>
<th>Type</th>
<th>Class</th>
<th>VR/VB Req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant Suction Piping (35 degrees F nominal)</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Exposed Lavatory Drains, Exposed Domestic Water Piping & Drains to Areas for Handicapped Personnel</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Horizontal Roof Drain Leaders (Including Underside of Roof Drain Fittings)</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faced Phenolic Foam</td>
<td>ASTM C1126</td>
<td>III</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>III</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Condensate Drain Located Inside Building</td>
<td>Cellular Glass</td>
<td>ASTM C552</td>
<td>II</td>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Note: VR/VB = Vapor Retarder/Vapor Barrier

TABLE 2

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Tube And Pipe Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant Suction Piping (35 degrees F nominal)</td>
<td>Flexible Elastomeric Cellular</td>
<td>1 1 1 N/A N/A</td>
</tr>
<tr>
<td></td>
<td>Cellular Glass</td>
<td>1.5 1.5 1.5 1.5 1.5</td>
</tr>
<tr>
<td>Exposed Lavatory Drains, Exposed Domestic Water Piping & Drains to Areas for Handicapped Personnel</td>
<td>Flexible Elastomeric Cellular</td>
<td>1 1 1 N/A N/A</td>
</tr>
</tbody>
</table>

Piping Insulation Thickness (inch)

Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.
TABLE 2

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Tube And Pipe Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Note: Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

3.2.2 Aboveground Cold Pipelines

The following cold pipelines for minus 30 to plus 60 degrees F, shall be insulated in accordance with Table 2 except those piping listed in subparagraph Pipe Insulation in PART 3 as to be omitted. This includes but is not limited to the following:

- Refrigerant suction lines.
- Air conditioner condensate drains.

3.2.2.1 Insulation Material and Thickness

Insulation thickness for cold pipelines shall be determined using Table 2.

3.2.2.2 Factory or Field applied Jacket

Insulation shall be covered with a factory applied vapor retarder jacket/vapor barrier or field applied seal welded PVC jacket or greater than 3 ply laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability, standard grade, silver, white, black and embossed for use with Mineral Fiber, Cellular Glass, and Phenolic Foam Insulated Pipe. Insulation inside the building, to be protected with an aluminum jacket or greater than 3 ply vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, Embossed Silver, White & Black, shall have the insulation and vapor retarder jacket installed as specified herein. The aluminum jacket
jacket or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, embossed silver, White & Black, shall be installed as specified for piping exposed to weather, except sealing of the laps of the aluminum jacket is not required. In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, aluminum jackets or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, embossed silver, white & black, shall be provided for pipe insulation to the 6 ft level.

3.2.2.3 Installing Insulation for Straight Runs Hot and Cold Pipe

Apply insulation to the pipe with tight butt joints. Seal all butted joints and ends with joint sealant and seal with a vapor retarder coating, greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape or PVDC adhesive tape.

3.2.2.3.1 Longitudinal Laps of the Jacket Material

Overlap not less than 1-1/2 inches. Provide butt strips 3 inches wide for circumferential joints.

3.2.2.3.2 Laps and Butt Strips

Secure with adhesive and staple on 4 inch centers if not factory self-sealing. If staples are used, seal in accordance with paragraph STAPLES below. Note that staples are not required with cellular glass systems.

3.2.2.3.3 Factory Self-Sealing Lap Systems

May be used when the ambient temperature is between 40 and 120 degrees F during installation. Install the lap system in accordance with manufacturer's recommendations. Use a stapler only if specifically recommended by the manufacturer. Where gaps occur, replace the section or repair the gap by applying adhesive under the lap and then stapling.

3.2.2.3.4 Staples

cover all staples, including those used to repair factory self-seal lap systems, with a vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape. Coat all seams, except those on factory self-seal systems, with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

3.2.2.3.5 Breaks and Punctures in the Jacket Material

Patch by wrapping a strip of jacket material around the pipe and secure it with adhesive, staple, and coat with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape. Extend the patch not less than 1-1/2 inches past the break.

3.2.2.3.6 Penetrations Such as Thermometers

Fill the voids in the insulation and seal with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000
perm adhesive tape.

3.2.2.3.7 Flexible Elastomeric Cellular Pipe Insulation

Install by slitting the tubular sections and applying them onto the piping or tubing. Alternately, whenever possible slide un-slit sections over the open ends of piping or tubing. Secure all seams and butt joints and seal with adhesive. When using self seal products only the butt joints shall be secured with adhesive. Push insulation on the pipe, never pulled. Stretching of insulation may result in open seams and joints. Clean cut all edges. Rough or jagged edges of the insulation are not be permitted. Use proper tools such as sharp knives. Do not stretch Grade 1, Type II sheet insulation around the pipe when used on pipe larger than 6 inches. On pipes larger than 12 inches, adhere sheet insulation directly to the pipe on the lower 1/3 of the pipe.

3.2.2.4 Insulation for Fittings and Accessories

a. Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be sealed with joint sealant and sealed with a vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

b. Precut or preformed insulation shall be placed around all fittings and accessories except as modified herein: 5 for anchors; 10, 11, and 13 for fittings; 14 for valves; and 17 for flanges and unions. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity. Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 2 inches or one pipe diameter.

c. Upon completion of insulation installation on flanges, unions, valves, anchors, fittings and accessories, terminations, seams, joints and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with PVDC or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape or two coats of vapor retarder coating with a minimum total thickness of 1/16 inch, applied with glass tape embedded between coats. Tape seams shall overlap 1 inch. The coating shall extend out onto the adjoining pipe insulation 2 inches. Fabricated insulation with a factory vapor retarder jacket shall be protected with either greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape, standard grade, silver, white, black and embossed or PVDC adhesive tape or two coats of vapor retarder coating with a minimum thickness of 1/16 inch and with a 2 inch wide glass tape embedded between coats. Where fitting insulation butts to pipe insulation, the joints shall be sealed with a vapor retarder coating and a 4 inch wide ASJ tape which matches the jacket of the pipe insulation.

d. Anchors attached directly to the pipe shall be insulated for a sufficient distance to prevent condensation but not less than 6 inches from the insulation surface.

e. Insulation shall be marked showing the location of unions, strainers, and check valves.
3.2.2.5 Optional PVC Fitting Covers

At the option of the Contractor, premolded, one or two piece PVC fitting covers may be used in lieu of the vapor retarder and embedded glass tape. Factory precut or premolded insulation segments shall be used under the fitting covers for elbows. Insulation segments shall be the same insulation as the pipe insulation including same density, thickness, and thermal conductivity. The covers shall be secured by PVC vapor retarder tape, adhesive, seal welding or with tacks made for securing PVC covers. Seams in the cover, and tacks and laps to adjoining pipe insulation jacket, shall be sealed with vapor retarder tape to ensure that the assembly has a continuous vapor seal.

3.2.3 Piping Exposed to Weather

Piping exposed to weather shall be insulated and jacketed as specified for the applicable service inside the building. After this procedure, a laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability (greater than 3 ply, standard grade, silver, white, black and embossed aluminum jacket or PVC jacket shall be applied. PVC jacketing requires no factory-applied jacket beneath it, however an all service jacket shall be applied if factory applied jacketing is not furnished. Flexible elastomeric cellular insulation exposed to weather shall be treated in accordance with paragraph INSTALLATION OF FLEXIBLE ELASTOMERIC CELLULAR INSULATION in PART 3.

3.2.3.1 Aluminum Jacket

The jacket for hot piping may be factory applied. The jacket shall overlap not less than 2 inches at longitudinal and circumferential joints and shall be secured with bands at not more than 12 inch centers. Longitudinal joints shall be overlapped down to shed water and located at 4 or 8 o’clock positions. Joints on piping 60 degrees F and below shall be sealed with metal jacketing/flashing sealant while overlapping to prevent moisture penetration. Where jacketing on piping 60 degrees F and below abuts an un-insulated surface, joints shall be caulked to prevent moisture penetration. Joints on piping above 60 degrees F shall be sealed with a moisture retarder.

3.2.3.2 Insulation for Fittings

Flanges, unions, valves, fittings, and accessories shall be insulated and finished as specified for the applicable service. Two coats of breather emulsion type weatherproof mastic (impermeable to water, permeable to air) recommended by the insulation manufacturer shall be applied with glass tape embedded between coats. Tape overlaps shall be not less than 1 inch and the adjoining aluminum jacket not less than 2 inches. Factory preformed aluminum jackets may be used in lieu of the above. Molded PVC fitting covers shall be provided when PVC jackets are used for straight runs of pipe. PVC fitting covers shall have adhesive welded joints and shall be weatherproof laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed, and UV resistant.
3.2.3.3 PVC Jacket

PVC jacket shall be ultraviolet resistant and adhesive welded weather tight with manufacturer's recommended adhesive. Installation shall include provision for thermal expansion.

3.3 DUCT INSULATION SYSTEMS INSTALLATION

Install duct insulation systems in accordance with the approved manufacturer's published installation instructions.

Except for oven hood exhaust duct insulation, corner angles shall be installed on external corners of insulation on ductwork in exposed finished spaces before covering with jacket.

3.3.1 Duct Insulation Thickness

Duct insulation thickness shall be in accordance with Table 4.

<table>
<thead>
<tr>
<th>Table 4 - Minimum Duct Insulation (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Air Ducts</td>
</tr>
<tr>
<td>Relief Ducts</td>
</tr>
<tr>
<td>Fresh Air Intake Ducts</td>
</tr>
<tr>
<td>Return Ducts</td>
</tr>
<tr>
<td>Warm Air Ducts</td>
</tr>
</tbody>
</table>

3.3.2 Insulation and Vapor Retarder/Vapor Barrier for Cold Air Duct

Insulation and vapor retarder/vapor barrier shall be provided for the following cold air ducts and associated equipment.

a. Supply ducts.
b. Return air ducts.
c. Relief ducts.
d. Flexible run-outs (field-insulated).
e. Plenums.
f. Duct-mounted coil casings.
g. Coil headers and return bends.
h. Coil casings.
i. Fresh air intake ducts.
j. Filter boxes.
k. Mixing boxes (field-insulated).
l. Supply fans (field-insulated).
m. Site-erected air conditioner casings.

n. Ducts exposed to weather.

o. Combustion air intake ducts.

Insulation for rectangular ducts shall be flexible type where concealed, minimum density 3/4 pcfs, and rigid type where exposed, minimum density 3 pcfs. Insulation for both concealed or exposed round/oval ducts shall be flexible type, minimum density 3/4 pcfs or a semi rigid board, minimum density 3 pcfs, formed or fabricated to a tight fit, edges beveled and joints tightly butted and staggered. Insulation for all exposed ducts shall be provided with either a white, paint-able, factory-applied Type I jacket or a field applied vapor retarder/vapor barrier jacket coating finish as specified, the total field applied dry film thickness shall be approximately 1/16 inch. Insulation on all concealed duct shall be provided with a factory-applied Type I or II vapor retarder/vapor barrier jacket. Duct insulation shall be continuous through sleeves and prepared openings except firewall penetrations. Duct insulation terminating at fire dampers, shall be continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air and which may be prone to condensate formation. Duct insulation and vapor retarder/vapor barrier shall cover the collar, neck, and any un-insulated surfaces of diffusers, registers and grills. Vapor retarder/vapor barrier materials shall be applied to form a complete unbroken vapor seal over the insulation. Sheet Metal Duct shall be sealed in accordance with Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.

3.3.2.1 Installation on Concealed Duct

a. For rectangular, oval or round ducts, flexible insulation shall be attached by applying adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers.

b. For rectangular and oval ducts, 24 inches and larger insulation shall be additionally secured to bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 16 inch centers and not more than 16 inches from duct corners.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 16 inch centers and not more than 16 inches from duct corners.

d. Insulation shall be impaled on the mechanical fasteners (self stick pins) where used and shall be pressed thoroughly into the adhesive. Care shall be taken to ensure vapor retarder/vapor barrier jacket joints overlap 2 inches. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type duct hangers.

e. Where mechanical fasteners are used, self-locking washers shall be installed and the pin trimmed and bent over.

f. Jacket overlaps shall be secured with staples and tape as necessary to ensure a secure seal. Staples, tape and seams shall be coated with a brush coat of vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate (minimum 2 mils adhesive, 3 mils embossed) - less
3.3.2.2 Installation on Exposed Duct Work

a. For rectangular ducts, rigid insulation shall be secured to the duct by mechanical fasteners on all four sides of the duct, spaced not more than 12 inches apart and not more than 3 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 12 inches and larger. One row shall be provided for each side of duct less than 12 inches. Mechanical fasteners shall be as corrosion resistant as G60 coated galvanized steel, and shall indefinitely sustain a 50 lb tensile dead load test perpendicular to the duct wall.

b. Form duct insulation with minimum jacket seams. Fasten each piece of rigid insulation to the duct using mechanical fasteners. When the height of projections is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over. Vapor retarder/barrier jacket shall be continuous across seams, reinforcing, and projections. When height of projections is greater than the insulation thickness, insulation and jacket shall be carried over. Apply insulation with joints tightly butted. Neatly bevel insulation around name plates and access plates and doors.

c. Impale insulation on the fasteners; self-locking washers shall be installed and the pin trimmed and bent over.

d. Seal joints in the insulation jacket with a 4 inch wide strip of tape. Seal taped seams with a brush coat of vapor retarder coating.

e. Breaks and ribs or standing seam penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 2 inches beyond the break or penetration and shall be secured with tape and stapled. Staples and joints shall be sealed with a brush coat of vapor retarder coating.
f. At jacket penetrations such as hangers, thermometers, and damper operating rods, the voids in the insulation shall be filled and the penetrations sealed with a flashing sealant.

g. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish. The coating shall overlap the adjoining insulation and un-insulated surface 2 inches. Pin puncture coatings shall extend 2 inches from the puncture in all directions.

h. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation with minimum density of 3/4pcf, attached.

3.3.3 Insulation for Warm Air Duct

Insulation and vapor barrier shall be provided for the following warm air ducts and associated equipment:

a. Supply ducts.

b. Return air ducts.

c. Relief air ducts.

d. Flexible run-outs (field insulated).

e. Plenums.

f. Duct-mounted coil casings.

g. Coil-headers and return bends.

h. Coil casings.

i. Fresh air intake ducts.

j. Filter boxes.

k. Mixing boxes.

l. Supply fans.

m. Site-erected air conditioner casings.

n. Ducts exposed to weather.

Insulation for rectangular ducts shall be flexible type where concealed, and rigid type where exposed. Insulation on exposed ducts shall be provided with a white, paint-able, factory-applied Type II jacket, or finished with adhesive finish. Flexible type insulation shall be used for round ducts, with a factory-applied Type II jacket. Insulation on concealed duct shall be provided with a factory-applied Type II jacket. Adhesive finish where indicated to be used shall be accomplished by applying two coats of adhesive with a layer of glass cloth embedded between the coats. The total dry film thickness shall be approximately 1/16 inch. Duct insulation shall be continuous through sleeves and prepared openings. Duct insulation shall terminate at fire dampers and flexible connections.
3.3.3.1 Installation on Concealed Duct

a. For rectangular, oval and round ducts, insulation shall be attached by applying adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers.

b. For rectangular and oval ducts 24 inches and larger, insulation shall be secured to the bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corner.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corners.

d. The insulation shall be impaled on the mechanical fasteners where used. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type hangers.

e. Self-locking washers shall be installed where mechanical fasteners are used and the pin trimmed and bent over.

f. Insulation jacket shall overlap not less than 2 inches at joints and the lap shall be secured and stapled on 4 inch centers.

3.3.3.2 Installation on Exposed Duct

a. For rectangular ducts, the rigid insulation shall be secured to the duct by the use of mechanical fasteners on all four sides of the duct, spaced not more than 16 inches apart and not more than 6 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 12 inches and larger and a minimum of one row for each side of duct less than 12 inches.

b. Duct insulation with factory-applied jacket shall be formed with minimum jacket seams, and each piece of rigid insulation shall be fastened to the duct using mechanical fasteners. When the height of projection is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over the projection. Jacket shall be continuous across seams, reinforcing, and projections. Where the height of projections is greater than the insulation thickness, insulation and jacket shall be carried over the projection.

c. Insulation shall be impaled on the fasteners; self-locking washers shall be installed and pin trimmed and bent over.

d. Joints on jacketed insulation shall be sealed with a 4 inch wide strip of tape and brushed with vapor retarder coating.

e. Breaks and penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 2 inches beyond the break or penetration and shall be secured with adhesive and stapled.

f. Insulation terminations and pin punctures shall be sealed with tape and brushed with vapor retarder coating.
3.3.5.4 Duct Test Holes

After duct systems have been tested, adjusted, and balanced, breaks in the insulation and jacket shall be repaired in accordance with the applicable section of this specification for the type of duct insulation to be repaired.

3.3.5 Duct Exposed to Weather

3.3.5.1 Installation

Ducts exposed to weather shall be insulated and finished as specified for the applicable service for exposed duct inside the building. After the above is accomplished, the insulation shall then be further finished as detailed in the following subparagraphs.

3.3.5.2 Round Duct

Laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket – Less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply, heavy duty, white and natural) membrane shall be applied overlapping material by 3 inches no bands or caulking needed – see manufacturer's recommended installation instructions. Aluminum jacket with factory applied moisture retarder shall be applied with the joints lapped not less than 3 inches and secured with bands located at circumferential laps and at not more than 12 inch intervals throughout. Horizontal joints shall lap down to shed water and located at 4 or 8 o'clock position. Joints shall be sealed with metal jacketing sealant to prevent moisture penetration. Where jacketing abuts an un-insulated surface, joints shall be sealed with metal jacketing sealant.

3.3.5.3 Fittings

Fittings and other irregular shapes shall be finished as specified for rectangular ducts.

3.3.5.4 Rectangular Ducts

Two coats of weather barrier mastic reinforced with fabric or mesh for outdoor application shall be applied to the entire surface. Each coat of weatherproof mastic shall be 1/16 inch minimum thickness. The exterior shall be a metal jacketing applied for mechanical abuse and weather protection, and secured with screws or vapor barrier/weatherproofing jacket less than 0.0000 permeability greater than 3 ply, standard grade, silver, white, black, and embossed or greater than 8 ply, heavy duty white and natural. Membrane shall be applied overlapping material by 3 inches. No bands or caulking needed—see manufacturing recommend installation instructions.
3.4 EQUIPMENT INSULATION SYSTEMS INSTALLATION

Install equipment insulation systems in accordance with the approved manufacturer's published installation instructions.

3.4.1 General

Removable insulation sections shall be provided to cover parts of equipment that must be opened periodically for maintenance including vessel covers, fasteners, flanges and accessories. Equipment insulation shall be omitted on the following:

b. Boiler manholes.

c. Cleanouts.

d. ASME stamps.

e. Manufacturer's nameplates.

f. Duct Test/Balance Test Holes.

3.4.2 Insulation for Cold Equipment

Cold equipment below 60 degrees F: Insulation shall be furnished on equipment handling media below 60 degrees F including the following:

a. Refrigeration equipment parts that are not factory insulated.

b. Drip pans under chilled equipment.

c. Duct mounted coils.

d. Air handling equipment parts that are not factory insulated.

3.4.2.1 Insulation Type

Insulation shall be suitable for the temperature encountered. Material and thicknesses shall be as shown in Table 5:

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 to 60 degrees F</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>1.5</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
<td>1</td>
</tr>
<tr>
<td>TABLE 5</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Insulation Thickness for Cold Equipment (inches)</td>
<td></td>
</tr>
<tr>
<td>Equipment handling media at indicated temperature</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Thickness (inches)</td>
</tr>
<tr>
<td>1 to 34 degrees F</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>3</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
<td>1.5</td>
</tr>
<tr>
<td>Minus 30 to 0 degrees F</td>
<td></td>
</tr>
<tr>
<td>Cellular Glass</td>
<td>3.5</td>
</tr>
<tr>
<td>Flexible Elastomeric Cellular</td>
<td>1.75</td>
</tr>
</tbody>
</table>

3.4.2.2 Other Equipment

a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

b. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not more than 12 inch centers except flexible elastomeric cellular which shall be adhered with contact adhesive. Insulation corners shall be protected under wires and bands with suitable corner angles.

c. Cellular glass shall be installed in accordance with manufacturer's instructions. Joints and ends shall be sealed with joint sealant, and sealed with a vapor retarder coating.

d. Insulation on heads of heat exchangers shall be removable. Removable section joints shall be fabricated using a male-female shiplap type joint. The entire surface of the removable section shall be finished by applying two coats of vapor retarder coating with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch.

e. Exposed insulation corners shall be protected with corner angles.

f. Insulation on equipment with ribs shall be applied over 6 by 6 inches by 12 gauge welded wire fabric which has been cinched in place, or if approved by the Contracting Officer, spot welded to the equipment over the ribs. Insulation shall be secured to the fabric with J-hooks and 2 by 2 inches washers or shall be securely banded or wired in place on 12 inch centers.

3.4.2.3 Vapor Retarder/Vapor Barrier

Upon completion of installation of insulation, penetrations shall be caulked. Two coats of vapor retarder coating or vapor barrier jacket shall be applied over insulation, including removable sections, with a layer of
open mesh synthetic fabric embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. Flashing sealant or vapor barrier tape shall be applied to parting line between equipment and removable section insulation.

3.4.3 Equipment Handling Dual Temperature Media

Below and above 60 degrees F: equipment handling dual temperature media shall be insulated as specified for cold equipment.

3.4.4 Equipment Exposed to Weather

3.4.4.1 Installation

Equipment exposed to weather shall be insulated and finished in accordance with the requirements for ducts exposed to weather in paragraph DUCT INSULATION INSTALLATION.

3.4.4.2 Optional Panels

At the option of the Contractor, prefabricated metal insulation panels may be used in lieu of the insulation and finish previously specified. Thermal performance shall be equal to or better than that specified for field applied insulation. Panels shall be the standard catalog product of a manufacturer of metal insulation panels. Fastenings, flashing, and support system shall conform to published recommendations of the manufacturer for weatherproof installation and shall prevent moisture from entering the insulation. Panels shall be designed to accommodate thermal expansion and to support a 250 pound walking load without permanent deformation or permanent damage to the insulation. Exterior metal cover sheet shall be aluminum and exposed fastenings shall be stainless steel or aluminum.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

ANSI/AHRI 340/360 (2007; Addendum 1 2010; Addendum 2 2011)
Performance Rating of Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment

AHRI 700 (2016) Specifications for Fluorocarbon Refrigerants

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

AMERICAN WELDING SOCIETY (AWS)

ASTM INTERNATIONAL (ASTM)

ASTM D520 (2000; R 2011) Zinc Dust Pigment

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016) Motors and Generators

UNDERWRITERS LABORATORIES (UL)

1.2 SYSTEM DESCRIPTION

Provide electrical equipment, motors, motor efficiencies, and wiring which are in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Electrical motor driven equipment specified shall be provided complete with motors, motor starters, and controls. Electrical characteristics shall be as shown, and unless otherwise indicated, all motors of 1 horsepower and above with open, dripproof, totally enclosed, or explosion proof fan cooled enclosures, shall be the premium efficiency type in accordance with NEMA MG 1. Field wiring shall be in accordance with manufacturer's instructions. Each motor shall conform to NEMA MG 1 and NEMA MG 2 and be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Motors shall be continuous duty with the enclosure specified. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary for the motor control indicated. Motors shall be furnished with a magnetic across-the-line or reduced voltage type starter as required by the manufacturer. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motors shall be sized for the applicable loads. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of enclosure. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation and the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Drawings

Drawings provided in adequate detail to demonstrate compliance with contract requirements, as specified.

SD-03 Product Data

Materials and Equipment

Manufacturer's standard catalog data, at least 5 weeks prior to the purchase or installation of a particular component, highlighted to show material, size, options, performance charts and curves, etc. in adequate detail to demonstrate compliance with contract requirements. Data shall include manufacturer's recommended installation instructions and procedures. If vibration isolation is specified for a unit, vibration isolator literature shall be included containing catalog cuts and
certification that the isolation characteristics of the isolators provided meet the manufacturer's recommendations. Data shall be submitted for each specified component.

Spare Parts

Spare parts data for each different item of equipment specified.

Verification of Dimensions

A letter, at least 2 weeks prior to beginning construction, including the date the site was visited, confirmation of existing conditions, and any discrepancies found.

System Performance Tests

A schedule, at least 2 weeks prior to the start of related testing, for the system performance tests. The schedules shall identify the proposed date, time, and location for each test.

Demonstrations

A schedule, at least 2 weeks prior to the date of the proposed training course, which identifies the date, time, and location for the training.

SD-06 Test Reports

Refrigerant Tests, Charging, and Start-Up

Six copies of each test containing the information described below in bound 8-1/2 by 11 inch booklets. Individual reports shall be submitted for the refrigerant system tests.

a. The date the tests were performed.
b. A list of equipment used, with calibration certifications.
c. Initial test summaries.
d. Repairs/adjustments performed.
e. Final test results.

System Performance Tests

Six copies of the report provided in bound 8-1/2 by 11 inch booklets. The report shall document compliance with the specified performance criteria upon completion and testing of the system. The report shall indicate the number of days covered by the tests and any conclusions as to the adequacy of the system.

SD-07 Certificates

Materials and Equipment

Where the system, components, or equipment are specified to comply with requirements of AHRI, ASHRAE, ASME, or UL, proof of such compliance shall be provided. The label or listing of the specified agency shall be acceptable evidence. In lieu of the label or listing, a written certificate from an approved, nationally recognized testing organization equipped to perform such services, stating that the items have been tested and conform
to the requirements and testing methods of the specified agency may be submitted. When performance requirements of this project's drawings and specifications vary from standard AHRI rating conditions, computer printouts, catalog, or other application data certified by AHRI or a nationally recognized laboratory as described above shall be included. If AHRI does not have a current certification program that encompasses such application data, the manufacturer may self certify that his application data complies with project performance requirements in accordance with the specified test standards.

Service Organization

A certified list of qualified permanent service organizations, which includes their addresses and qualifications, for support of the equipment. The service organizations shall be reasonably convenient to the equipment installation and be able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals

Six complete copies of an operation manual in bound 8-1/2 by 11 inch booklets listing step-by-step procedures required for system startup, operation, abnormal shutdown, emergency shutdown, and normal shutdown at least 4 weeks prior to the first training course. The booklets shall include the manufacturer's name, model number, and parts list. The manuals shall include the manufacturer's name, model number, service manual, and a brief description of all equipment and their basic operating features. Six complete copies of maintenance manual in bound 8-1/2 by 11 inch booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide. The manuals shall include piping and equipment layouts and simplified wiring and control diagrams of the system as installed.

1.4 QUALITY ASSURANCE

Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. Carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions. Submit drawings consisting of:

a. Equipment layouts which identify assembly and installation details.

b. Plans and elevations which identify clearances required for maintenance and operation.

c. Wiring diagrams which identify each component individually and interconnected or interlocked relationships between components.

d. Foundation drawings, bolt-setting information, and foundation bolts prior to concrete foundation construction for equipment indicated or required to have concrete foundations.
e. Details, if piping and equipment are to be supported other than as indicated, which include loadings and type of frames, brackets, stanchions, or other supports.

f. Automatic temperature control diagrams and control sequences.

g. Installation details which includes the amount of factory set superheat and corresponding refrigerant pressure/temperature.

1.5 DELIVERY, STORAGE, AND HANDLING

Stored items shall be protected from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Proper protection and care of all material both before and during installation shall be the Contractor's responsibility. Replace any materials found to be damaged at the Contractor's expense. During installation, piping and similar openings shall be capped to keep out dirt and other foreign matter.

1.6 EXTRA MATERIALS

Submit spare parts data for each different item of equipment specified, after approval of detail drawings and not later than 2 months prior to the date of beneficial occupancy. Include in the data a complete list of parts and supplies, with current unit prices and source of supply, a recommended spare parts list for 1 year of operation, and a list of the parts recommended by the manufacturer to be replaced on a routine basis.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

2.1.1 Standard Products

Provide Materials and equipment that are standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2 year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures. Products having less than a 2 year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. Products shall be supported by a service organization. System components shall be environmentally suitable for the indicated locations.

2.1.2 Nameplates

Major equipment including compressors, condensers, receivers, heat exchanges, fans, and motors shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the item of equipment. Plates shall be durable and legible throughout equipment life and made of anodized aluminum. Plates shall be fixed in prominent locations with nonferrous screws or bolts.
2.1.3 Safety Devices

Exposed moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Safety devices shall be installed so that proper operation of equipment is not impaired. Welding and cutting safety requirements shall be in accordance with AWS Z49.1.

2.2 UNITARY EQUIPMENT, PACKAGE SYSTEM

Unit shall be an air-cooled factory assembled, weatherproof packaged unit as indicated. Unit shall be the air-conditioning type conforming to applicable Underwriters Laboratories (UL) standards including UL 1995. Unit shall be rated in accordance with ANSI/AHRI 340/360. Unit shall be provided with equipment as specified in paragraph "Unitary Equipment Components". Evaporator or supply fans shall be double-width, double inlet, forward curved, backward inclined, or airfoil blade, centrifugal scroll type. Motors shall have open, dripproof enclosures. Condenser fans shall be manufacturer's standard for the unit specified and may be either propeller or centrifugal scroll type. Unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Unit shipped with a holding charge shall be field charged with refrigerant and oil in accordance with manufacturer's recommendations.

2.2.1 Air-to-Refrigerant Coils

Air-to-refrigerant coils shall have copper or aluminum tubes of 3/8 inch minimum diameter with copper or aluminum fins that are mechanically bonded or soldered to the tubes. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ANSI/ASHRAE 15 & 34 at the factory and be suitable for the working pressure of the installed system. Each coil shall be dehydrated and sealed after testing and prior to evaluation and charging. Each unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Unit shipped with a holding charge shall be field charged. Separate expansion devices shall be provided for each compressor circuit.

2.2.2 Evaporatively-Cooled Section

2.2.2.1 Fan Section

Fan shall be the centrifugal type in accordance with paragraph "Fans". Fan and fan motor shall not be located in the discharge airstream of the unit. Motors shall have open, splashproof enclosure and be suitable for the indicated service. The unit design shall prevent water from entering into the fan section.

2.2.2.2 Condensing Coil

Coils shall have copper or aluminum tubes of 3/8 inch minimum diameter without fins. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ANSI/ASHRAE 15 & 34 at the factory and be suitable for the working pressure of the installed system.
2.2.3 Compressor

Compressor shall be direct drive, semi-hermetic or hermetic reciprocating, or scroll type capable of operating at partial load conditions. Compressor shall be capable of continuous operation down to the lowest step of unloading as specified. Compressors of 10 tons and larger shall be provided with capacity reduction devices to produce automatic capacity reduction of at least 50 percent. If standard with the manufacturer, two or more compressors may be used in lieu of a single compressor with unloading capabilities, in which case the compressors shall operate in sequence, and each compressor shall have an independent refrigeration circuit through the condenser and evaporator. Compressors shall start in the unloaded position. Each compressor shall be provided with vibration isolators, crankcase heater, thermal overloads, high pressure safety cutoffs and protection against short cycling.

2.2.4 Unit Controls

Unit shall be internally prewired with a 24 volt control circuit powered by an internal transformer. Terminal blocks shall be provided for power wiring and external control wiring. Unit shall have cutoffs for high pressure. Head pressure controls shall sustain unit operation with ambient temperature of 25 degrees F. Adjustable-cycle timers shall prevent short-cycling. Multiple compressors shall be staged by means of a time delay. Unit shall be internally protected by fuses or a circuit breaker in accordance with UL 1995.

2.3 EQUIPMENT EFFICIENCY

Unit shall have an efficiency of 13.

2.4 UNITARY EQUIPMENT COMPONENTS

2.4.1 Refrigerant and Oil

Refrigerant shall be one of the fluorocarbon gases. Refrigerants shall have number designations and safety classifications in accordance with ANSI/ASHRAE 15 & 34. Refrigerants shall meet the requirements of AHRI 700 as a minimum. Refrigerants shall have an Ozone Depletion Potential (ODP) of less than or equal to 0.05. Provide and install a complete charge of refrigerant for the installed system as recommended by the manufacturer. Lubricating oil shall be of a type and grade recommended by the manufacturer for each compressor. Where color leak indicator dye is incorporated, charge shall be in accordance with manufacturer's recommendation.

2.4.2 Fans

Fan wheel shafts shall be supported by either maintenance-accessible lubricated antifriction block-type bearings, or permanently lubricated ball bearings. Unit fans shall be selected to produce the cfm required at the fan total pressure. Motor starters, if applicable, shall be magnetic across-the-line type with a open dripproof enclosure. Thermal overload protection shall be of the manual or automatic-reset type. Fan wheels or propellers shall be constructed of aluminum or galvanized steel. Centrifugal fan wheel housings shall be of galvanized steel, and both centrifugal and propeller fan casings shall be constructed of aluminum or galvanized steel. Steel elements of fans, except fan shafts, shall be hot-dipped galvanized after fabrication or fabricated of mill galvanized
steel. Mill-galvanized steel surfaces and edges damaged or cut during fabrication by forming, punching, drilling, welding, or cutting shall be recoated with an approved zinc-rich compound. Fan wheels or propellers shall be statically and dynamically balanced. Direct-drive fan motors shall be of the multiple-speed variety. Each drive will be independent of any other drive. Propeller fans shall be direct-drive drive type with fixed pitch blades. Each drive will be independent of any other drive. Drive bearings shall be protected with water slingers or shields.

2.4.3 Air Filters

Air filters shall be listed in accordance with requirements of UL 900, except high efficiency particulate air filters of 99.97 percent efficiency by the DOP Test Method shall be as listed under the label service and shall meet the requirements of UL 586.

2.4.4 Cabinet Construction

2.4.4.1 Outdoor Cabinet

Outdoor cabinets shall be suitable for outdoor service with a weathertight, insulated and corrosion-protected structure. Cabinets constructed exclusively for indoor service which have been modified for outdoor service are not acceptable.

2.5 FINISHES

2.5.1 Factory Coating

2.5.1.1 Equipment and Components

Unless otherwise specified, equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish, except that items located outside of buildings shall have weather resistant finishes that will withstand 125 hours exposure to the salt spray test specified in ASTM B117 using a 5 percent sodium chloride solution. Immediately after completion of the test, the specimen shall show no signs of blistering, wrinkling, cracking, or loss of adhesion and no sign of rust creepage beyond 1/8 inch on either side of the scratch mark. Cut edges of galvanized surfaces where hot-dip galvanized sheet steel is used shall be coated with a zinc-rich coating conforming to ASTM D 520, Type I.

2.5.2 Factory Applied Insulation

Refrigeration equipment shall be provided with factory installed insulation on surfaces subject to sweating including the suction line piping. Where motors are the gas-cooled type, factory installed insulation shall be provided on the cold-gas inlet connection to the motor in accordance with manufacturer's standard practice. Factory insulated items installed outdoors are not required to be fire-rated. As a minimum, factory insulated items installed indoors shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Factory insulated items (no jacket) installed indoors and which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Flame spread and smoke developed indexes shall be determined by ASTM E84. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer...
with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E84.

2.6 SUPPLEMENTAL COMPONENTS/SERVICES

2.6.1 Refrigerant Piping

Refrigerant piping for split-system unitary equipment shall be provided and installed.

2.6.2 Ductwork

Ductwork shall be provided and installed in accordance with Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.

2.6.3 Temperature Controls

Temperature controls shall be integral to the unit.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the work, perform Verification of Dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

3.2 INSTALLATION

Work shall be performed in accordance with the manufacturer's published diagrams, recommendations, and equipment warranty requirements.

3.2.1 Equipment

Refrigeration equipment and the installation thereof shall conform to ANSI/ASHRAE 15 & 34. Necessary supports shall be provided for all equipment, appurtenances, and pipe as required, including frames or supports for compressors, pumps, cooling towers, condensers, and similar items. Compressors shall be isolated from the building structure.

3.2.2 Field Applied Insulation

Field applied insulation shall be as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS, except as defined differently herein.

3.2.3 Field Painting

Painting required for surfaces not otherwise specified, and finish painting of items only primed at the factory are specified in Section 09 90 00 PAINTS AND COATINGS.

3.3 CLEANING AND ADJUSTING

Equipment shall be wiped clean, with all traces of oil, dust, dirt, or paint spots removed. Temporary filters shall be provided for all fans that are operated during construction, and new filters shall be installed after all construction dirt has been removed from the building. System shall be maintained in this clean condition until final acceptance. Bearings shall
be properly lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions. Testing, adjusting, and balancing shall be as specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS.

3.4 DEMONSTRATIONS

Conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total 2 hours of normal working time and start after the system is functionally completed but prior to final acceptance tests. Provide operation and maintenance manuals as well as demonstrations of routine maintenance operations.

3.5 REFRIGERANT TESTS, CHARGING, AND START-UP

Split-system refrigerant piping systems shall be tested and charged. Packaged refrigerant systems which are factory charged shall be checked for refrigerant and oil capacity to verify proper refrigerant levels in accordance with manufacturer's recommendations. Following charging, packaged systems shall be tested for leaks with a halide torch or an electronic leak detector.

3.5.1 Refrigerant Leakage

If a refrigerant leak is discovered after the system has been charged, the leaking portion of the system shall immediately be isolated from the remainder of the system and the refrigerant pumped into the system receiver or other suitable container. Under no circumstances shall the refrigerant be discharged into the atmosphere.

3.5.2 Contractor's Responsibility

Take steps, at all times during the installation and testing of the refrigeration system, to prevent the release of refrigerants into the atmosphere. The steps shall include, but not be limited to, procedures which will minimize the release of refrigerants to the atmosphere and the use of refrigerant recovery devices to remove refrigerant from the system and store the refrigerant for reuse or reclaim. At no time shall more than 3 ounces of refrigerant be released to the atmosphere in any one occurrence. Any system leaks within the first year shall be repaired in accordance with the requirements herein at no cost to the Government including material, labor, and refrigerant if the leak is the result of defective equipment, material, or installation.

3.6 SYSTEM PERFORMANCE TESTS

Before each refrigeration system is accepted, conduct tests to demonstrate the general operating characteristics of all equipment

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA ICS 6 (1993; R 2011) Enclosures

NEMA KS 1 (2013) Enclosed and Miscellaneous Distribution Equipment Switches (600 V Maximum)

NEMA RN 1 (2005; R 2013) Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit
NEMA WD 1 (1999; R 2015) Standard for General Color Requirements for Wiring Devices
NEMA WD 6 (2016) Wiring Devices Dimensions Specifications

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
NFPA 70 (2017) National Electrical Code

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)
TIA-568-C.1 (2009; Add 2 2011; Add 1 2012) Commercial Building Telecommunications Cabling Standard
TIA-569 (2015d) Commercial Building Standard for Telecommunications Pathways and Spaces
TIA-607 (2011b) Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises

UNDERWRITERS LABORATORIES (UL)
UL 1 (2005; Reprint Jul 2012) Standard for Flexible Metal Conduit
UL 1242 (2006; Reprint Mar 2014) Standard for Electrical Intermediate Metal Conduit -- Steel
UL 1449 (2014; Reprint Mar 2016) UL Standard for Safety Surge Protective Devices
UL 1660 (2014) Liquid-Tight Flexible Nonmetallic Conduit
UL 20 (2010; Reprint Feb 2012) General-Use Snap Switches
UL 360 (2013; Reprint Jan 2015) Liquid-Tight Flexible Steel Conduit
UL 44 (2014; Reprint Feb 2015) Thermoset-Insulated Wires and Cables
UL 486A-486B (2013; Reprint Jan 2016) Wire Connectors
UL 486C (2013; Reprint Jan 2016) Splicing Wire Connectors

UL 498 (2012; Reprint Jul 2016) UL Standard for Safety Attachment Plugs and Receptacles

UL 50 (2015) UL Standard for Safety Enclosures for Electrical Equipment, Non-Environmental Considerations

UL 510 (2005; Reprint Jul 2013) Polyvinyl Chloride, Polyethylene and Rubber Insulating Tape

UL 514A (2013) Metallic Outlet Boxes

UL 514B (2012; Reprint Nov 2014) Conduit, Tubing and Cable Fittings

UL 514C (2014; Reprint Dec 2014) Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers

UL 6 (2007; Reprint Nov 2014) Electrical Rigid Metal Conduit-Steel

UL 67 (2009; Reprint Jun 2016) UL Standard for Safety Panelboards

UL 6A (2008; Reprint Nov 2014) Electrical Rigid Metal Conduit - Aluminum, Red Brass, and Stainless Steel

UL 797 (2007; Reprint Dec 2012) Electrical Metallic Tubing -- Steel

UL 83 (2014) Thermoplastic-Insulated Wires and Cables

1.2 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, are as defined in IEEE 100.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00.
SD-02 Shop Drawings
Panelboards; G
Marking strips drawings; G
SD-03 Product Data
Receptacles; G
Circuit breakers; G
Switches; G
Telecommunications Grounding Busbar; G
Surge protective devices; G
Include performance and characteristic curves.
SD-06 Test Reports
600-volt wiring test; G
Grounding system test; G
SD-10 Operation and Maintenance Data
Electrical Systems, Data Package 5; G
Submit operation and maintenance data in accordance with Section 01 78 23, OPERATION AND MAINTENANCE DATA and as specified herein.

1.4 QUALITY ASSURANCE

1.4.1 Regulatory Requirements
In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" or "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Provide equipment, materials, installation, and workmanship in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.4.2 Standard Products
Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship and:

a. Have been in satisfactory commercial or industrial use for 2 years prior to bid opening including applications of equipment and materials under similar circumstances and of similar size.

b. Have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period.
c. Where two or more items of the same class of equipment are required, provide products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.4.2.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.4.2.2 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site are not acceptable.

1.5 MAINTENANCE

1.5.1 Electrical Systems

Submit operation and maintenance manuals for electrical systems that provide basic data relating to the design, operation, and maintenance of the electrical distribution system for the building. Include the following:

a. Single line diagram of the "as-built" building electrical system.

b. Schematic diagram of electrical control system (other than HVAC, covered elsewhere).

c. Manufacturers' operating and maintenance manuals on active electrical equipment.

1.6 WARRANTY

Provide equipment items supported by service organizations that are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

As a minimum, meet requirements of UL, where UL standards are established for those items, and requirements of NFPA 70 for all materials, equipment, and devices.

2.2 CONDUIT AND FITTINGS

Conform to the following:

2.2.1 Rigid Metallic Conduit

2.2.1.1 Rigid, Threaded Zinc-Coated Steel Conduit

ANSI C80.1, UL 6.
2.2.1.2 Rigid Aluminum Conduit

ANSI C80.5, UL 6A.

2.2.2 Intermediate Metal Conduit (IMC)

UL 1242, zinc-coated steel only.

2.2.3 Electrical, Zinc-Coated Steel Metallic Tubing (EMT)

UL 797, ANSI C80.3.

2.2.4 Plastic-Coated Rigid Steel and IMC Conduit

NEMA RN 1, Type 40 (40 mils thick).

2.2.5 Flexible Metal Conduit

UL 1.

2.2.5.1 Liquid-Tight Flexible Metal Conduit, Steel

UL 360.

2.2.6 Fittings for Metal Conduit, EMT, and Flexible Metal Conduit

UL 514B. Ferrous fittings: cadmium- or zinc-coated in accordance with UL 514B.

2.2.6.1 Fittings for Rigid Metal Conduit and IMC

Threaded-type. Split couplings unacceptable.

2.2.6.2 Fittings for EMT

Steel compression type.

2.2.7 Liquid-Tight Flexible Nonmetallic Conduit

UL 1660.

2.3 OUTLET BOXES AND COVERS

UL 514A, cadmium- or zinc-coated, if ferrous metal. UL 514C, if nonmetallic.

2.3.1 Outlet Boxes for Telecommunications System

Provide the following:

a. Standard type 4 11/16 inches square by 2 1/8 inches deep.

2.4 CABINETS, JUNCTION BOXES, AND PULL BOXES

Volume greater than 100 cubic inches, UL 50, hot-dip, zinc-coated, if sheet steel.
2.5 WIRES AND CABLES

Provide wires and cables in accordance applicable requirements of NFPA 70 and UL for type of insulation, jacket, and conductor specified or indicated. Do not use wires and cables manufactured more than 12 months prior to date of delivery to site.

2.5.1 Conductors

Provide the following:

a. Conductor sizes and capacities shown are based on copper, unless indicated otherwise.

b. Conductors No. 8 AWG and larger diameter: stranded.

c. Conductors No. 10 AWG and smaller diameter: solid.

d. Conductors for remote control, alarm, and signal circuits, classes 1, 2, and 3: stranded unless specifically indicated otherwise.

e. All conductors: copper.

2.5.1.1 Equipment Manufacturer Requirements

When manufacturer's equipment requires copper conductors at the terminations or requires copper conductors to be provided between components of equipment, provide copper conductors or splices, splice boxes, and other work required to satisfy manufacturer's requirements.

2.5.2 Minimum Conductor Sizes

Provide minimum conductor size in accordance with the following:

a. Branch circuits: No. 12 AWG.

b. Class 1 remote-control and signal circuits: No. 14 AWG.

c. Class 2 low-energy, remote-control and signal circuits: No. 16 AWG.

d. Class 3 low-energy, remote-control, alarm and signal circuits: No. 22 AWG.

2.5.2 Color Coding

Provide color coding for service, feeder, branch, control, and signaling circuit conductors.

2.5.2.1 Ground and Neutral Conductors

Provide color coding of ground and neutral conductors as follows:

a. Grounding conductors: Green.

c. Exception, where neutrals of more than one system are installed in same raceway or box, other neutrals color coding: white with a different colored (not green) stripe for each.
2.5.2.2 Ungrounded Conductors

Provide color coding of ungrounded conductors in different voltage systems as follows:

a. 208/120 volt, three-phase

(1) Phase A - black
(2) Phase B - red
(3) Phase C - blue

2.5.3 Insulation

Unless specified or indicated otherwise or required by NFPA 70, provide power and lighting wires rated for 600-volts, Type THWN/THHN conforming to UL 83 or Type XHHW or RHW conforming to UL 44, except that grounding wire may be type TW conforming to UL 83; remote-control and signal circuits: Type TW or TF, conforming to UL 83. Where lighting fixtures require 90-degree Centigrade (C) conductors, provide only conductors with 90-degree C insulation or better.

2.5.4 Bonding Conductors

ASTM B1, solid bare copper wire for sizes No. 8 AWG and smaller diameter; ASTM B8, Class B, stranded bare copper wire for sizes No. 6 AWG and larger diameter.

2.5.4.1 Telecommunications Bonding Backbone (TBB)

Provide a copper conductor TBB in accordance with TIA-607 with No. 6 AWG minimum size, and sized at 2 kcmil per linear foot of conductor length up to a maximum size of 3/0 AWG. Provide insulated TBB with insulation as specified in the paragraph INSULATION and meeting the fire ratings of its pathway.

2.5.4.2 Bonding Conductor for Telecommunications

Provide a copper conductor Bonding Conductor for Telecommunications between the telecommunications main grounding busbar (TMGB) and the electrical service ground in accordance with TIA-607. Size the bonding conductor for telecommunications the same as the TBB.

2.5.5 Cord Sets and Power-Supply Cords

UL 817.

2.6 SPLICES AND TERMINATION COMPONENTS

UL 486A-486B for wire connectors and UL 510 for insulating tapes. Connectors for No. 10 AWG and smaller diameter wires: insulated, pressure-type in accordance with UL 486A-486B or UL 486C (twist-on splicing connector). Provide solderless terminal lugs on stranded conductors.

2.7 DEVICE PLATES

Provide the following:
a. UL listed, one-piece device plates for outlets to suit the devices installed.

b. For metal outlet boxes, plates on unfinished walls: zinc-coated sheet steel or cast metal having round or beveled edges.

c. For nonmetallic boxes and fittings, other suitable plates may be provided.

d. Sectional type device plates are not be permitted.

e. Plates installed in wet locations: gasketed and UL listed for "wet locations."

2.8 SWITCHES

2.8.1 Toggle Switches

NEMA WD 1, UL 20, single pole, double pole, three-way, and four-way, totally enclosed with bodies of thermoplastic or thermoset plastic and mounting strap with grounding screw. Include the following:

a. Handles: white thermoplastic.

b. Wiring terminals: screw-type, side-wired or of the solderless pressure type having suitable conductor-release arrangement.

c. Contacts: silver-cadmium and contact arm - one-piece copper alloy.

d. Switches: rated quiet-type ac only, 120/277 volts, with current rating and number of poles indicated.

2.8.2 Disconnect Switches

NEMA KS 1. Provide heavy duty-type switches where indicated, where switches are rated higher than 240 volts, and for double-throw switches. Utilize Class R fuseholders and fuses for fused switches, unless indicated otherwise. Provide horsepower rated for switches serving as the motor-disconnect means. Provide switches in NEMA 1, enclosure as indicated per NEMA ICS 6.

2.9 RECEPTACLES

Provide the following:

a. UL 498, hard use (also designated heavy-duty), grounding-type.

b. Ratings and configurations: as indicated.

c. Bodies: white as per NEMA WD 1.

d. Face and body: thermoplastic supported on a metal mounting strap.

e. Dimensional requirements: per NEMA WD 6.

f. Screw-type, side-wired wiring terminals or of the solderless pressure type having suitable conductor-release arrangement.
g. Grounding pole connected to mounting strap.

h. The receptacle: containing triple-wipe power contacts and double or triple-wipe ground contacts.

2.9.1 Switched Duplex Receptacles

Provide separate terminals for each ungrounded pole. Top receptacle: switched when installed.

2.9.2 Weatherproof Receptacles

Provide receptacles, UL listed for use in "wet locations". Include cast metal box with gasketed, hinged, lockable and weatherproof while-in-use, polycarbonate, UV resistant/stabilized cover plate.

2.9.3 Ground-Fault Circuit Interrupter Receptacles

UL 943, duplex type for mounting in standard outlet box. Provide device capable of detecting current leak of 6 milliamperes or greater and tripping per requirements of UL 943 for Class A ground-fault circuit interrupter devices. Provide screw-type, side-wired wiring terminals or pre-wired (pigtail) leads.

2.10 PANELBOARDS

Provide panelboards in accordance with the following:

a. UL 67 and UL 50 having a short-circuit current rating as indicated.

b. Panelboards for use as service disconnecting means: additionally conform to UL 869A.

d. Designed such that individual breakers can be removed without disturbing adjacent units or without loosening or removing supplemental insulation supplied as means of obtaining clearances as required by UL.

e. "Specific breaker placement" is required in panelboards to match the breaker placement indicated in the panelboard schedule on the drawings.

f. Use of "Subfeed Breakers" is not acceptable unless specifically indicated otherwise.

g. Main breaker: "separately" mounted "above" or "below" branch breakers.

h. Where "space only" is indicated, make provisions for future installation of breakers.

i. Directories: indicate load served by each circuit in panelboard.

j. Directories: indicate source of service to panelboard (e.g., Panel PA served from Panel MDP).

k. Provide new directories for existing panels modified by this project as indicated.

l. Type directories and mount in holder behind transparent protective
covering.

m. Panelboards: listed and labeled for their intended use.

n. Panelboard nameplates: provided in accordance with paragraph FIELD FABRICATED NAMEPLATES.

2.10.1 Enclosure

Provide panelboard enclosure in accordance with the following:

a. UL 50.

b. Cabinets mounted outdoors or flush-mounted: hot-dipped galvanized after fabrication.

c. Cabinets: painted in accordance with paragraph PAINTING.

d. Outdoor cabinets: NEMA 3R raintight with conduit hubs welded to the cabinet.

e. Front edges of cabinets: form-flanged or fitted with structural shapes welded or riveted to the sheet steel, for supporting the panelboard front.

f. All cabinets: fabricated such that no part of any surface on the finished cabinet deviates from a true plane by more than 1/8 inch.

g. Holes: provided in the back of indoor surface-mounted cabinets, with outside spacers and inside stiffeners, for mounting the cabinets with a 1/2 inch clear space between the back of the cabinet and the wall surface.

h. Flush doors: mounted on hinges that expose only the hinge roll to view when the door is closed.

i. Each door: fitted with a combined catch and lock, except that doors over 24 inches long provided with a three-point latch having a knob with a T-handle, and a cylinder lock.

j. Keys: two provided with each lock, with all locks keyed alike.

k. Finished-head cap screws: provided for mounting the panelboard fronts on the cabinets.

2.10.2 Panelboard Buses

Support bus bars on bases independent of circuit breakers. Design main buses and back pans so that breakers may be changed without machining, drilling, or tapping. Provide isolated neutral bus in each panel for connection of circuit neutral conductors. Provide separate ground bus identified as equipment grounding bus per UL 67 for connecting grounding conductors; bond to steel cabinet.

2.10.3 Circuit Breakers

UL 489, thermal magnetic-type having a minimum short-circuit current rating equal to the short-circuit current rating of the panelboard in which the circuit breaker will be mounted. Breaker terminals: UL listed as suitable
for type of conductor provided. Where indicated on the drawings, provide
circuit breakers with shunt trip devices. Series rated circuit breakers
and plug-in circuit breakers are unacceptable.

2.10.3.1 Multipole Breakers

Provide common trip-type with single operating handle. Design breaker such
that overload in one pole automatically causes all poles to open. Maintain
phase sequence throughout each panel so that any three adjacent breaker
poles are connected to Phases A, B, and C, respectively.

2.10.3.2 Circuit Breaker With Ground-Fault Circuit Interrupter

UL 943 and NFPA 70. Provide with "push-to-test" button, visible indication
of tripped condition, and ability to detect and trip on current imbalance
of 6 milliamperes or greater per requirements of UL 943 for Class A
ground-fault circuit interrupter.

2.10.3.3 Circuit Breakers for HVAC Equipment

Provide circuit breakers for HVAC equipment having motors (group or
individual) marked for use with HACR type and UL listed as HACR type.

2.11 TELECOMMUNICATIONS SYSTEM

Provide system of telecommunications wire-supporting structures (pathway),
including: outlet boxes, conduits with pull wires and other accessories for
telecommunications outlets and pathway in accordance with TIA-569 and as
specified herein. Additional telecommunications requirements are specified
in Section 27 10 00, BUILDING TELECOMMUNICATIONS CABLING SYSTEM.

2.12 GROUNDING AND BONDING EQUIPMENT

2.12.1 Ground Bus

Copper ground bus: provided in the electrical equipment rooms as indicated.

2.12.2 Telecommunications Grounding Busbar

Provide corrosion-resistant grounding busbar suitable for indoor
installation in accordance with TIA-607. Busbars: plated for reduced
contact resistance. If not plated, clean the busbar prior to fastening the
conductors to the busbar and apply an anti-oxidant to the contact area to
control corrosion and reduce contact resistance. Provide a
telecommunications main grounding busbar (TMGB) in the telecommunications
entrance facility and a (TGB) in all other telecommunications rooms and
equipment rooms. The telecommunications main grounding busbar (TMGB) and
the telecommunications grounding busbar (TGB): sized in accordance with
the immediate application requirements and with consideration of future
growth. Provide telecommunications grounding busbars with the following:

a. Predrilled copper busbar provided with holes for use with standard
 sized lugs,

b. Minimum dimensions of 0.25 in thick by 4 in wide for the TMGB and 2 in
 wide for TGBs with length as indicated;

c. Listed by a nationally recognized testing laboratory.
2.13 MANUFACTURER'S NAMEPLATE

Provide on each item of equipment a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.14 FIELD FABRICATED NAMEPLATES

Provide field fabricated nameplates in accordance with the following:

a. ASTM D709.

b. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified or as indicated on the drawings.

c. Each nameplate inscription: identify the function and, when applicable, the position.

d. Nameplates: melamine plastic, 0.125 inch thick, white with black center core.

e. Surface: matte finish. Corners: square. Accurately align lettering and engrave into the core.

f. Minimum size of nameplates: one by 2.5 inches.

g. Lettering size and style: a minimum of 0.25 inch high normal block style.

2.15 WARNING SIGNS

Provide warning signs for flash protection in accordance with NFPA 70E and NEMA Z535.4 for switchboards, panelboards, industrial control panels, and motor control centers that are in other than dwelling occupancies and are likely to require examination, adjustment, servicing, or maintenance while energized. Provide field installed signs to warn qualified persons of potential electric arc flash hazards when warning signs are not provided by the manufacturer. Provide marking that is clearly visible to qualified persons before examination, adjustment, servicing, or maintenance of the equipment.

2.16 FIRESTOPPING MATERIALS

Provide firestopping around electrical penetrations as required.

2.17 SURGE PROTECTIVE DEVICES

Provide parallel type surge protective devices (SPD) which comply with UL 1449 at the service entrance, panelboards. Provide surge protectors in a NEMA 1 enclosure per NEMA ICS 6. Use Type 1 or Type 2 SPD and connect on the load side of a dedicated circuit breaker.

Provide the following modes of protection:

FOR SINGLE PHASE AND THREE PHASE WYE CONNECTED SYSTEMS-
Phase to phase (L-L)
Each phase to neutral (L-N)
Neutral to ground (N-G)
Phase to ground (L-G)

SPDs at the service entrance: provide with a minimum surge current rating of 80,000 amperes for L-L mode minimum and 40,000 amperes for other modes (L-N, L-G, and N-G) and downstream SPDs rated 40,000 amperes for L-L mode minimum and 20,000 amperes for other modes (L-N, L-G, and N-G).

Provide SPDs. Maximum L-N, L-G, and N-G Voltage Protection Rating:

700V for 208Y/120V, three phase system

Maximum L-L Voltage Protection Rating:

1,200V for 208Y/120V, three phase system

The minimum MCOV (Maximum Continuous Operating Voltage) rating for L-N and L-G modes of operation: 120% of nominal voltage for 240 volts and below; 115% of nominal voltage above 240 volts to 480 volts.

2.18 FACTORY APPLIED FINISH

a. NEMA 250 corrosion-resistance test and the additional requirements as specified herein.

b. Interior and exterior steel surfaces of equipment enclosures: thoroughly cleaned followed by a rust-inhibitive phosphatizing or equivalent treatment prior to painting.

c. Exterior surfaces: free from holes, seams, dents, weld marks, loose scale or other imperfections.

d. Interior surfaces: receive not less than one coat of corrosion-resisting paint in accordance with the manufacturer's standard practice.

e. Exterior surfaces: primed, filled where necessary, and given not less than two coats baked enamel with semigloss finish.

g. Provide manufacturer's coatings for touch-up work and as specified in paragraph FIELD APPLIED PAINTING.

PART 3 EXECUTION

3.1 INSTALLATION

Electrical installations, including weatherproof and hazardous locations and ducts, plenums and other air-handling spaces: conform to requirements of NFPA 70 and IEEE C2 and to requirements specified herein.

3.1.1 Hazardous Locations

Perform work in hazardous locations, as defined by NFPA 70, in strict accordance with NFPA 70 for particular "Class," "Division," and "Group" of hazardous locations involved. Provide conduit and cable seals where required by NFPA 70. Provide conduit with tapered threads.
3.1.2 Service Entrance Identification

Service entrance disconnect devices, switches, and enclosures: labeled and identified as such.

3.1.2.1 Labels

Wherever work results in service entrance disconnect devices in more than one enclosure, as permitted by NFPA 70, label each enclosure, new and existing, as one of several enclosures containing service entrance disconnect devices. Label, at minimum: indicate number of service disconnect devices housed by enclosure and indicate total number of enclosures that contain service disconnect devices. Provide laminated plastic labels conforming to paragraph FIELD FABRICATED NAMEPLATES. Use lettering of at least 0.25 inch in height, and engrave on black-on-white matte finish. Service entrance disconnect devices in more than one enclosure: provided only as permitted by NFPA 70.

3.1.3 Wiring Methods

Provide insulated conductors installed in rigid steel conduit, IMC, rigid nonmetallic conduit, or EMT, except where specifically indicated or specified otherwise or required by NFPA 70 to be installed otherwise. Grounding conductor: separate from electrical system neutral conductor. Provide insulated green equipment grounding conductor for circuit(s) installed in conduit and raceways. Shared neutral, or multi-wire branch circuits, are not permitted with arc-fault circuit interrupters. Minimum conduit size: 1/2 inch in diameter for low voltage lighting and power circuits. Vertical distribution in multiple story buildings: made with metal conduit in fire-rated shafts, with metal conduit extending through shafts for minimum distance of 6 inches. Firestop conduit which penetrates fire-rated walls, fire-rated partitions, or fire-rated floors as required.

3.1.3.1 Pull Wire

Install pull wires in empty conduits. Pull wire: plastic having minimum 200-pound force tensile strength. Leave minimum 36 inches of slack at each end of pull wire.

3.1.4 Conduit Installation

Unless indicated otherwise, conceal conduit under floor slabs and within finished walls, ceilings, and floors. Keep conduit minimum 6 inches away from parallel runs of flues and steam or hot water pipes. Install conduit parallel with or at right angles to ceilings, walls, and structural members where located above accessible ceilings and where conduit will be visible after completion of project. Run conduits in crawl space as if exposed.

3.1.4.1 Restrictions Applicable to Aluminum Conduit

a. Do not install underground or encase in concrete or masonry.

b. Do not use brass or bronze fittings.

c. Do not use when the enclosed conductors must be shielded from the effects of High-altitude Electromagnetic Pulse (HEMP).
3.1.4.2 Restrictions Applicable to EMT

a. Do not install underground.

b. Do not encase in concrete, mortar, grout, or other cementitious materials.

c. Do not use in areas subject to severe physical damage including but not limited to equipment rooms where moving or replacing equipment could physically damage the EMT.

d. Do not use in hazardous areas.

e. Do not use outdoors.

f. Do not use in fire pump rooms.

g. Do not use when the enclosed conductors must be shielded from the effects of High-altitude Electromagnetic Pulse (HEMP).

3.1.4.3 Restrictions Applicable to Flexible Conduit

Use only as specified in paragraph FLEXIBLE CONNECTIONS. Do not use when the enclosed conductors must be shielded from the effects of High-altitude Electromagnetic Pulse (HEMP).

3.1.4.4 Conduit Support

Support conduit by pipe straps, wall brackets, threaded rod conduit hangers, or ceiling trapeze. Fasten by wood screws to wood; by toggle bolts on hollow masonry units; by concrete inserts or expansion bolts on concrete or brick; and by machine screws, welded threaded studs, or spring-tension clamps on steel work. Threaded C-clamps may be used on rigid steel conduit only. Do not weld conduits or pipe straps to steel structures. Do not exceed one-fourth proof test load for load applied to fasteners. Provide vibration resistant and shock-resistant fasteners attached to concrete ceiling. Do not cut main reinforcing bars for any holes cut to depth of more than 1 1/2 inches in reinforced concrete beams or to depth of more than 3/4 inch in concrete joints. Fill unused holes. In partitions of light steel construction, use sheet metal screws. In suspended-ceiling construction, run conduit above ceiling. Do not support conduit by ceiling support system. Conduit and box systems: supported independently of both (a) tie wires supporting ceiling grid system, and (b) ceiling grid system into which ceiling panels are placed. Do not share supporting means between electrical raceways and mechanical piping or ducts. Coordinate installation with above-ceiling mechanical systems to assure maximum accessibility to all systems. Spring-steel fasteners may be used for lighting branch circuit conduit supports in suspended ceilings in dry locations. Where conduit crosses building expansion joints, provide suitable expansion fitting that maintains conduit electrical continuity by bonding jumpers or other means. For conduits greater than 2 1/2 inches inside diameter, provide supports to resist forces of 0.5 times the equipment weight in any direction and 1.5 times the equipment weight in the downward direction.

3.1.4.5 Directional Changes in Conduit Runs

Make changes in direction of runs with symmetrical bends or cast-metal fittings. Make field-made bends and offsets with hickey or conduit-bending
machine. Do not install crushed or deformed conduits. Avoid trapped conduits. Prevent plaster, dirt, or trash from lodging in conduits, boxes, fittings, and equipment during construction. Free clogged conduits of obstructions.

3.1.4.6 Locknuts and Bushings

Fasten conduits to sheet metal boxes and cabinets with two locknuts where required by NFPA 70, where insulated bushings are used, and where bushings cannot be brought into firm contact with the box; otherwise, use at least minimum single locknut and bushing. Provide locknuts with sharp edges for digging into wall of metal enclosures. Install bushings on ends of conduits, and provide insulating type where required by NFPA 70.

3.1.4.7 Flexible Connections

Provide flexible steel conduit between 3 and 6 feet in length for recessed and semi-recessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for motors. Install flexible conduit to allow 20 percent slack. Minimum flexible steel conduit size: 1/2 inch diameter. Provide liquidtight flexible nonmetallic conduit in wet and damp locations for equipment subject to vibration, noise transmission, movement or motors. Provide separate ground conductor across flexible connections.

3.1.4.8 Telecommunications and Signal System Pathway

Install telecommunications pathway in accordance with TIA-569.

a. Horizontal Pathway: Telecommunications pathways from the work area to the telecommunications room: installed and cabling length requirements in accordance with TIA-568-C.1 Size conduits in accordance with TIA-569 and as indicated.

b. Backbone Pathway: Telecommunication pathways from the telecommunications entrance facility to telecommunications rooms, and, telecommunications equipment rooms (backbone cabling): installed in accordance with TIA-569. Size conduits for telecommunications risers in accordance with TIA-569 and as indicated.

3.1.5 Telecommunications Cable Support Installation

Install open top and closed ring cable supports on 4 ft to 5 ft centers to adequately support and distribute the cable’s weight. Use these types of supports to support a maximum of 50 0.25 in diameter cables. Install suspended cables with at least 3 in of clear vertical space above the ceiling tiles and support channels (T-bars). Open top and closed ring cable supports: suspended from or attached to the structural ceiling or walls with hardware or other installation aids specifically designed to support their weight.

3.1.6 Boxes, Outlets, and Supports

Provide boxes in wiring and raceway systems wherever required for pulling of wires, making connections, and mounting of devices or fixtures. Boxes for metallic raceways: cast-metal, hub-type when located in wet locations, when surface mounted on outside of exterior surfaces, when surface mounted on interior walls exposed up to 7 feet above floors and walkways, or when installed in hazardous areas and when specifically indicated. Boxes in other locations: sheet steel, except that aluminum boxes may be used with
aluminum conduit, and nonmetallic boxes may be used with nonmetallic sheathed cable conduit system. Provide each box with volume required by NFPA 70 for number of conductors enclosed in box. Boxes for mounting lighting fixtures: minimum 4 inches square, or octagonal, except that smaller boxes may be installed as required by fixture configurations, as approved. Boxes for use in masonry-block or tile walls: square-cornered, tile-type, or standard boxes having square-cornered, tile-type covers. Provide gaskets for cast-metal boxes installed in wet locations and boxes installed flush with outside of exterior surfaces. Provide separate boxes for flush or recessed fixtures when required by fixture terminal operating temperature; provide readily removable fixtures for access to boxes unless ceiling access panels are provided. Support boxes and pendants for surface-mounted fixtures on suspended ceilings independently of ceiling supports. Fasten boxes and supports with wood screws on wood, with bolts and expansion shields on concrete or brick, with toggle bolts on hollow masonry units, and with machine screws or welded studs on steel. Threaded studs driven in by powder charge and provided with lockwashers and nuts or nail-type nylon anchors may be used in lieu of wood screws, expansion shields, or machine screws. In open overhead spaces, cast boxes threaded to raceways need not be separately supported except where used for fixture support; support sheet metal boxes directly from building structure or by bar hangers. Where bar hangers are used, attach bar to raceways on opposite sides of box, and support raceway with approved-type fastener maximum 24 inches from box. When penetrating reinforced concrete members, avoid cutting reinforcing steel.

3.1.6.1 Boxes

Boxes for use with raceway systems: minimum 1 1/2 inches deep, except where shallower boxes required by structural conditions are approved. Boxes for other than lighting fixture outlets: minimum 4 inches square, except that 4 by 2 inch boxes may be used where only one raceway enters outlet. Telecommunications outlets: a minimum of 4 11/16 inches square by 2 1/8 inches deep, except for wall mounted telephones. Mount outlet boxes flush in finished walls.

3.1.6.2 Pull Boxes

Construct of at least minimum size required by NFPA 70 of code-gauge aluminum or galvanized sheet steel, except where cast-metal boxes are required in locations specified herein. Provide boxes with screw-fastened covers. Where several feeders pass through common pull box, tag feeders to indicate clearly electrical characteristics, circuit number, and panel designation.

3.1.6.3 Extension Rings

Extension rings are not permitted for new construction. Use only on existing boxes in concealed conduit systems where wall is furred out for new finish.

3.1.7 Mounting Heights

Mount panelboards, circuit breakers, and disconnecting switches so height of operating handle at its highest position is maximum 78 inches above floor. Mount lighting switches 48 inches above finished floor. Mount receptacles and telecommunications outlets 18 inches above finished floor, unless otherwise indicated. Wall-mounted telecommunications outlets: mounted at height 60 inches above finished floor. Mount other devices as
indicated. Measure mounting heights of wiring devices and outlets to center of device or outlet.

3.1.8 Conductor Identification

Provide conductor identification within each enclosure where tap, splice, or termination is made. For conductors No. 6 AWG and smaller diameter, provide color coding by factory-applied, color-impregnated insulation. For conductors No. 4 AWG and larger diameter, provide color coding by plastic-coated, self-sticking markers; colored nylon cable ties and plates; or heat shrink-type sleeves. Identify control circuit terminations in accordance with manufacturer's recommendations.

3.1.8.1 Marking Strips

Provide marking strips in accordance with the following:

a. Provide white or other light-colored plastic marking strips, fastened by screws to each terminal block, for wire designations.

b. Use permanent ink for the wire numbers

c. Provide reversible marking strips to permit marking both sides, or provide two marking strips with each block.

d. Size marking strips to accommodate the two sets of wire numbers.

e. Assign a device designation in accordance with NEMA ICS 1 to each device to which a connection is made. Mark each device terminal to which a connection is made with a distinct terminal marking corresponding to the wire designation used on the Contractor's schematic and connection diagrams.

f. The wire (terminal point) designations used on the Contractor's wiring diagrams and printed on terminal block marking strips may be according to the Contractor's standard practice; however, provide additional wire and cable designations for identification of remote (external) circuits for the Government's wire designations.

g. Prints of the marking strips drawings submitted for approval will be so marked and returned to the Contractor for addition of the designations to the terminal strips and tracings, along with any rearrangement of points required.

3.1.9 Splices

Make splices in accessible locations. Make splices in conductors No. 10 AWG and smaller diameter with insulated, pressure-type connector. Make splices in conductors No. 8 AWG and larger diameter with solderless connector, and cover with insulation material equivalent to conductor insulation.

3.1.10 Covers and Device Plates

Install with edges in continuous contact with finished wall surfaces without use of mats or similar devices. Plaster fillings are not permitted. Install plates with alignment tolerance of 1/16 inch. Use of sectional-type device plates are not permitted. Provide gasket for plates installed in wet locations.
3.1.11 Electrical Penetrations

Seal openings around electrical penetrations through fire resistance-rated walls, partitions, floors, or ceilings as required.

3.1.12 Grounding and Bonding

Provide in accordance with NFPA 70. Ground exposed, non-current-carrying metallic parts of electrical equipment, access flooring support system, metallic raceway systems, grounding conductor in metallic and nonmetallic raceways, telecommunications system grounds, and neutral conductor of wiring systems. Where ground fault protection is employed, ensure that connection of ground and neutral does not interfere with correct operation of fault protection.

3.1.12.1 Ground Bus

Provide a copper ground bus in the electrical equipment rooms as indicated. Noncurrent-carrying metal parts of electrical equipment: effectively grounded by bonding to the ground bus. Bond the ground bus to both the entrance ground, and to a ground rod or rods as specified above having the upper ends terminating approximately 4 inches above the floor. Make connections and splices of the brazed, welded, bolted, or pressure-connector type, except use pressure connectors or bolted connections for connections to removable equipment.

3.1.12.2 Telecommunications System

Provide telecommunications grounding in accordance with the following:

a. Telecommunications Grounding Busbars: Provide a telecommunications grounding busbar (TGB) in all other telecommunications rooms and telecommunications equipment rooms. Install the TGB as close to the telecommunications room panelboard as practicable, when equipped. Where a panelboard for telecommunications equipment is not installed in the telecommunications room, locate the TGB near the backbone cabling and associated terminations. In addition, locate the TGB to provide for the shortest and straightest routing of the grounding conductors. Where a panelboard for telecommunications equipment is located within the same room or space as a TGB, bond that panelboard’s alternating current equipment ground (ACEG) bus (when equipped) or the panelboard enclosure to the TGB. Install telecommunications grounding busbars to maintain clearances as required by NFPA 70 and insulated from its support. A minimum of 2 inches separation from the wall is recommended to allow access to the rear of the busbar and adjust the mounting height to accommodate overhead or underfloor cable routing.

b. Telecommunications Bonding Conductors: Provide a telecommunications bonding backbone (TBB) that originates at the TMGB extends throughout the building using the telecommunications backbone pathways, and connects to the TGBs in all telecommunications rooms and equipment rooms. Install the TBB conductors such that they are protected from physical and mechanical damage. The TBB conductors should be installed without splices and routed in the shortest possible straight-line path. Make the bonding conductor between a TBB and a TGB continuous. Where splices are necessary, the number of splices should be a minimum. Make the splices accessible and located in telecommunications spaces. Connect joined segments of a TBB using exothermic welding,
irreversible compression-type connectors, or equivalent. Install all joints to be adequately supported and protected from damage. Whenever two or more TBBs are used within a multistory building, bond the TBBs together with a grounding equalizer (GE) at the top floor and at a minimum of every third floor in between. Do not connect the TBB and GE to the pathway ground, except at the TMGB or the TGB.

c. Telecommunications Grounding Connections: Telecommunications grounding connections to the TMGB or TGB: utilize listed compression two-hole lugs, exothermic welding, suitable and equivalent one hole non-twisting lugs, or other irreversible compression type connections. Bond all metallic pathways, cabinets, and racks for telecommunications cabling and interconnecting hardware located within the same room or space as the TMGB or TGB to the TMGB or TGB respectively. In a metal frame (structural steel) building, where the steel framework is readily accessible within the room; bond each TMGB and TGB to the vertical steel metal frame using a minimum No. 6 AWG conductor. Where the metal frame is external to the room and readily accessible, bond the metal frame to the TGB or TMGB with a minimum No. 6 AWG conductor. When practicable because of shorter distances and, where horizontal steel members are permanently electrically bonded to vertical column members, the TGB may be bonded to these horizontal members in lieu of the vertical column members. All connectors used for bonding to the metal frame of a building must be listed for the intended purpose.

3.1.13 Equipment Connections

Provide power wiring for the connection of motors and control equipment under this section of the specification. Except as otherwise specifically noted or specified, automatic control wiring, control devices, and protective devices within the control circuitry are not included in this section of the specifications and are provided under the section specifying the associated equipment.

3.1.14 Government-Furnished Equipment

Contractor rough-in for Government-furnished equipment to make equipment operate as intended, including providing miscellaneous items such as plugs, receptacles, wire, cable, conduit, flexible conduit, and outlet boxes or fittings.

3.1.15 Repair of Existing Work

3.1.15.1 Workmanship

Lay out work in advance. Exercise care where cutting, channeling, chasing, or drilling of floors, walls, partitions, ceilings, or other surfaces is necessary for proper installation, support, or anchorage of conduit, raceways, or other electrical work. Repair damage to buildings, piping, and equipment using skilled craftsmen of trades involved.

3.1.15.2 Existing Concealed Wiring to be Removed

Disconnect existing concealed wiring to be removed from its source. Remove conductors; cut conduit flush with floor, underside of floor, and through walls; and seal openings.
3.1.15.3 Removal of Existing Electrical Distribution System

Removal of existing electrical distribution system equipment includes equipment's associated wiring, including conductors, cables, exposed conduit, surface metal raceways, boxes, and fittings, back to equipment's power source as indicated.

3.1.15.4 Continuation of Service

Maintain continuity of existing circuits of equipment to remain. Maintain existing circuits of equipment energized. Restore circuits wiring and power which are to remain but were disturbed during demolition back to original condition.

3.1.16 Surge Protective Devices

Connect the surge protective devices in parallel to the power source, keeping the conductors as short and straight as practically possible. Maximum allowed lead length is 3 feet.

3.2 FIELD FABRICATED NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.

3.3 WARNING SIGN MOUNTING

Provide the number of signs required to be readable from each accessible side. Space the signs in accordance with NFPA 70E.

3.4 FIELD APPLIED PAINTING

Paint electrical equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Where field painting of enclosures for panelboards, load centers or the like is specified to match adjacent surfaces, to correct damage to the manufacturer's factory applied coatings, or to meet the indicated or specified safety criteria, provide manufacturer's recommended coatings and apply in accordance to manufacturer's instructions.

3.5 FIELD QUALITY CONTROL

Furnish test equipment and personnel and submit written copies of test results. Give Contracting Officer 5 working days notice prior to each test.

3.5.1 Devices Subject to Manual Operation

Operate each device subject to manual operation at least five times, demonstrating satisfactory operation each time.

3.5.2 600-Volt Wiring Test

Test wiring rated 600 volt and less to verify that no short circuits or accidental grounds exist. Perform insulation resistance tests on wiring No. 6 AWG and larger diameter using instrument which applies voltage of approximately 500 volts to provide direct reading of resistance. Minimum resistance: 250,000 ohms.
3.5.3 Grounding System Test

Test grounding system to ensure continuity, and that resistance to ground is not excessive. Test each ground rod for resistance to ground before making connections to rod; tie grounding system together and test for resistance to ground. Make resistance measurements in dry weather, not earlier than 48 hours after rainfall. Submit written results of each test to Contracting Officer, and indicate location of rods as well as resistance and soil conditions at time measurements were made.

-- End of Section --
SECTION 26 51 00
INTERIOR LIGHTING

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASTM INTERNATIONAL (ASTM)

ASTM A1008/A1008M (2016) Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardened

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

CALIFORNIA ENERGY COMMISSION (CEC)

CEC Title 24 (2008; Effective Jan 2010) California's
Energy Efficiency Standards for Residential and Nonresidential Buildings

ILLUMINATING ENGINEERING SOCIETY (IES)

IES RP-16 (2010; Addendum A 2008; Addenda B 2009; Addendum C 2016) Nomenclature and Definitions for Illuminating Engineering

IES TM-21 (2011; Addendum B 2015) Projecting Long Term Lumen Maintenance of LED Light Sources

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA C82.77 (2002) Harmonic Emission Limits — Related Power Quality Requirements for Lighting Equipment

NEMA SSL 1 (2010) Electronic Drivers for Led Devices, Arrays, or Systems

NEMA SSL 3 (2011) High-Power White LED Binning for General Illumination

NEMA WD 1 (1999; R 2015) Standard for General Color Requirements for Wiring Devices

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. DEPARTMENT OF DEFENSE (DOD)

DOD 8500.01 (2014) Cybersecurity

DOD 8510.01 (2014; Change 1–2016) Risk Management Framework (RMF) for DoD Information Technology (IT)

UNDERWRITERS LABORATORIES (UL)

UL 1598 (2008; Reprint Oct 2012) Luminaires

UL 20 (2010; Reprint Feb 2012) General-Use Snap Switches

UL 508 (1999; Reprint Oct 2013) Industrial Control Equipment

UL 924 (2016) UL Standard for Safety Emergency Lighting and Power Equipment

1.2 RELATED REQUIREMENTS

Materials not considered to be luminaires or luminaire accessories are specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

1.3 DEFINITIONS

a. Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, must be as defined in IEEE 100 and IES RP-16.

b. For fluorescent, HID and induction luminaire light sources, "Average Rated Life" is the time after which 50 percent of a large group of light sources will have failed and 50 percent will have survived under normal conditions.
c. For LED luminaire light sources, "Useful Life" is the operating hours before reaching 70 percent of the initial rated lumen output \(L70 \) with no catastrophic failures under normal operating conditions. This is also known as 70 percent "Rated Lumen Maintenance Life" as defined in IES LM-80.

d. For fluorescent, HID and induction luminaires, "Luminaire Efficacy Rating" (LER) is the appropriate measure of energy efficiency, measured in lumens/watt. Specifically, it is the luminaire's efficiency multiplied by the total rated light source lumens and the ballast factor, divided by the luminaire input watts.

e. For LED luminaires, "Luminaire Efficacy" (LE) is the appropriate measure of energy efficiency, measured in lumens/watt. This is gathered from LM-79 data for the luminaire, in which absolute photometry is used to measure the lumen output of the luminaire as one entity, not the source separately and then the source and housing together.

f. Total harmonic distortion (THD) is the root mean square (RMS) of all the harmonic components divided by the total fundamental current.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Luminaire Drawings; G

SD-03 Product Data
 Luminaires; G
 Light Sources; G
 Drivers, Ballasts and Generators; G
 LED Luminaire Warranty; G
 Luminaire Design Data; G
 Dimming Controllers (Dimmers); G
 Power Hook Luminaire Hangers; G
 Exit Signs; G
 LED Emergency Drivers; G
 Occupancy Sensors; G

SD-06 Test Reports
 LED Luminaire - IES LM-79 Test Report; G
LED Light Source - IES LM-80 Test Report; G
LED Light Source - IES TM-21 Test Report; G
Occupancy/Vacancy Sensor Verification Tests; G
Energy Efficiency; G
SD-07 Certificates
Luminaire Useful Life Certificate; G
LED Driver and Dimming Switch Compatibility Certificate; G

1.5 QUALITY CONTROL

1.5.1 Luminaire Drawings
Include dimensions, accessories, and installation and construction details. Photometric data, including zonal lumen data, average and minimum ratio, aiming diagram, and computerized candlepower distribution data must accompany shop drawings.

1.5.2 LED Driver and Dimming Switch Compatibility Certificate
Submit certification from the luminaire, driver, or dimmer switch manufacturer that ensures compatibility and operability between devices.

1.5.3 Luminaire Design Data
a. Provide safety certification and file number for the luminaire family that must be listed, labeled, or identified per the NFPA 70 (NEC). Applicable testing bodies are determined by the US Occupational Safety Health Administration (OSHA) as Nationally Recognized Testing Laboratories (NRTL) and include: CSA (Canadian Standards Association), ETL (Edison Testing Laboratory), and UL (Underwriters Laboratories).

b. Provide long term lumen maintenance projections for each LED luminaire in accordance with IES TM-21. Data used for projections must be obtained from testing in accordance with IES LM-80.

1.5.4 LED Luminaire - IES LM-79 Test Report
Submit test report on manufacturer's standard production model luminaire. Include all applicable and required data as outlined under "14.0 Test Report" in IES LM-79.

1.5.5 LED Light Source - IES LM-80 Test Report
Submit report on manufacturer's standard production LED light source (package, array, or module). Include all applicable and required data as outlined under "8.0 Test Report" in IES LM-80.

1.5.6 LED Light Source - IES TM-21 Test Report
Submit test report on manufacturer's standard production LED light source (package, array or module). Include all applicable and required data, as well as required interpolation information as outlined under "7.0 Report" in IES TM-21.
1.5.7 Occupancy/Vacancy Sensor Verification Tests

Submit test report outlining post-installation coverage and operation of sensors.

1.5.8 Test Laboratories

Test laboratories for the IES LM-79 and IES LM-80 test reports must be one of the following:

a. National Voluntary Laboratory Accreditation Program (NVLAP) accredited for solid-state lighting testing as part of the Energy-Efficient Lighting Products laboratory accreditation program for both LM-79 and LM-80 testing.

b. One of the qualified labs listed on the Department of Energy - LED Lighting Facts Approved Testing Laboratories List at for LM-79 testing.

c. One of the EPA-Recognized Laboratories listed at for LM-80 testing.

1.5.9 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship must be in accordance with the mandatory and advisory provisions of NFPA 70, unless more stringent requirements are specified or indicated.

1.5.10 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products must have been in satisfactory commercial or industrial use for two years prior to bid opening. The two-year period must include applications of equipment and materials under similar circumstances and of similar size. The product must have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the two-year period. Where two or more items of the same class of equipment are required, these items must be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.5.10.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.5.10.2 Material and Equipment Manufacturing Date

Products manufactured more than six months prior to date of delivery to site must not be used, unless specified otherwise.
1.5.10.3 Energy Efficiency

Submit data indicating lumens per watt efficacy and color rendering index of light source.

1.6 WARRANTY

Support all equipment items by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.6.1 LED Luminaire Warranty

a. Provide a written 10 year on-site replacement warranty for material, fixture finish, and workmanship. On-site replacement includes transportation, removal, and installation of new products.

 (1) Include finish warranty to include failure and substantial deterioration such as blistering, cracking, peeling, chalking, or fading.

 (2) Material warranty must include:

 (a) All drivers.

 (b) Replacement when more than 10 percent of LED sources in any lightbar or subassembly(s) are defective or non-starting.

b. Warranty period must begin on date of beneficial occupancy. Provide the Contracting Officer with signed warranty certificates prior to final payment.

1.6.1.1 Provide Luminaire Useful Life Certificate

Submit certification from the manufacturer indicating the expected useful life of the luminaires provided. The useful life must be directly correlated from the IES LM-80 test data using procedures outlined in IES TM-21. Thermal properties of the specific luminaire and local ambient operating temperature and conditions must be taken into consideration.

PART 2 PRODUCTS

2.1 PRODUCT COORDINATION

Products and materials not considered to be luminaires, luminaire controls, or associated equipment are specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.2 LUMINAIRES

UL 1598, NEMA C82.77, and UL 8750. Provide luminaires as indicated in luminaire schedule and NL plates or details on project plans. Provide luminaires complete with light sources of quantity, type, and wattage indicated. Provide all luminaires of the same type by the same manufacturer. Luminaires must be specifically designed for use with the driver, ballast or generator and light source provided.
2.2.1 LED Luminaires

Provide luminaires complete with power supplies (drivers) and light sources. Provide design information including lumen output and design life in luminaire schedule on project plans for LED luminaires. LED luminaires must meet the minimum requirements in the following table:

<table>
<thead>
<tr>
<th>LUMINAIRE TYPE</th>
<th>MINIMUM LUMINAIRE EFFICACY (LE)</th>
<th>MINIMUM COLOR RENDERING INDEX (CRI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED TROFFER -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 4</td>
<td>90 LPW</td>
<td>80</td>
</tr>
<tr>
<td>2 x 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED Downlight</td>
<td>50 LPW</td>
<td>90</td>
</tr>
<tr>
<td>LED Track or Accent</td>
<td>40 LPW</td>
<td>80</td>
</tr>
<tr>
<td>LED Low Bay/High Bay</td>
<td>80 LPW</td>
<td>70</td>
</tr>
<tr>
<td>LED Linear Ambient</td>
<td>80 LPW</td>
<td>80</td>
</tr>
</tbody>
</table>

LED luminaires must also meet the following minimum requirements:

a. Luminaires must have a minimum 10 year manufacturer's warranty.

b. Luminaires must have a minimum L70 lumen maintenance value of 50,000 hours as calculated by IES TM-21, with data obtained per IES LM-80 requirements.

c. Luminaire drive current value must be identical to that provided by test data for luminaire in question.

d. Luminaires must be tested to IES LM-79 and IES LM-80 standards, with the results provided as required in the Submittals paragraph of this specification.

e. Luminaires must be listed with the DesignLights Consortium 'Qualified Products List' when falling into category of "General Application" luminaires, i.e. Interior Directional, Display Case, Troffer, Linear Ambient, or Low/High Bay. Requirements are shown in the Designlights Consortium "Technical Requirements Table".

f. Provide Department of Energy 'Lighting Facts' label for each luminaire.

2.3 DRIVERS, BALLASTS and GENERATORS

2.3.1 LED Drivers

NEMA SSL 1, UL 8750. LED drivers must be electronic, UL Class 1, constant-current type and comply with the following requirements:

a. Output power (watts) and luminous flux (lumens) as shown in luminaire schedule for each luminaire type to meet minimum luminaire efficacy (LE) value provided.

b. Power Factor (PF) greater than or equal to 0.9 over the full dimming range when provided.
c. Current draw Total Harmonic Distortion (THD) of less than 20 percent.

d. Class A sound rating.

e. Operable at input voltage of 120-277 volts at 60 hertz.

f. Minimum 10 year manufacturer's warranty.

g. RoHS compliant.

h. Integral thermal protection that reduces or eliminates the output power if case temperature exceeds a value detrimental to the driver.

i. UL listed for dry or damp locations typical of interior installations.

j. Non-dimmable, step-dimmable to 50 percent output, or fully-dimmable using 0-10V control as indicated in luminaire schedule.

2.4 LIGHT SOURCES

NEMA ANSI L C78.377, NEMA SSL 3. Provide type and wattage as indicated in luminaire schedule on project plans.

2.4.1 LED Light Sources

a. Correlated Color Temperature (CCT) of 4000 degrees K.

b. Minimum Color Rendering Index (CRI) R9 value of 80.

c. High power, white light output utilizing phosphor conversion (PC) process.

d. RoHS compliant.

e. Provide light source color consistancy by utilizing a binning tolerance within a 4 step McAdam ellipse.

2.5 LIGHTING CONTROLS

ASHRAE 90.1 - IP ASHRAE 189.1. Provide network certification for all networked lighting control systems and devices per requirements of DOD 8500.01 and DOD 8510.01.

2.5.1 Toggle Switches

Provide line-voltage toggle switches as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.5.2 Dimming Controllers (Dimmers)

UL 1472, UL 20, IEEE C62.41, NEMA SSL 7A. 120/277 V0-10 V dimmers must provide flicker-free, continuously variable light output throughout the dimming range. Provide radio frequency interference suppression integral to device. Provide dimmers utilizing pulse width modulation (PWM). Provide device with a vertical slider, paddle, rotary button, or toggle (with adjacent vertical slider) type control, with finish to match switches and outlets in same area. Provide back box in wall with sufficient depth to accomodate body of switch and wiring. Devices must be capable of operating at their full rated capacity regardless of being single or
ganged-mounted, and be compatible with three-way and four-way switching scenarios. Dimmers must be capable of controlling 0-10 volt fluorescent ballasts or LED drivers. Ensure compatibility of dimmer with separate power packs when utilized for lighting control. Dimmers and the ballasts or drivers they control, must be provided from the same manufacturer, or tested and certified as compatible for use together. Provide NEMA SSL 7A-compliant devices.

2.5.3 Sensors for Lighting Control

IEEE C62.41, NEMA WD 1, UL 94, UL 916, UL 508, ASTM D4674 REV A.

2.5.3.1 Occupancy Sensors

Provide occupancy sensors with coverage patterns as indicated on project plans. Provide no less quantity of sensors as shown on plans, but add additional sensors when required to fulfill coverage requirement for the specific model sensor provided. Sensor must be provided with an adaptive learning function that automatically sets sensor in optimum calibration in a set period of time after installation and a non-volatile memory that saves settings after a power outage. Provide sensors designed for ceiling, wall or wall-box installation as indicated. Operating voltage must be 120 volts. Operating voltage must be 24V in conjunction with a control system or separate power pack which interacts with luminare being controlled. Provide housing of high-impact, injection-molded thermoplastic with a multi-segmented lens for PIR and dual technology sensors. Sensor operation requires movement to activate luminaires controlled, and turns luminaires off after a set time of inactivity.

2.5.3.1.1 Passive Infrared (PIR) Sensors

Provide ceiling or wall-mounted PIR sensors meeting the following requirements:

a. Temperature compensated, dual element sensor and a multi-element fresnel lens (Poly IR4 material).

b. Technology to optimize automatic time delay to fit occupant usage patterns.

c. No minimum load requirement for line voltage sensors and be capable of switching from zero to 800 W at 120 VAC, 50/60 Hz and from zero to 1200 W at 277 VAC, 50/60 Hz. Control voltage sensors must not exceed a maximum load requirement of 20 mA at 24VDC.

d. Time delay of five to 30 minutes in increments of five minutes with a walk through and test mode set by DIP switch.

e. LED indicator that remains active during occupancy.

f. Built-in light level sensor that is operational from 8 to 180 foot-candles.

g. Coverage pattern tested to NEMA WD 7 standards.

h. Standard five year warranty and be UL listed

i. No leakage current to load when in the off mode.
2.5.3.1.2 Ultrasonic Sensors

Provide ceiling-mounted ultrasonic sensors meeting the following requirements:

a. Operate at an ultrasonic frequency of 25 kHz.
b. LED on exterior of device to indicate occupant detection.
c. Adjustable time delay period of 15 seconds to 15 minutes.
d. UL listed with minimum five year warranty.

2.5.3.1.3 Dual Technology Sensors

Provide dual technology sensors that meet the requirements for PIR sensors and ultrasonic sensors indicated above. If either the passive infrared or ultrasonic sensing registers occupancy, the luminaires must remain on.

2.5.3.1.4 Power Packs for Sensors

UL 2043, CEC Title 24, ASHRAE 90.1 - IP. Power packs used to provide power to one or more lighting control sensors must meet the following requirements:

a. Input voltage - 120-277 VAC; output voltage - 24 VDC at 225 mA.
b. Plenum-rated, high-impact thermoplastic enclosure.
c. Utilizes zero-crossing circuitry to prevent damage from inrush current.
d. Maximum load rating of 16 amps for electronic lighting loads.
e. RoHS compliant.

2.6 EXIT AND EMERGENCY LIGHTING EQUIPMENT

UL 924, NFPA 101, and NFPA 70 compliant.

2.6.1 Exit Signs

Provide exit signs consuming a maximum of five watts total.

2.6.2 LED Emergency Drivers

Provide LED emergency driver with automatic power failure detection, test switch and LED indicator (or combination switch/indicator) located on luminaire exterior, and fully-automatic solid-state charger, battery and inverter integral to a self-contained housing. Provide self-diagnostic function integral to emergency driver. Integral nickel-cadmium battery is required to supply a minimum of 90 minutes of emergency power at 10 watts, 10-50 VDC compatible with LED forward voltage requirements, constant output. Driver must be RoHS compliant, rated for installation in plenum-rated spaces and damp locations, and be warranted for a minimum of five years.
2.6.3 Self-Diagnostic Circuitry for LED and Fluorescent Emergency Drivers/Ballasts

Provide emergency lighting unit with fully-automatic, integral self-testing/diagnostic electronic circuitry. Circuitry must provide for a one minute diagnostic test every 28 days, and a 30 minute diagnostic test every six months, minimum. Any malfunction of the unit must be indicated by LED(s) visible from the exterior of the luminaire. A manual test switch must also be provided to perform a diagnostic test at any given time.

2.6.4 Central Emergency Lighting System

Provide integrally-housed emergency system rated at 1000 VA/watts, 24 volts (input and output), for a minimum period of 90 minutes. Output frequency must be a pure sine wave at 60 hertz, with maximum 5 percent total harmonic distortion. Provide system with minimum short circuit rating required for protection against available fault current.

2.6.4.1 System Operation

During normal power operation, system charges batteries as needed and allows normal power to pass through to load. Upon loss of normal power, system automatically transfers to emergency mode without interruption of connected loads. Internal batteries provide a minimum of 90 minutes of emergency power at this time. Upon normal power being restored, system switches back to normal power mode and fully charges batteries within UL-approved time period.

2.6.4.2 Battery Charger

Solid state, monitored, three step float charging type, keeping batteries in a fully charged state. Provide circuitry to prevent deep discharge of batteries in prolonged power outage conditions.

2.6.4.3 Batteries

Provide sealed, lead calcium type, designed to operated unattended without maintenance, for a minimum of 10 years.

2.6.4.4 Enclosure

Provide system in NEMA 1 painted aluminum enclosure with exterior-mounted "push-to-test" button and LED indicator.

2.7 LUMINAIRE SUPPORT HARDWARE

2.7.1 Wire

ASTM A641/A641M; Galvanized, soft tempered steel, minimum 0.11 inches in diameter, or galvanized, braided steel, minimum 0.08 inches in diameter.

2.7.2 Wire for Humid Spaces

ASTM A580/A580M; Composition 302 or 304, annealed stainless steel, minimum 0.11 inches in diameter.

ASTM B164; UNS N04400, annealed nickel-copper alloy, minimum 0.11 inches in diameter.
2.7.3 Threaded Rods

Threaded steel rods, 3/16 inch diameter, zinc or cadmium coated.

2.7.4 Straps

Galvanized steel, one by 3/16 inch, conforming to ASTM A653/A653M, with a light commercial zinc coating or ASTM A1008/A1008M with an electrodeposited zinc coating conforming to ASTM B633, Type RS.

2.8 POWER HOOK LUMINAIRE HANGERS

UL 1598; Provide an assembly consisting of through-wired power hook housing, interlocking plug and receptacle, power cord, and luminaire support loop. Power hook housing must be cast aluminum having two 3/4 inch threaded hubs. Support hook must have safety screw. Fixture support loop must be cast aluminum with provisions for accepting 3/4 inch threaded stems. Power cord must include 16 inches of 3 conductor No. 16 Type SO cord. Assembly must be rated 120 volts or 277 volts, 15 amperes.

2.9 EQUIPMENT IDENTIFICATION

2.9.1 Manufacturer's Namplate

Each item of equipment must have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.9.2 Labels

Provide labeled luminaires in accordance with UL 1598 requirements. All luminaires must be clearly marked for operation of specific light sources and ballasts, generators or drivers. Note the following light source characteristics in the format "Use Only _____":

a. Light source diameter code (T-4, T-5, T-8), tube configuration (twin, quad, triple), base type, and nominal wattage for fluorescent and compact fluorescent luminaires.

b. Light source type, wattage, envelope type (ED17, BD56, etc.) and coating (clear or coated) for HID luminaires.

c. Start type (programmed start, instant start) for fluorescent and compact fluorescent luminaires.

d. ANSI ballast type (M98, M57, etc.) for HID luminaires.

e. Correlated color temperature (CCT) and color rendering index (CRI) for all luminaires.

All markings related to light source type must be clear and located to be readily visible to service personnel, but unseen from normal viewing angles when light sources are in place. Ballasts, generators or drivers must have clear markings indicating multi-level outputs and indicate proper terminals for the various outputs.
2.10 FACTORY APPLIED FINISH

Provide all luminaires and lighting equipment with factory-applied painting system that as a minimum, meets requirements of NEMA 250 corrosion-resistance test.

2.11 RECESS- AND FLUSH-MOUNTED LUMINAIRES

Provide access to lamp and ballast from bottom of luminaire. Provide trim and lenses for the exposed surface of flush-mounted luminaires as indicated on project drawings and specifications.

2.12 SUSPENDED LUMINAIRES

Provide hangers capable of supporting twice the combined weight of luminaires supported by hangers. Provide with swivel hangers to ensure a plumb installation. Provide cadmium-plated steel with a swivel-ball tapped for the conduit size indicated. Hangers must allow fixtures to swing within an angle of 45 degrees. Brace pendants 4 feet or longer to limit swinging. Single-unit suspended luminaires must have twin-stem hangers. Multiple-unit or continuous row luminaires must have a tubing or stem for wiring at one point and a tubing or rod suspension provided for each unit length of chassis, including one at each end. Provide rods rods in minimum 0.18 inch diameter.

PART 3 EXECUTION

3.1 INSTALLATION

Electrical installations must conform to IEEE C2, NFPA 70, and to the requirements specified herein. Install luminaires and lighting controls to meet the requirements of ASHRAE 90.1 – IP and ASHRAE 189.1. To encourage consistancy and uniformity, install luminaires of the same manufacture and model number when residing in the same facility or building.

3.1.1 Light Sources

When light sources are not provided as an integral part of the luminaire, deliver light sources of the type, wattage, lumen output, color temperature, color rendering index, and voltage rating indicated to the project site and install just prior to project completion, if not already installed in the luminaires from the factory.

3.1.2 Luminaires

Set luminaires plumb, square, and level with ceiling and walls, in alignment with adjacent luminaires and secure in accordance with manufacturers' directions and approved drawings. Installation must meet requirements of NFPA 70. Mounting heights specified or indicated must be to the bottom of the luminaire for ceiling-mounted luminaires and to center of luminaire for wall-mounted luminaires. Obtain approval of the exact mounting height on the job before commencing installation and, where applicable, after coordinating with the type, style, and pattern of the ceiling being installed. Recessed and semi-recessed luminaires must be independently supported from the building structure by a minimum of four wires, straps or rods per luminaire and located near each corner of the luminaire. Ceiling grid clips are not allowed as an alternative to independently supported luminaires. Round luminaires or luminaires smaller in size than the ceiling grid must be independently supported from the
building structure by a minimum of four wires, straps or rods per luminaire, spaced approximately equidistant around. Do not support luminaires by acoustical tile ceiling panels. Where luminaires of sizes less than the ceiling grid are indicated to be centered in the acoustical panel, support each independently and provide at least two 3/4 inch metal channels spanning, and secured to, the ceiling tees for centering and aligning the luminaire. Provide wires, straps, or rods for luminaire support in this section. Luminaires installed in suspended ceilings must also comply with the requirements of Section 09 51 00 ACOUSTICAL CEILINGS.

3.1.3 Suspended Luminaires

Provide suspended luminaires with 45 degree swivel hangers so that they hang plumb and level. Locate so that there are no obstructions within the 45 degree range in all directions. The stem, canopy and luminaire must be capable of 45 degree swing. Pendants, rods, or chains 4 feet or longer excluding luminaire must be braced to prevent swaying using three cables at 120 degree separation. Suspended luminaires in continuous rows must have internal wireway systems for end to end wiring and must be properly aligned to provide a straight and continuous row without bends, gaps, light leaks or filler pieces. Utilize aligning splines on extruded aluminum luminaires to assure minimal hairline joints. Support steel luminaires to prevent "oil-canning" effects. Luminaire finishes must be free of scratches, nicks, dents, and warps, and must match the color and gloss specified. Match supporting pendants with supported luminaire. Aircraft cable must be stainless steel. Canopies must be finished to match the ceiling and must be low profile unless otherwise shown. Maximum distance between suspension points must be 10 feet or as recommended by the manufacturer, whichever is less.

3.1.4 Ballasts, Generators and Power Supplies

Typically, provide ballasts, generators, and power supplies (drivers) integral to luminaire as constructed by the manufacturer.

3.1.5 Exit Signs and Emergency Lighting Units

Wire exit signs and emergency lighting units ahead of the local switch, to the normal lighting circuit located in the same room or area.

3.1.5.1 Emergency Lighting from Central Emergency System

Connect emergency lighting from a central emergency system as indicated on the project drawings.

3.1.6 Occupancy/Vacancy Sensors

Provide testing od sensor coverage in all spaces where sensors are placed. This should be done only after all furnishings (carpet, furniture, workstations, etc.) have been installed. Provide quantity of sensor units indicated as a minimum. Provide additional units to give full coverage over controlled area. Full coverage must provide hand and arm motion detection for office and administration type areas and walking motion for industrial areas, warehouses, storage rooms and hallways. Locate the sensor(s) as indicated and in accordance with the manufacturer's recommendations to maximize energy savings and to avoid nuisance activation and deactivation due to sudden temperature or airflow changes and usage.
3.2 FIELD APPLIED PAINTING

Paint lighting equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Provide painting as specified in Section 09 90 00 PAINTS AND COATINGS.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ELECTRONIC COMPONENTS INDUSTRY ASSOCIATION (ECIA)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INSULATED CABLE ENGINEERS ASSOCIATION (ICEA)

ICEA S-83-596 (2016) Indoor Optical Fiber Cables

ICEA S-90-661 (2012) Category 3, 5, & 5e Individually Unshielded Twisted Pair Indoor Cables for Use in General Purpose and LAN Communications Wiring Systems Technical Requirements

NATIONAL ELECTRICAL CONTRACTORS ASSOCIATION (NECA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA WC 66 (2013) Performance Standard for Category 6 and Category 7 100 Ohm Shielded and Unshielded Twisted Pairs

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)

TIA-1152 (2009) Requirements for Field Test Instruments and Measurements for Balanced Twisted-Pair Cabling
TIA-455-21
(1988a; R 2012) FOTP-21 - Mating Durability of Fiber Optic Interconnecting Devices

TIA-526-14
(2015c) OFSTP-14A Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant

TIA-526-7
(2015a) OFSTP-7 Measurement of Optical Power Loss of Installed Single-Mode Fiber Cable Plant

TIA-568-C.0
(2009; Add 1 2010; Add 2 2012) Generic Telecommunications Cabling for Customer Premises

TIA-568-C.1
(2009; Add 2 2011; Add 1 2012) Commercial Building Telecommunications Cabling Standard

TIA-568-C.2
(2009; Errata 2010; Add 2 2014; Add 1 2016) Balanced Twisted-Pair Telecommunications Cabling and Components Standards

TIA-568-C.3
(2008; Add 1 2011) Optical Fiber Cabling Components Standard

TIA-569
(2015d) Commercial Building Standard for Telecommunications Pathways and Spaces

TIA-606
(2012b; Add 1 2015) Administration Standard for the Telecommunications Infrastructure

TIA-607
(2011b) Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises

TIA/EIA-598
(2014d) Optical Fiber Cable Color Coding

TIA/EIA-604-10
(2002a) FOCIS 10 Fiber Optic Connector Intermateability Standard - Type LC

TIA/EIA-604-2
(2004b; R 2014) FOCIS 2 Fiber Optic Connector Intermateability Standard

U.S. FEDERAL COMMUNICATIONS COMMISSION (FCC)

FCC Part 68
Connection of Terminal Equipment to the Telephone Network (47 CFR 68)

UNDERWRITERS LABORATORIES (UL)

UL 1286
(2008; Reprint Feb 2015) Office Furnishings

UL 1666
(2007; Reprint Jun 2012) Test for Flame Propagation Height of Electrical and
Project No: CP1011825
SOF Alter Area 19 SOS Sim Parts
(FTEV 16-1177) Storage Bldg 90710

Optical-Fiber Cables Installed Vertically in Shafts

UL 1863 (2004; Reprint Sep 2016) UL Standard for Safety Communication Circuit Accessories

UL 444 (2008; Reprint Apr 2015) Communications Cables

UL 467 (2013) Grounding and Bonding Equipment

UL 50 (2015) UL Standard for Safety Enclosures for Electrical Equipment, Non-Environmental Considerations

UL 514C (2014; Reprint Dec 2014) Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers

UL 723 (2008; Reprint Aug 2013) Test for Surface Burning Characteristics of Building Materials

UL 969 (1995; Reprint Sep 2014) Standard for Marking and Labeling Systems

1.2 RELATED REQUIREMENTS

Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM apply to this section with additions and modifications specified herein.

1.3 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in this specification shall be as defined in TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-569, TIA-606 and IEEE 100 and herein.

1.3.1 Campus Distributor (CD)

A distributor from which the campus backbone cabling emanates. (International expression for main cross-connect (MC).)

1.3.2 Building Distributor (BD)

A distributor in which the building backbone cables terminate and at which connections to the campus backbone cables may be made. (International expression for intermediate cross-connect (IC).)

1.3.3 Floor Distributor (FD)

A distributor used to connect horizontal cable and cabling subsystems or equipment. (International expression for horizontal cross-connect (HC).)

1.3.4 Telecommunications Room (TR)

An enclosed space for housing telecommunications equipment, cable, terminations, and cross-connects. The room is the recognized cross-connect between the backbone cable and the horizontal cabling.

SECTION 27 10 00 Page 3
1.3.5 Entrance Facility (EF) (Telecommunications)

An entrance to the building for both private and public network service cables (including wireless) including the entrance point at the building wall and continuing to the equipment room.

1.3.6 Equipment Room (ER) (Telecommunications)

An environmentally controlled centralized space for telecommunications equipment that serves the occupants of a building. Equipment housed therein is considered distinct from a telecommunications room because of the nature of its complexity.

1.3.7 Open Cable

Cabling that is not run in a raceway as defined by NFPA 70. This refers to cabling that is "open" to the space in which the cable has been installed and is therefore exposed to the environmental conditions associated with that space.

1.3.8 Open Office

A floor space division provided by furniture, moveable partitions, or other means instead of by building walls.

1.3.9 Pathway

A physical infrastructure utilized for the placement and routing of telecommunications cable.

1.4 SYSTEM DESCRIPTION

The building telecommunications cabling and pathway system shall include permanently installed backbone and horizontal cabling, horizontal and backbone pathways, service entrance facilities, work area pathways, telecommunications outlet assemblies, conduit, raceway, and hardware for splicing, terminating, and interconnecting cabling necessary to transport telephone and data (including LAN) between equipment items in a building. The horizontal system shall be wired in a star topology from the telecommunications work area to the floor distributor or campus distributor at the center or hub of the star. The backbone cabling and pathway system includes intrabuilding and interbuilding interconnecting cabling, pathway, and terminal hardware. The intrabuilding backbone provides connectivity from the floor distributors to the building distributors or to the campus distributor and from the building distributors to the campus distributor as required. The backbone system shall be wired in a star topology with the campus distributor at the center or hub of the star. Provide telecommunications pathway systems referenced herein as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Telecommunications drawings; G
Telecommunications Space Drawings; G

In addition to Section 01 33 00 SUBMITTAL PROCEDURES, provide shop drawings in accordance with paragraph SHOP DRAWINGS.

SD-03 Product Data

Telecommunications cabling (backbone and horizontal); G
Patch panels; G
Telecommunications outlet/connector assemblies; G
Equipment support frame; G

Submittals shall include the manufacturer's name, trade name, place of manufacture, and catalog model or number. Include performance and characteristic curves. Submittals shall also include applicable federal, military, industry, and technical society publication references. Should manufacturer's data require supplemental information for clarification, the supplemental information shall be submitted as specified in paragraph REGULATORY REQUIREMENTS and as required in Section 01 33 00 SUBMITTAL PROCEDURES.

SD-06 Test Reports

Telecommunications cabling testing; G

SD-07 Certificates

Telecommunications Contractor Qualifications; G
Key Personnel Qualifications; G
Manufacturer Qualifications; G
Test plan; G

SD-09 Manufacturer's Field Reports

Factory reel tests; G

SD-10 Operation and Maintenance Data

Telecommunications cabling and pathway system Data Package 5; G

SD-11 Closeout Submittals

Record Documentation; G

1.6 QUALITY ASSURANCE

1.6.1 Shop Drawings

In exception to Section 01 33 00 SUBMITTAL PROCEDURES, submitted plan drawings shall be a minimum of 11 by 17 inches in size using a minimum scale of 1/8 inch per foot. Include wiring diagrams and installation
details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must be shown to ensure a coordinated installation. Wiring diagrams shall identify circuit terminals and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Drawings shall indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices. Submittals shall include the nameplate data, size, and capacity. Submittals shall also include applicable federal, military, industry, and technical society publication references.

1.6.1.1 Telecommunications Drawings

Provide registered communications distribution designer (RCDD) approved, drawings in accordance with TIA-606. The identifier for each termination and cable shall appear on the drawings. Drawings shall depict final telecommunications installed wiring system infrastructure in accordance with TIA-606. The drawings should provide details required to prove that the distribution system shall properly support connectivity from the EF telecommunications and ER telecommunications, CD's, and FD's to the telecommunications work area outlets. The following drawings shall be provided as a minimum:

a. T1 - Layout of complete building per floor - Building Area/Serving Zone Boundaries, Backbone Systems, and Horizontal Pathways. Layout of complete building per floor. The drawing indicates location of building areas, serving zones, vertical backbone diagrams, telecommunications rooms, access points, pathways, grounding system, and other systems that need to be viewed from the complete building perspective.

b. T2 - Serving Zones/Building Area Drawings - Drop Locations and Cable Identification (ID’S). Shows a building area or serving zone. These drawings show drop locations, telecommunications rooms, access points and detail call outs for common equipment rooms and other congested areas.

c. T4 - Typical Detail Drawings - Faceplate Labeling, Firestopping, Americans with Disabilities Act (ADA), Safety, Department of Transportation (DOT). Detailed drawings of symbols and typicals such as faceplate labeling, faceplate types, faceplate population installation procedures, detail racking, and raceways.

1.6.1.2 Telecommunications Space Drawings

Provide T3 drawings in accordance with TIA-606 that include telecommunications rooms plan views, pathway layout (cable tray, racks, ladder-racks, etc.), mechanical/electrical layout, and cabinet, rack, backboard and wall elevations. Drawings shall show layout of applicable equipment including incoming cable stub or connector blocks, building protector assembly, outgoing cable connector blocks, patch panels and equipment spaces and cabinet/racks. Drawings shall include a complete list of equipment and material, equipment rack details, proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearance for maintenance and operation. Drawings may also be an enlargement of a congested area of T1 or T2 drawings.
1.6.2 Telecommunications Qualifications

Work under this section shall be performed by and the equipment shall be provided by the approved telecommunications contractor and key personnel. Qualifications shall be provided for: the telecommunications system contractor, the telecommunications system installer, and the supervisor (if different from the installer). A minimum of 30 days prior to installation, submit documentation of the experience of the telecommunications contractor and of the key personnel.

1.6.2.1 Telecommunications Contractor

The telecommunications contractor shall be a firm which is regularly and professionally engaged in the business of the applications, installation, and testing of the specified telecommunications systems and equipment. The telecommunications contractor shall demonstrate experience in providing successful telecommunications systems within the past 3 years of similar scope and size. Submit documentation for a minimum of three and a maximum of five successful telecommunication system installations for the telecommunications contractor.

1.6.2.2 Key Personnel

Provide key personnel who are regularly and professionally engaged in the business of the application, installation and testing of the specified telecommunications systems and equipment. There may be one key person or more key persons proposed for this solicitation depending upon how many of the key roles each has successfully provided. Each of the key personnel shall demonstrate experience in providing successful telecommunications systems within the past 3 years.

Supervisors and installers assigned to the installation of this system or any of its components shall be Building Industry Consulting Services International (BICSI) Registered Cabling Installers, Technician Level. Submit documentation of current BICSI certification for each of the key personnel.

In lieu of BICSI certification, supervisors and installers assigned to the installation of this system or any of its components shall have a minimum of 3 years experience in the installation of the specified copper and fiber optic cable and components. They shall have factory or factory approved certification from each equipment manufacturer indicating that they are qualified to install and test the provided products. Submit documentation for a minimum of three and a maximum of five successful telecommunication system installations for each of the key personnel. Documentation for each key person shall include at least two successful system installations provided that are equivalent in system size and in construction complexity to the telecommunications system proposed for this solicitation. Include specific experience in installing and testing telecommunications systems and provide the names and locations of at least two project installations successfully completed using optical fiber and copper telecommunications cabling systems. All of the existing telecommunications system installations offered by the key persons as successful experience shall have been in successful full-time service for at least 18 months prior to the issuance date for this solicitation. Provide the name and role of the key person, the title, location, and completed installation date of the referenced project, the referenced project owner point of contact information including name, organization, title, and telephone number, and generally, the referenced project description including system size and
construction complexity.

Indicate that all key persons are currently employed by the telecommunications contractor, or have a commitment to the telecommunications contractor to work on this project. All key persons shall be employed by the telecommunications contractor at the date of issuance of this solicitation, or if not, have a commitment to the telecommunications contractor to work on this project by the date that the bid was due to the Contracting Officer.

Note that only the key personnel approved by the Contracting Officer in the successful proposal shall do work on this solicitation's telecommunications system. Key personnel shall function in the same roles in this contract, as they functioned in the offered successful experience. Any substitutions for the telecommunications contractor's key personnel requires approval from The Contracting Officer.

1.6.2.3 Minimum Manufacturer Qualifications

Cabling, equipment and hardware manufacturers shall have a minimum of 3 years experience in the manufacturing, assembly, and factory testing of components which comply with TIA-568-C.1, TIA-568-C.2 and TIA-568-C.3.

1.6.3 Test Plan

Provide a complete and detailed test plan for the telecommunications cabling system including a complete list of test equipment for the components and accessories for each cable type specified, 72 days prior to the proposed test date. Include procedures for certification, validation, and testing.

1.6.4 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship shall be in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.6.5 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.6.5.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable
if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.6.5.2 Material and Equipment Manufacturing Date

Products manufactured more than 1 year prior to date of delivery to site shall not be used, unless specified otherwise.

1.7 DELIVERY AND STORAGE

Provide protection from weather, moisture, extreme heat and cold, dirt, dust, and other contaminants for telecommunications cabling and equipment placed in storage.

1.8 ENVIRONMENTAL REQUIREMENTS

Connecting hardware shall be rated for operation under ambient conditions of 32 to 140 degrees F and in the range of 0 to 95 percent relative humidity, noncondensing.

1.9 WARRANTY

The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.10 MAINTENANCE

1.10.1 Operation and Maintenance Manuals

Commercial off the shelf manuals shall be furnished for operation, installation, configuration, and maintenance of products provided as a part of the telecommunications cabling and pathway system, Data Package 5. Submit operations and maintenance data in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA and as specified herein not later than 2 months prior to the date of beneficial occupancy. In addition to requirements of Data Package 5, include the requirements of paragraphs TELECOMMUNICATIONS DRAWINGS, TELECOMMUNICATIONS SPACE DRAWINGS, and RECORD DOCUMENTATION. Ensure that these drawings and documents depict the as-built configuration.

1.10.2 Record Documentation

Provide as-built drawings as indicated in Hurlburt standards.

PART 2 PRODUCTS

2.1 COMPONENTS

Components shall be UL or third party certified. Where equipment or materials are specified to conform to industry and technical society reference standards of the organizations, submit proof of such compliance. The label or listing by the specified organization will be acceptable evidence of compliance. In lieu of the label or listing, submit a certificate from an independent testing organization, competent to perform testing, and approved by the Contracting Officer. The certificate shall state that the item has been tested in accordance with the specified
organization's test methods and that the item complies with the specified organization's reference standard. Provide a complete system of telecommunications cabling and pathway components using star topology. Provide support structures and pathways, complete with outlets, cables, connecting hardware and telecommunications cabinets/racks. Cabling and interconnecting hardware and components for telecommunications systems shall be UL listed or third party independent testing laboratory certified, and shall comply with NFPA 70 and conform to the requirements specified herein. All materials shall be approved by Hurlburt Comm Squad.

2.2 TELECOMMUNICATIONS PATHWAY

Provide telecommunications pathways in accordance with TIA-569 and as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide system furniture pathways in accordance with UL 1286.

2.3 TELECOMMUNICATIONS CABLING

Cabling shall be UL listed for the application and shall comply with TIA-568-C.0, TIA-568-C.1, TIA-568-C.2, TIA-568-C.3 and NFPA 70. Provide a labeling system for cabling as required by TIA-606 and UL 969. Ship cable on reels or in boxes bearing manufacture date for for unshielded twisted pair (UTP) in accordance with ICEA S-90-661 and optical fiber cables in accordance with ICEA S-83-596 for all cable used on this project. Cabling manufactured more than 12 months prior to date of installation shall not be used.

2.3.1 Backbone Cabling

2.3.1.1 Backbone Optical Fiber

Provide in accordance with ICEA S-83-596, TIA-568-C.3, UL 1666 and NFPA 70. Cable shall be imprinted with fiber count, fiber type and aggregate length at regular intervals not to exceed 40 inches.

Provide the number of strands indicated, (but not less than 12 strands between the main telecommunication room and each of the other telecommunication rooms), of single-mode(OS1), tight buffered fiber optic cable.

Provide tight buffered fiber optic multimode, cable as indicated.

Provide plenum (OFNP), riser (OFNR), or general purpose (OFN or OFNG) rated non-conductive, fiber optic cable in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. The cable cordage jacket, fiber, unit, and group color shall be in accordance with TIA/EIA-598.

Provide plenum (OFNP) riser (OFNR), or general purpose (OFN or OFNG) rated non-conductive, fiber optic cable in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. The cable cordage jacket, fiber, unit, and group color shall be in accordance with TIA/EIA-598.

2.3.2 Horizontal Cabling

Provide horizontal cable in compliance with NFPA 70 and performance characteristics in accordance with TIA-568-C.1.
2.3.2.1 Horizontal Copper

Provide horizontal copper cable, UTP, 100 ohm in accordance with TIA-568-C.2, UL 444, ANSI/NEMA WC 66, ICEA S-90-661. Provide four each individually twisted pair, minimum size 24 AWG conductors, Category 6, with a blue thermoplastic jacket. Cable shall be imprinted with manufacturers name or identifier, flammability rating, gauge of conductor, transmission performance rating (category designation) and length marking at regular intervals in accordance with ICEA S-90-661. Provide plenum (CMP), riser (CMR), or general purpose (CM or CMG) communications rated cabling in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. Cables installed in conduit within and under slabs shall be UL listed and labeled for wet locations in accordance with NFPA 70.

2.3.3 Work Area Cabling

2.3.3.1 Work Area Copper

Provide work area copper cable in accordance with TIA-568-C.2, with a blue, thermoplastic jacket.

2.4 TELECOMMUNICATIONS SPACES

Provide connecting hardware and termination equipment in the telecommunications entrance facility and telecommunication equipment rooms to facilitate installation as shown on design drawings for terminating and cross-connecting permanent cabling. Provide telecommunications interconnecting hardware color coding in accordance with TIA-606.

2.4.1 Backboards

Provide void-free, interior grade A-C plywood 3/4 inch thick as indicated. Backboards shall be fire rated by manufacturing process. Fire stamp shall be clearly visible. Paint applied over fire retardant backboard shall be UL 723 fire retardant paint. Provide label including paint manufacturer, date painted, UL listing and name of Installer. When painted, paint label and fire stamp shall be clearly visible. Backboards shall be provided on a minimum of two adjacent walls in the telecommunication spaces.

2.4.2 Equipment Support Frame

Provide in accordance with ECIA EIA/ECA 310-E and UL 50.

a. Cabinets, wall-mounted modular type, 16 gauge steel construction, minimum, treated to resist corrosion. Cabinet shall have have lockable front and rear doors, louvered side panels, 250 CFM roof mounted fan, ground lug, and top and bottom cable access. Cabinet shall be compatible with 19 inches panel mounting. A surge protected power strip with 6 duplex 20 amp receptacles shall be provided within the cabinet.

2.4.3 Cable Guides

Provide cable guides specifically manufactured for the purpose of routing cables, wires and patch cords horizontally and vertically on 19 inches equipment racks and telecommunications backboards. Cable guides of ring or bracket type devices mounted on rack panels for horizontal cable management and individually mounted for vertical cable management. Mount
2.4.4 Patch Panels

Provide ports for the number of horizontal and backbone cables terminated on the panel plus 25 percent spare. Provide pre-connectorized optical fiber and copper patch cords for patch panels. Provide patch cords, as complete assemblies, with matching connectors as specified. Provide fiber optic patch cables with crossover orientation in accordance with TIA-568-C.3. Patch cords shall meet minimum performance requirements specified in TIA-568-C.1, TIA-568-C.2 and TIA-568-C.3 for cables, cable length and hardware specified.

2.4.4.1 Modular to 110 Block Patch Panel

Provide in accordance with TIA-568-C.1 and TIA-568-C.2. Panels shall be third party verified and shall comply with EIA/TIA Category 6 requirements. Panel shall be constructed of 0.09 inches minimum aluminum and shall be rack mounted and compatible with an ECIA EIA/ECA 310-E 19 inches equipment rack. Panel shall provide 48 non-keyed, 8-pin modular ports, wired to T568A. Patch panels shall terminate the building cabling on Type 110 IDCs and shall utilize a printed circuit board interface. The rear of each panel shall have incoming cable strain-relief and routing guides. Panels shall have each port factory numbered and be equipped with laminated plastic nameplates above each port.

2.4.5 Optical Fiber Distribution Panel

Rack mounted optical fiber distribution panel (OFDP) shall be constructed in accordance with ECIA EIA/ECA 310-E utilizing 18 gauge steel minimum. Panel shall be divided into two sections, distribution and user. Distribution section shall have strain relief, routing guides, splice tray and shall be lockable, user section shall have a cover for patch cord protection. Each panel shall provide 12 single-mode pigtails and adapters. Provide adapters as duplex SC with zirconia ceramic alignment sleeves. Provide dust covers for adapters. Provide patch cords as specified in the paragraph PATCH PANELS.

2.5 TELECOMMUNICATIONS OUTLET/CONNECTOR ASSEMBLIES

2.5.1 Outlet/Connector Copper

Outlet/connections shall comply with FCC Part 68, TIA-568-C.1, and TIA-568-C.2. UTP outlet/connections shall be UL 1863 listed, non-keyed, 8-pin modular, constructed of high impact rated thermoplastic housing and shall be third party verified and shall comply with TIA-568-C.2 Category 6 requirements. Outlet/connections provided for UTP cabling shall meet or exceed the requirements for the cable provided. Outlet/connections shall be terminated using a Type 110 IDC PC board connector, color-coded for both T568A and T568B wiring. Each outlet/connector shall be wired T568B as indicated. UTP outlet/connections shall comply with TIA-568-C.2 for 200 mating cycles.

2.5.2 Optical Fiber Adapters (Couplers)

Provide optical fiber adapters suitable for duplex LC in accordance with TIA/EIA-604-10 with zirconia ceramic alignment sleeves, as indicated. Provide dust cover for adapters. Optical fiber adapters shall comply with TIA-455-21 for 500 mating cycles. Coordinate all connections with the
government comm squad.

2.5.3 Optical Fiber Connectors

Provide in accordance with TIA-455-21. Horizontal optical fiber connectors shall be duplex LC in accordance with TIA/EIA-604-10 with zirconia ceramic alignment sleeves, and ST style for singlemode backbone in accordance with TIA/EIA-604-2 with metallic ferrule, epoxyl-less crimp style compatible with 50/125 multimode or 8/125 single-mode fiber. The connectors shall provide a maximum attenuation of 0.3 dB at 850 1300 or 1310 1550 nm with less than a 0.2 dB change after 500 mating cycles.

2.5.4 Cover Plates

Telecommunications cover plates shall comply with UL 514C, and TIA-568-C.1, TIA-568-C.2, TIA-568-C.3; flush or oversized design constructed of white in color to match color of receptacle/switch cover plates specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide labeling in accordance with the paragraph LABELING in this section.

2.6 GROUNDING AND BONDBING PRODUCTS

Provide in accordance with UL 467, TIA-607, and NFPA 70. Components shall be identified as required by TIA-606. Provide ground rods, bonding conductors, and grounding busbars as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.7 FIRESTOPPING MATERIAL

Provide as required.

2.8 MANUFACTURER'S NAMEPLATE

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.9 FIELD FABRICATED NAMEPLATES

ASTM D709. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified or as indicated on the drawings. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic, 0.125 inches thick, white with black center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core. Minimum size of nameplates shall be one by 2.5 inches. Lettering shall be a minimum of 0.25 inches high normal block style.

2.10 TESTS, INSPECTIONS, AND VERIFICATIONS

2.10.1 Factory Reel Tests

Provide documentation of the testing and verification actions taken by manufacturer to confirm compliance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-526-7 for single mode optical fiber, and TIA-526-14 for multimode optical fiber cables.
PART 3 EXECUTION

3.1 INSTALLATION

Install telecommunications cabling and pathway systems, including the horizontal and backbone cable, pathway systems, telecommunications outlet/connector assemblies, and associated hardware in accordance with NECA/BICSI 568, TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-569, NFPA 70, and UL standards as applicable. Provide cabling in a star topology network.

Pathways and outlet boxes shall be installed as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Install telecommunications cabling with copper media in accordance with the following criteria to avoid potential electromagnetic interference between power and telecommunications equipment. The interference ceiling shall not exceed 3.0 volts per meter measured over the usable bandwidth of the telecommunications cabling.

3.1.1 Cabling

Install UTP, and optical fiber telecommunications cabling system as detailed in TIA-568-C.1, TIA-568-C.2, and TIA-568-C.3. Screw terminals shall not be used except where specifically indicated on plans. Use an approved insulation displacement connection (IDC) tool kit for copper cable terminations. Do not exceed manufacturers' cable pull tensions for copper and optical fiber cables. Provide a device to monitor cable pull tensions. Do not exceed 25 pounds pull tension for four pair copper cables. Do not chafe or damage outer jacket materials. Use only lubricants approved by cable manufacturer. Do not over cinch cables, or crush cables with staples. For UTP cable, bend radii shall not be less than four times the cable diameter. Cables shall be terminated; no cable shall contain unterminated elements. Cables shall not be spliced. Label cabling in accordance with paragraph LABELING in this section.

3.1.1.1 Open Cable

Use only where specifically indicated on plans for use in cable trays. Install in accordance with TIA-568-C.1, and TIA-568-C.2. Do not exceed cable pull tensions recommended by the manufacturer.

Plenum cable shall be used where open cables are routed through plenum areas.

3.1.1.2 Backbone Cable

a. Copper Backbone Cable. Install intrabuilding backbone copper cable, in indicated pathways, between the campus distributor, located in the telecommunications entrance facility or room, the building distributors and the floor distributors located in telecommunications rooms and telecommunications equipment rooms as indicated on drawings.

b. Optical fiber Backbone Cable. Install intrabuilding backbone optical fiber in indicated pathways. Do not exceed manufacturer's recommended bending radii and pull tension. Prepare cable for pulling by cutting outer jacket 10 inches leaving strength members exposed for approximately 10 inches. Twist strength members together and attach to pulling eye. Vertical cable support intervals shall be in accordance with manufacturer's recommendations.
3.1.1.3 Horizontal Cabling

Install horizontal cabling as indicated on drawings. Do not untwist Category 6 UTP cables more than one half inch from the point of termination to maintain cable geometry. Provide slack cable in the form of a figure eight (not a service loop) on each end of the cable, 10 feet in the telecommunications room, and 12 inches in the work area outlet.

3.1.2 Pathway Installations

Provide in accordance with TIA-569 and NFPA 70. Provide building pathway as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

3.1.3 Work Area Outlets

3.1.3.1 Terminations

Terminate UTP cable in accordance with TIA-568-C.1, TIA-568-C.2 and wiring configuration as specified. Terminate fiber optic cables in accordance with TIA-568-C.3

3.1.3.2 Cover Plates

As a minimum, each outlet/connector shall be labeled as to its function and a unique number to identify cable link in accordance with the paragraph LABELING in this section.

3.1.3.3 Cables

Unshielded twisted pair and fiber optic cables shall have a minimum of 12 inches of slack cable loosely coiled into the telecommunications outlet boxes. Minimum manufacturer's bend radius for each type of cable shall not be exceeded.

3.1.3.4 Pull Cords

Pull cords shall be installed in conduit serving telecommunications outlets that do not have cable installed.

3.1.4 Telecommunications Space Termination

Install termination hardware required for Category 6 and optical fiber system. An insulation displacement tool shall be used for terminating copper cable to insulation displacement connectors.

3.1.4.1 Connector Blocks

Connector blocks shall be wall mounted in orderly rows and columns. Adequate vertical and horizontal wire routing areas shall be provided between groups of blocks. Install in accordance with industry standard wire routing guides in accordance with TIA-569.

3.1.4.2 Patch Panels

Patch panels shall be mounted in equipment racks with sufficient ports to accommodate the installed cable plant plus 25 percent spares.

a. Copper Patch Panel. Copper cable entering a patch panel shall be secured to the panel as recommended by the manufacturer to prevent
movement of the cable.

b. Fiber Optic Patch Panel. Fiber optic cable loop shall be 3 feet in length provided as recommended by the manufacturer. The outer jacket of each cable entering a patch panel shall be secured to the panel to prevent movement of the fibers within the panel, using clamps or brackets specifically manufactured for that purpose.

3.1.4.3 Equipment Support Frames

Install in accordance with TIA-569:

a. Cabinets, wall-mounted modular type. Mount cabinet to plywood backboard in accordance with manufacturer's recommendations. Mount cabinet so height of highest panel does not exceed 78 inches above floor.

3.1.5 Electrical Penetrations

Seal openings around electrical penetrations through fire resistance-rated wall, partitions, floors, or ceilings as required.

3.1.6 Grounding and Bonding

Provide in accordance with TIA-607, NFPA 70 and as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

3.2 LABELING

3.2.1 Labels

Provide labeling in accordance with TIA-606. Handwritten labeling is unacceptable. Stenciled lettering for voice and data circuits shall be provided using laser printer.

3.2.2 Cable

Cables shall be labeled using color labels on both ends with identifiers in accordance with TIA-606.

3.2.3 Termination Hardware

Workstation outlets and patch panel connections shall be labeled using color coded labels with identifiers in accordance with TIA-606.

3.3 FIELD APPLIED PAINTING

Paint electrical equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Painting shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.3.1 Painting Backboards

If backboards are required to be painted, then the manufactured fire retardant backboard must be painted with fire retardant paint, so as not to increase flame spread and smoke density and must be appropriately labeled. Label and fire rating stamp must be unpainted.
3.4 FIELD FABRICATED NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.

3.5 TESTING

3.5.1 Telecommunications Cabling Testing

Perform telecommunications cabling inspection, verification, and performance tests in accordance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3. Test equipment shall conform to TIA-1152. Perform optical fiber field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure. Government Comm Squad shall witness all tests. Contractor shall notify comm squad at least 72 hours prior to each in-progress and final inspections.

3.5.1.1 Inspection

Visually inspect UTP and optical fiber jacket materials for UL or third party certification markings. Inspect cabling terminations in telecommunications rooms and at workstations to confirm color code for T568A or T568B pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1, TIA-568-C.2, and TIA-568-C.3. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.

3.5.1.2 Verification Tests

UTP backbone copper cabling shall be tested for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has overall shield. Test operation of shorting bars in connection blocks. Test cables after termination but prior to being cross-connected.

For multimode optical fiber, perform optical fiber end-to-end attenuation tests in accordance with TIA-568-C.3 and TIA-526-14 using Method B, OTDR for multimode optical fiber. For single-mode optical fiber, perform optical fiber end-to-end attenuation tests in accordance with TIA-568-C.3 and TIA-526-7 using Method B, OTDR for single-mode optical fiber. Perform verification acceptance tests.

3.5.1.3 Performance Tests

Perform testing for each outlet and MUTOA as follows:

a. Perform Category 6 link tests in accordance with TIA-568-C.1 and TIA-568-C.2. Tests shall include wire map, length, insertion loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, return loss, propagation delay, and delay skew.

b. Optical fiber Links. Perform optical fiber end-to-end link tests in accordance with TIA-568-C.3.
3.5.1.4 Final Verification Tests

Perform verification tests for UTP and optical fiber systems after the complete telecommunications cabling and workstation outlet/connector are installed. Comm Squad personnel to be on site to verify all ISP and Fiber testing by the contractor prior to acceptance.

-- End of Section --
SECTION 28 31 76
INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM

PART 1 GENERAL

1.1 RELATED SECTIONS

Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM, applies to this section, with the additions and modifications specified herein. In addition, refer to the following sections for related work and coordination:

Section 21 13 13.00 10 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

1.2 SUMMARY

1.2.1 Scope

a. This work includes completion of design and modifying the existing fire alarm and mass notification system as described herein and on the contract drawings for the building 90710. Include in the system wiring, raceways, pull boxes, terminal cabinets, outlet and mounting boxes, control equipment, alarm, and supervisory signal initiating devices, alarm notification appliances, supervising station fire alarm system transmitter, and other accessories and miscellaneous items required for a complete operating system even though each item is not specifically mentioned or described. Provide system complete and ready for operation.

b. Provide equipment, materials, installation, workmanship, inspection, and testing in strict accordance with the required provisions of NFPA 72, UFC 3-600-01, ISO 7240-16, IEC 60268-16, except as modified herein. The system layout on the drawings show the intent of coverage and are shown in suggested locations. Submit plan view drawing showing device locations, terminal cabinet locations, junction boxes, other related equipment, conduit routing, wire counts, circuit identification in each conduit, and circuit layouts for all floors. Drawings shall comply with the requirements of NFPA 170. Final quantity, system layout, and coordination are the responsibility of the Contractor.

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ACOUSTICAL SOCIETY OF AMERICA (ASA)

FM GLOBAL (FM)

FM APP GUIDE (updated on-line) Approval Guide
http://www.approvalguide.com/
INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

IEC 60268-16 (2003; ED 4.0) Sound System Equipment – Part 16: Objective Rating Of Speech Intelligibility By Speech Transmission Index

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017) National Electrical Code

U.S. DEPARTMENT OF DEFENSE (DOD)

UFC 3-600-01 (2016; with Change 1, 28 Nov 2016) Fire Protection Engineering for Facilities

UNDERWRITERS LABORATORIES (UL)

UL 1971 (2002; Reprint Oct 2008) Signaling Devices for the Hearing Impaired

UL 2017 (2008; Reprint Jan 2016) General-Purpose Signaling Devices and Systems

UL 464 (2016) Standard for Audible Signal Appliances
1.4 DEFINITIONS

Wherever mentioned in this specification or on the drawings, the equipment, devices, and functions shall be defined as follows:

1.4.1 Interface Device

An addressable device that interconnects hard wired systems or devices to an analog/addressable system.

1.4.2 Remote Fire Alarm and Mass Notification Control Unit

A control panel, electronically remote from the fire alarm and mass notification control panel, that receives inputs from automatic and manual fire alarm devices; may supply power to detection devices and interface devices; may provide transfer of power to the notification appliances; may provide transfer of condition to relays or devices connected to the control unit; and reports to and receives signals from the fire alarm control panel.

1.4.3 Fire Alarm Control Unit and Mass Notification Autonomous Control Unit (FMCP)

A master control panel having the features of a fire alarm and mass notification control unit and fire alarm and mass notification control units are interconnected. The panel has central processing, memory, input and output terminals, and LCD, LED Display units.

1.4.4 Local Operating Console (LOC)

A unit designed to allow emergency responders and/or building occupants to operate the MNS including delivery or recorded and/or live messages, initiate strobe and textural visible appliance operation and other relayed functions.

1.4.5 Terminal Cabinet

A steel cabinet with locking, hinge-mounted door that terminal strips are securely mounted.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Nameplates; G
Wiring Diagrams; G

SECTION 28 31 76 Page 3
System Layout; G
System Operation; G
Notification Appliances; G
Amplifiers; G

SD-03 Product Data
Terminal Cabinets; G
Manual Stations; G
Batteries; G
Smoke Sensors; G

Notification Appliances; G
Addressable Interface Devices; G
Amplifiers; G
Local Operating Console (LOC); G

SD-05 Design Data
Battery Power; G

SD-06 Test Reports
Field Quality Control
Testing Procedures; G
Smoke Sensor Testing Procedures; G

SD-07 Certificates
Installer
Formal Inspection and Tests
Final Testing

SD-09 Manufacturer's Field Reports
System Operation; G
Fire Alarm/Mass Notification System

SD-11 Closeout Submittals
As-Built Drawings
1.6 TECHNICAL DATA AND COMPUTER SOFTWARE

Technical data and computer software (meaning technical data that relates to computer software) that are specifically identified in this project, and may be defined/required in other specifications, shall be delivered, strictly in accordance with the CONTRACT CLAUSES. Identify data delivered by reference to the particular specification paragraph against which it is furnished. Data to be submitted shall include complete system, equipment, and software descriptions. Descriptions shall show how the equipment will operate as a system to meet the performance requirements of this contract. The data package shall also include the following:

a. Identification of programmable portions of system equipment and capabilities.

b. Description of system revision and expansion capabilities and methods of implementation detailing both equipment and software requirements.

c. Provision of operational software data on all modes of programmable portions of the fire alarm and detection system.

d. Description of Fire Alarm and Mass Notification Control Panel equipment operation.

e. Description of auxiliary and remote equipment operations.

f. Library of application software.

g. Operation and maintenance manuals.

1.7 QUALITY ASSURANCE

Equipment and devices shall be compatible and operable with existing station fire alarm system and shall not impair reliability or operational functions of existing supervising station fire alarm system.

a. Interpret reference to "authority having jurisdiction" to mean the Contracting Offices Designated Representative (COR).

b. The recommended practices stated in the manufacturer's literature or documentation shall be considered as mandatory requirements.

c. Devices and equipment for fire alarm service must be listed by UL Fire Prot Dir or approved by FM APP GUIDE.

1.7.1 Qualifications

1.7.1.1 Design Services

Installations requiring completion of installation drawings and specification or modifications of fire detection, fire alarm, mass notification system, fire suppression systems or mass notification systems shall require the services and review of a qualified engineer. For the purposes of meeting this requirement, a qualified engineer is defined as an individual meeting one of the following conditions:

a. A registered professional engineer (P.E.) in fire protection engineering who has passed the fire protection engineering written examination administered by the National Council of Examiners for Engineering and
Surveying (NCEES) and has relevant fire protection engineering experience.

b. Shop drawings shall be stamped by a qualified fire protection engineer.

1.7.1.2 Supervisor

NICET Fire Alarm Technicians to perform the installation of the system. A NICET Level 4 Fire Alarm Technician shall supervise the installation of the fire alarm system/mass notification system. The Fire Alarm technicians supervising the installation of equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.3 Technician

Fire Alarm Technicians with a minimum of four years of experience utilized to install and terminate fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians installing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.4 Installer

NICET Level II technician to assist in the installation of fire alarm/mass notification devices, cabinets and panels. An electrician shall be allowed to install wire, cable, conduit and backboxes for the fire alarm system/mass notification system. The Fire Alarm installer shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.5 Test Personnel

Fire Alarm Technicians with a minimum of eight years of experience (NICET Level IV) utilized to test and certify the installation of the fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians testing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.6 Manufacturer's Representative

The fire alarm and mass notification equipment manufacturer's representative shall be present for the connection of wiring to the control panel. The Manufacturer's Representative shall be an employee of the manufacturer with necessary technical training (NICET Level IV) on the system being installed.

1.7.1.7 Manufacturer

Components shall be of current design and shall be in regular and recurrent production at the time of installation. Provide design, materials, and devices for a protected premises fire alarm system, complete, conforming to NFPA 72, except as otherwise or additionally specified herein.
1.7.2 Regulatory Requirements

1.7.2.1 Requirements for Fire Protection Service

Equipment and material shall have been tested by UL and listed in UL Fire Prot Dir or approved by FM and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, they shall mean listed in UL Fire Prot Dir or FM APP GUIDE. The omission of these terms under the description of any item of equipment described shall not be construed as waiving this requirement. All listings or approval by testing laboratories shall be from an existing ANSI or UL published standard.

1.7.2.2 Fire Alarm/Mass Notification System

Furnish equipment that is compatible and is UL listed, FM approved, or listed by a nationally recognized testing laboratory for the intended use. All listings by testing laboratories shall be from an existing ANSI or UL published standard. Submit a unique identifier for each device, including the control panel and initiating and indicating devices, with an indication of test results, and signature of the factory-trained technician of the control panel manufacturer and equipment installer. With reports on preliminary tests, include printer information. Include the NFPA 72 Record of Completion and NFPA 72 Inspection and Testing Form, with the appropriate test reports.

1.7.2.3 Fire alarm Testing Services or Laboratories

Construct fire alarm and fire detection equipment in accordance with UL Fire Prot Dir, UL Electrical Constructn, or FM APP GUIDE.

1.8 DELIVERY, STORAGE, AND HANDLING

Protect equipment delivered and placed in storage from the weather, humidity, and temperature variation, dirt and dust, and other contaminants.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Submit annotated catalog data as required in the paragraph SUBMITTAL, in table format on the drawings, showing manufacturer's name, model, voltage, and catalog numbers for equipment and components. Submitted shop drawings shall not be smaller than ISO A1. Also provide UL or FM listing cards for equipment provided.

2.1.1 Standard Products

Provide materials, equipment, and devices that have been tested by a nationally recognized testing laboratory, such as UL or FM Approvals, LLC (FM), and listed or approved for fire protection service when so required by NFPA 72 or this specification. Select material from one manufacturer, where possible, and not a combination of manufacturers, for any particular classification of materials. Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least two years prior to bid opening.

2.1.2 Nameplates

Major components of equipment shall have the manufacturer's name, address,
type or style, model or serial number, catalog number, date of installation, installing Contractor's name and address, and the contract number provided on a new plate permanently affixed to the item or equipment.

Furnish nameplate illustrations and data to obtain approval by the Contracting Officer before installation. Obtain approval by the Contracting Officer for installation locations. Nameplates shall be etched metal or plastic, permanently attached by screws to panels or adjacent walls.

2.1.3 Keys

Keys and locks for equipment shall be identical. Provide not less than six keys of each type required. Master all keys and locks to a single key as required by the Installation Fire Department.

LOC is not permitted to be locked or lockable.

2.2 GENERAL PRODUCT REQUIREMENT

All fire alarm and mass notification devices shall be compatible with the existing system. All fire alarm and mass notification equipment shall be listed for use under the applicable reference standards. Interfacing of Listed UL 864 or similar approved industry listing with Mass Notification Panels listed to UL 2017 shall be done in a laboratory listed configuration, if the software programming features cannot provide a listed interface control.

2.3 SYSTEM OPERATION

The existing system shall remain operational and shall function as the same after new construction is complete. The system shall be activated into the alarm mode by actuation of any alarm initiating device. The system shall remain in the alarm mode until the initiating device is reset and the control panel is reset and restored to normal. The system may be placed in the alarm mode by local microphones, LOC, or remotely from authorized locations/users.

Submit data on each circuit to indicate that there is at least 25 percent spare capacity for notification appliances, 25 percent spare capacity for initiating devices. Annotate data for each circuit on the drawings. Submit a complete description of the system operation in matrix format on the drawings. Submit a complete list of device addresses and corresponding messages.

2.3.1 Alarm Initiating Devices and Notification Appliances (Visual, Voice, Textural)

a. Connect alarm initiating devices to initiating device circuits (IDC) Class "A" and installed in accordance with NFPA 72.

b. Connect alarm notification appliances and speakers to notification appliance circuits (NAC) Class "A".

c. The system shall operate in the alarm mode upon actuation of any alarm initiating device or a mass notification signal. The system shall remain in the alarm mode until initiating device(s) or mass notification signal is/are reset and the control panel is manually
reset and restored to normal. Audible, and visual appliances and systems shall comply with NFPA 72 and as specified herein. Fire alarm system/mass notification system components requiring power, except for the control panel power supply, shall operate on 24 Volts dc.

2.3.2 Functions and Operating Features

The system shall provide the following functions and operating features:

a. For Class "A" or "X" circuits with conductor lengths of 3m (10 feet) or less, the conductors shall be permitted to be installed in the same raceway in accordance with NFPA 72.

b. Provide signaling line circuits for each floor.

c. Provide notification appliance circuits. The visual alarm notification appliances shall have the flash rates synchronized as required by NFPA 72.

d. Provide electrical supervision of the primary power (AC) supply, presence of the battery, battery voltage, and placement of system modules within the control panel.

e. Provide an audible and visual trouble signal to activate upon a single break or open condition, or ground fault (or short circuit for Class "X"). The trouble signal shall also operate upon loss of primary power (AC) supply, absence of a battery supply, low battery voltage, or removal of alarm or supervisory panel modules. Provide a trouble alarm silence feature that shall silence the audible trouble signal, without affecting the visual indicator. After the system returns to normal operating conditions, the trouble signal shall again sound until the trouble is acknowledged. A smoke sensor in the process of being verified for the actual presence of smoke shall not initiate a trouble condition.

f. Alarm, supervisory, and/or trouble signals shall be automatically transmitted to the fire department...

g. Alarm functions shall override trouble or supervisory functions. Supervisory functions shall override trouble functions.

h. The system shall be capable of being programmed from the panels keyboard. Programmed information shall be stored in non-volatile memory.

i. The system shall be capable of operating, supervising, and/or monitoring both addressable and non-addressable alarm and supervisory devices.

j. There shall be no limit, other than maximum system capacity, as to the number of addressable devices, that may be in alarm simultaneously.

k. An alarm signal shall automatically initiate the following functions:

 (1) Transmission of an alarm signal to the fire department.

 (2) Visual indication of the device operated on the control panel (FACP/MNCP), and on the graphic annunciator. Indication on the graphic annunciator shall be by floor, zone or circuit, and type
of device.

(3) Continuous actuation of all alarm notification appliances.

(4) Recording of the event via electronically in the history log of the fire control system unit.

(5) Release of doors held open by electromagnetic devices.

(6) Release of power to electric locks (delayed egress locks) on doors that are part of the means of egress.

(7) Operation of a smoke sensor in an elevator lobby or other location associated with the automatic recall of elevators, shall recall the elevators in addition to other requirements of this paragraph.

(8) Operation of a duct smoke sensor shall shut down the appropriate air handler in accordance with NFPA 90A in addition to other requirements of this paragraph and as allowed by NFPA 72.

1. A supervisory signal shall automatically initiate the following functions:

(1) Visual indication of the device operated on the FACP, and on the graphic annunciator, and sound the audible alarm at the respective panel.

(2) Transmission of a supervisory signal to the fire department.

(3) Recording of the event electronically in the history log of the control unit.

m. A trouble condition shall automatically initiate the following functions:

(1) Visual indication of the system trouble on the FACP, and on the graphic annunciator, and sound the audible alarm at the respective panel.

(2) Recording of the event in the history log of the control unit.

n. The maximum permissible elapsed time between the actuation of an initiating device and its indication at the FACP is 10 seconds.

o. The maximum elapsed time between the occurrence of the trouble condition and its indication at the FACP is 200 seconds.

p. Activation of a LOC pushbutton shall activate the audible and visual alarms in the facility. The audible message shall be the one associated with the pushbutton activated.

2.4 SYSTEM MONITORING

2.4.1 Valves

Each valve affecting the proper operation of a fire protection system, including automatic sprinkler control valves, standpipe control valves, sprinkler service entrance valve, valves at fire pumps, isolating valves
for pressure type airflow or supervision switches, and valves at backflow preventers, whether supplied under this contract or existing, shall be electrically monitored to ensure its proper position. Provide each tamper switch with a separate address.

2.5 MASS NOTIFICATION SYSTEM FUNCTIONS

2.5.1 Notification Appliance Network

The audible notification appliance network consists of speakers located to provide intelligible instructions at all locations in the building. The Mass Notification System announcements shall take priority over all other audible announcements of the system including the output of the fire alarm system in a normal or alarm state. When a mass notification announcement is activated during a fire alarm, all fire alarm system functions shall continue in an alarm state except for the output signals of the fire alarm audible and visual notification appliances.

2.5.2 Strobes

Provide strobes to alert hearing-impaired occupants.

2.6 OVERVOLTAGE AND SURGE PROTECTION

2.6.1 Sensor Wiring Surge Protection

Digital and analog inputs and outputs shall be protected against surges induced by sensor wiring installed outdoors and as shown. The inputs and outputs shall be tested with the following waveform:

a. A 10 by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Fuses shall not be used for surge protection.

2.7 ADDRESSABLE INTERFACE DEVICES

The initiating device being monitored shall be configured as a Class "A" initiating device circuits. The system shall be capable of defining any module as an alarm module and report alarm trouble, loss of polling, or as a supervisory module, and reporting supervisory short, supervisory open or loss of polling such as airflow switches, valve supervisory switches, fire pump monitoring, independent smoke detection systems, relays for output function actuation, etc. The module shall be UL or FM listed as compatible with the control panel. The monitor module shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. Monitor module shall contain an integral LED that flashes each time the monitor module is polled and is visible through the device cover plate. Pull stations with a monitor module in a common backbox are not required to have an LED.

2.8 ADDRESSABLE CONTROL MODULE

The control module shall be capable of operating as a relay (dry contact form C) for interfacing the control panel with other systems, and to control door holders or initiate elevator fire service. The module shall be UL or FM listed as compatible with the control panel. The indicating
device or the external load being controlled shall be configured as a Class "B" notification appliance circuits. The system shall be capable of supervising, audible, visual and dry contact circuits. The control module shall have both an input and output address. The supervision shall detect a short on the supervised circuit and shall prevent power from being applied to the circuit. The control model shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. The control module shall contain an integral LED that flashes each time the control module is polled and is visible through the device cover plate. Control Modules shall be located in environmental areas that reflect the conditions to which they were listed.

2.9 ISOLATION MODULES

Provide isolation modules to subdivide each signaling line circuit into groups of not more than 20 addressable devices between adjacent isolation modules.

2.10 SMOKE SENSORS

2.10.1 Duct Smoke Sensors

Duct-mounted photoelectric smoke detectors shall be furnished and installed where indicated and in accordance with NFPA 90A. Units shall consist of a smoke detector as specified in paragraph Photoelectric Detectors, mounted in a special housing fitted with duct sampling tubes. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. (It is not permitted to cut the duct insulation to install the duct detector directly on the duct). Detectors shall have a manual reset. Detectors shall be rated for air velocities that include air flows between 500 and 4000 fpm. Detectors shall be powered from the fire alarm panel.

a. Sampling tubes shall run the full width of the duct. The duct detector package shall conform to the requirements of NFPA 90A, UL 268A, and shall be UL listed for use in air-handling systems. The control functions, operation, reset, and bypass shall be controlled from the fire alarm control panel.

b. Lights to indicate the operation and alarm condition; and the test and reset buttons shall be visible and accessible with the unit installed and the cover in place. Remote indicators shall be provided where required by NFPA 72 and these shall be provided with test and reset switches.

c. Remote lamps and switches as well as the affected fan units shall be properly identified in etched plastic placards. Detectors shall provide for control of auxiliary contacts that provide control, interlock, and shutdown functions specified per drawings. Auxiliary contacts provide for this function shall be located within 3 feet of the controlled circuit or appliance. The detectors shall be supplied by the fire alarm system manufacturer to ensure complete system compatibility.

2.10.2 Smoke Sensor Testing

Smoke sensors shall be tested in accordance with NFPA 72 and manufacturer's recommended calibrated test method. Submit smoke sensor testing procedures for approval. In addition to the NFPA 72 requirements, smoke detector sensitivity shall be tested during the preliminary tests.
2.11 SECONDARY POWER SUPPLY

Provide for system operation in the event of primary power source failure. Transfer from normal to auxiliary (secondary) power or restoration from auxiliary to normal power shall be automatic and shall not cause transmission of a false alarm.

2.11.1 Batteries

Provide sealed, maintenance-free, sealed lead acid batteries as the source for emergency power to the FMCP. Batteries shall contain suspended electrolyte. The battery system shall be maintained in a fully charged condition by means of a solid state battery charger. Provide an automatic transfer switch to transfer the load to the batteries in the event of the failure of primary power.

2.11.1.1 Capacity

Battery size shall be the greater of the following two capacities.

a. Sufficient capacity to operate the fire alarm system under supervisory and trouble conditions, including audible trouble signal devices for 72 hours and audible and visual signal devices under alarm conditions for an additional 15 minutes.

b. Sufficient capacity to operate the mass notification for 60 minutes after loss of AC power.

2.11.1.2 Battery Power Calculations

a. Verify that battery capacity exceeds supervisory and alarm power requirements.

(1) Substantiate the battery calculations for alarm, alert, and supervisory power requirements. Include ampere-hour requirements for each system component and each panel component, and compliance with UL 864.

(2) Provide complete battery calculations for both the alarm, alert, and supervisory power requirements. Submit ampere-hour requirements for each system component with the calculations.

(3) A voltage drop calculation to indicate that sufficient voltage is available for proper operation of the system and all components, at the minimum rated voltage of the system operating on batteries.

b. For battery calculations use the following assumptions: Assume a starting voltage of 24 VDC for starting the calculations to size the batteries. Calculate the required Amp-Hours for the specified standby time, and then calculate the required Amp-Hours for the specified alarm time. Calculate the nominal battery voltage after operation on batteries for the specified time period. Using this voltage perform a voltage drop calculation for circuit containing device and/or appliances remote from the power sources.

2.12 AMPLIFIERS, PREAMPLIFIERS, TONE GENERATORS

Any amplifiers, preamplifiers, tone generators, digitalized voice generators,
and other hardware necessary for a complete, operational, textual audible circuit conforming to NFPA 72 shall be housed in a remote FMCP, terminal cabinet, or in the FMCP. Submit data to indicate that the amplifiers have sufficient capacity to simultaneously drive all notification speakers at the maximum rating plus 50 percent spare capacity. Annotate data for each circuit on the drawings.

2.12.1 Operation

The system shall automatically operate and control all building speakers except those installed in the stairs and within elevator cabs. The speakers in the stairs and elevator cabs shall operate only when the microphone is used to deliver live messages.

2.12.2 Construction

Amplifiers shall utilize computer grade solid state components and shall be provided with output protection devices sufficient to protect the amplifier against any transient up to 10 times the highest rated voltage in the system.

2.12.3 Inputs

Equip each system with separate inputs for the tone generator, digitalized voice driver and panel mounted microphone. Microphone inputs shall be of the low impedance, balanced line type. Both microphone and tone generator input shall be operational on any amplifier.

2.12.4 Protection Circuits

Each amplifier shall be constantly supervised for any condition that could render the amplifier inoperable at its maximum output. Failure of any component shall cause automatic transfer to a designated backup amplifier, illumination of a visual "amplifier trouble" indicator on the control panel, appropriate logging of the condition on the system printer, and other actions for trouble conditions as specified.

2.13 MANUAL STATIONS

Provide metal or plastic, semi-flush mounted, single action, addressable manual stations, that are not subject to operation by jarring or vibration. Stations shall be equipped with screw terminals for each conductor. Stations that require the replacement of any portion of the device after activation are not permitted. Stations shall be finished in fire-engine red with molded raised lettering operating instructions of contrasting color. The use of a key or wrench shall be required to reset the station. Manual stations shall be mounted at 42 inches. Stations shall have a separate screw terminal for each conductor.

2.14 NOTIFICATION APPLIANCES

2.14.1 Fire Alarm/Mass Notification Speakers

Audible appliances shall conform to the applicable requirements of UL 464. Appliances shall be connected into notification appliance circuits. Surface mounted audible appliances shall be painted red. Recessed audible appliances shall be installed with a grill that is painted red with a factory finish to match the surface to which it is mounted.
a. Speakers shall conform to the applicable requirements of UL 1480. Speakers shall have six different sound output levels and operate with audio line input levels of 70.7 VRMs and 25 VRMs, by means of selectable tap settings. Tap settings shall include taps of 1/8, 1/4, 1/2, 1, and 2 watt. Speakers shall incorporate a high efficiency speaker for maximum output at minimum power across a frequency range of 150 Hz to 10,000 Hz, and shall have a sealed back construction. Speakers shall be capable of installation on standard 4 inch square electrical boxes. Where speakers and strobes are provided in the same location, they may be combined into a single unit. All inputs shall be polarized for compatibility with standard reverse polarity supervision of circuit wiring via the FMCP.

b. Provide speaker mounting plates constructed of cold rolled steel having a minimum thickness of 16 gauge or molded high impact plastic and equipped with mounting holes and other openings as needed for a complete installation. Fabrication marks and holes shall be ground and finished to provide a smooth and neat appearance for each plate. Each plate shall be primed and painted.

c. Speakers shall utilize screw terminals for termination of all field wiring.

2.14.2 Visual Notification Appliances

Visual notification appliances shall conform to the applicable requirements of UL 1971 and conform to the Architectural Barriers Act (ABA). Colored lens, such as amber, shall comply with UL 1638. The manufacturer shall have the color lens tested to the full UL 1971 polar plotting criteria, voltage drop, and temperature rise as stated in 1971. Fire Alarm Notification Appliances shall have clear high intensity optic lens, xenon flash tubes, and be marked "Fire" in red letters. Fire Alarm/Mass Notification Appliances shall have amber high intensity optic lens, xenon flash tubes, and output white light and be marked "ALERT" in red letters. The light pattern shall be disbursed so that it is visible above and below the strobe and from a 90 degree angle on both sides of the strobe. Strobe flash rate shall be 1 flash per second and a minimum of 75 candela (actual output after derating for tinted lens) based on the UL 1971 test. Strobe shall be semi-flush mounted. Where more than two appliances are located in the same room or corridor or field of view, provide synchronized operation. Devices shall use screw terminals for all field wiring.

2.15 WIRING

Provide wiring materials under this section as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM with the additions and modifications specified herein. NFPA 70 accepted fire alarm cables that do not require the use of raceways except as modified herein are permitted.

2.15.1 Alarm Wiring

The SLC wiring shall be solid copper cable in accordance with the manufacturers requirements. Copper signaling line circuits and initiating device circuit field wiring shall be No. 14 AWG size twisted and shielded solid conductors at a minimum. Visual notification appliance circuit conductors, that contain audible alarm appliances, shall be solid copper No. 14 AWG size conductors at a minimum. Speaker circuits shall be copper No. 14 AWG size twisted and shielded conductors at a minimum. Wire size shall be sufficient to prevent voltage drop problems. Circuits operating
at 24 VDC shall not operate at less than the UL listed voltages for the sensors and/or appliances. Power wiring, operating at 120 VAC minimum, shall be a minimum No. 12 AWG solid copper having similar insulation. Acceptable power-limited cables are FPL, FPLR or FPLP as appropriate with red colored covering. Nonpower-limited cables shall comply with NFPA 70. Circuits shall be sized as required to accommodate voltage drop.

PART 3 EXECUTION

3.1 INSTALLATION OF FIRE ALARM INITIATING DEVICES AND NOTIFICATION APPLIANCES

3.1.1 Manual Stations:

Locate manual stations as required by NFPA 72 and as indicated. Mount stations so that their operating handles are 4 feet above the finished floor. Mount stations so they are located no farther than 5 feet from the exit door they serve, measured horizontally.

3.1.2 Notification Appliance Devices

Locate notification appliance devices as required by NFPA 72 and as indicated. Mount assemblies on walls as required by NFPA 72 and to meet the intelligibility requirements. Ceiling mounted speakers shall conform to NFPA 72.

3.1.3 Smoke and Heat Sensors

Locate sensors as required by NFPA 72 and their listings and as indicated on a 4 inch mounting box. Locate smoke and heat sensors on the ceiling. Install heat sensors not less than 4 inches from a side wall to the near edge. Heat sensors located on the wall shall have the top of the sensor at least 4 inches below the ceiling, but not more than 12 inches below the ceiling. Smoke sensors are permitted to be on the wall no lower than 12 inches from the ceiling with no minimum distance from the ceiling. In raised floor spaces, install the smoke sensors to protect 225 square feet per sensor. Install smoke sensors no closer than 5 feet from air handling supply outlets.

3.1.4 Annunciator

Locate the annunciator as shown on the drawings. Surface mount the panel, with the top of the panel 6 feet above the finished floor or center the panel at 5 feet, whichever is lower.

3.1.5 Water Flow Detectors and Tamper Switches

Connect to water flow detectors and tamper switches.

3.1.6 Local Operating Console (LOC)

Locate the LOC as required by NFPA 72 and as indicated. Mount the console so that the top message button is no higher than 44 inches above the floor.

3.2 SYSTEM FIELD WIRING

3.2.1 Wiring within Cabinets, Enclosures, and Boxes

Provide wiring installed in a neat and workmanlike manner and installed
parallel with or at right angles to the sides and back of any box, enclosure, or cabinet. Conductors that are terminated, spliced, or otherwise interrupted in any enclosure, cabinet, mounting, or junction box shall be connected to screw-type terminal blocks. Mark each terminal in accordance with the wiring diagrams of the system. The use of wire nuts or similar devices is prohibited. Conform wiring to NFPA 70.

Indicate the following in the wiring diagrams.

a. Point-to-point wiring diagrams showing the points of connection and terminals used for electrical field connections in the system, including interconnections between the equipment or systems that are supervised or controlled by the system. Diagrams shall show connections from field devices to the FACP and remote fire alarm control units, initiating circuits, switches, relays and terminals.

b. Complete riser diagrams indicating the wiring sequence of devices and their connections to the control equipment. Include a color code schedule for the wiring. Include floor plans showing the locations of devices and equipment.

3.2.2 Terminal Cabinets

Provide a terminal cabinet at the base of any circuit riser, on each floor at each riser, and where indicated on the drawings. Terminal size shall be appropriate for the size of the wiring to be connected. Conductor terminations shall be labeled and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted in the terminal cabinet. Minimum size is 8 inches by 8 inches. Only screw-type terminals are permitted.

3.2.3 Alarm Wiring

Voltages shall not be mixed in any junction box, housing, or device, except those containing power supplies and control relays. Provide all wiring in electrical metallic conduit. Conceal conduit in finished areas of new construction and wherever practicable in existing construction. The use of flexible conduit not exceeding a 6 foot length shall be permitted in initiating device or notification appliance circuits. Run conduit or tubing (rigid, IMC, EMT, FMC, etc. as permitted by NFPA 72 and NFPA 70) concealed unless specifically indicated otherwise.

3.2.4 Conductor Terminations

Labeling of conductors at terminal blocks in terminal cabinets, FMCP, and remote FMCP and the LOC shall be provided at each conductor connection. Each conductor or cable shall have a shrink-wrap label to provide a unique and specific designation. Each terminal cabinet, FMCP, and remote FMCP shall contain a laminated drawing that indicates each conductor, its label, circuit, and terminal. The laminated drawing shall be neat, using 12 point lettering minimum size, and mounted within each cabinet, panel, or unit so that it does not interfere with the wiring or terminals. Maintain existing color code scheme where connecting to existing equipment.

3.3 CONNECTION OF NEW SYSTEM

The following new system connections shall be made during the last phase of construction, at the beginning of the preliminary tests. New system connections shall include:
a. Connection of new control modules to existing magnetically held smoke door (hold-open) devices.

b. Connection of new elevator recall smoke sensors to existing wiring and conduit.

c. Connection of new system transmitter to existing base fire reporting system.

Once these connections are made, system shall be left energized and new audio/visual devices deactivated. Report immediately to the Contracting Officer, coordination and field problems resulting from the connection of the above components.

3.4 FIRESTOPPING

Provide firestopping for holes at conduit penetrations through floor slabs, fire rated walls, partitions with fire rated doors, corridor walls, and vertical service shafts as required.

3.5 PAINTING

Paint exposed electrical, fire alarm conduit, and surface metal raceway to match adjacent finishes in exposed areas. Paint junction boxes red in unfinished areas and conduits and surface metal raceways shall be painted with a 1-inch wide red band every 10 feet in unfinished areas. Painting shall comply with Section 09 90 00 PAINTS AND COATINGS.

3.6 FIELD QUALITY CONTROL

3.6.1 Testing Procedures

Submit detailed test procedures, prepared and signed by a Registered Professional Engineer or a NICET Level 3 Fire Alarm Technician, and signed by representative of the installing company, for the fire detection and alarm system 60 days prior to performing system tests. Detailed test procedures shall list all components of the installed system such as initiating devices and circuits, notification appliances and circuits, signaling line devices and circuits, control devices/equipment, batteries, transmitting and receiving equipment, power sources/supply, annunciators, special hazard equipment, emergency communication equipment, interface equipment, Guard's Tour equipment, and transient (surge) suppressors. Test procedures shall include sequence of testing, time estimate for each test, and sample test data forms. The test data forms shall be in a check-off format (pass/fail with space to add applicable test data; similar to the format in NFPA 72) and shall be used for the preliminary testing and the acceptance testing. The test data forms shall record the test results and shall:

a. Identify the NFPA Class of all Initiating Device Circuits (IDC), Notification Appliance Circuits (NAC), Voice Notification System Circuits (NAC Audio), and Signaling Line Circuits (SLC).

b. Identify each test required by NFPA 72 Test Methods and required test herein to be performed on each component, and describe how this test shall be performed.

c. Identify each component and circuit as to type, location within the
facility, and unique identity within the installed system. Provide necessary floor plan sheets showing each component location, test location, and alphanumeric identity.

d. Identify all test equipment and personnel required to perform each test (including equipment necessary for testing smoke detectors using real smoke).

e. Provide space to identify the date and time of each test. Provide space to identify the names and signatures of the individuals conducting and witnessing each test.

3.6.2 Tests Stages

3.6.2.1 Preliminary Testing

Conduct preliminary tests to ensure that devices and circuits are functioning properly. Tests shall meet the requirements of paragraph entitled "Minimum System Tests." After preliminary testing is complete, provide a letter certifying that the installation is complete and fully operable. The letter shall state that each initiating and indicating device was tested in place and functioned properly. The letter shall also state that panel functions were tested and operated properly. The letter shall include the names and titles of the witnesses to the preliminary tests. The Contractor and an authorized representative from each supplier of equipment shall be in attendance at the preliminary testing to make necessary adjustments.

3.6.2.2 Request for Formal Inspection and Tests

When tests have been completed and corrections made, submit a signed, dated certificate with a request for formal inspection and tests to the Contracting Offices Designated Representative (COR).

3.6.2.3 Final Testing

Notify the Contracting Officer in writing when the system is ready for final acceptance testing. Submit request for test at least 15 calendar days prior to the test date. The tests shall be performed in accordance with the approved test procedures in the presence of the Contracting Officer. Furnish instruments and personnel required for the tests. A final acceptance test will not be scheduled until the following are provided at the job site:

a. The systems manufacturer's technical representative

b. Marked-up red line drawings of the system as actually installed

c. Megger test results

d. Loop resistance test results

e. Complete program printout including input/output addresses

The final tests will be witnessed by the Contracting Offices Designated Representative (COR). At this time, any and all required tests shall be repeated at their discretion.
3.6.2.4 System Acceptance

Following acceptance of the system, as-built drawings and O&M manuals shall be delivered to the Contracting Officer for review and acceptance. Submit six sets of detailed as-built drawings. The drawings shall show the system as installed, including deviations from both the project drawings and the approved shop drawings. These drawings shall be submitted within two weeks after the final acceptance test of the system. At least one set of as-built (marked-up) drawings shall be provided at the time of, or prior to the final acceptance test.

a. Furnish one set of full size paper as-built drawings and schematics. The drawings shall be prepared on uniform sized mylar sheets not less than 30 by 42 inches with 8 by 4 inch title block similar to contract drawings. Furnish one set of CD or DVD discs containing software back-up and CAD based drawings in latest version of AutoCAD and DXF format of as-built drawings and schematics.

b. Include complete wiring diagrams showing connections between devices and equipment, both factory and field wired.

c. Include a riser diagram and drawings showing the as-built location of devices and equipment.

In existing buildings, the transfer of devices from the existing system to the new system and the permission to begin demolition of the old fire alarm system will not be permitted until the as-built drawings and O&M manuals are received.

3.6.3 Minimum System Tests

Test the system in accordance with the procedures outlined in NFPA 72, ISO 7240-16, IEC 60268-16. The required tests are as follows:

a. Megger Tests: After wiring has been installed, and prior to making any connections to panels or devices, wiring shall be megger tested for insulation resistance, grounds, and/or shorts. Conductors with 300 volt rated insulation shall be tested at a minimum of 250 VDC. Conductors with 600 volt rated insulation shall be tested at a minimum of 500 VDC. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

b. Loop Resistance Tests: Measure and record the resistance of each circuit with each pair of conductors in the circuit short-circuited at the farthest point from the circuit origin. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

c. Verify the absence of unwanted voltages between circuit conductors and ground. The tests shall be accomplished at the preliminary test with results available at the final system test.

d. Verify that the control unit is in the normal condition as detailed in the manufacturer's O&M manual.

e. Test each initiating device and notification appliance and circuit for proper operation and response at the control unit. Smoke sensors shall be tested in accordance with manufacturer's recommended calibrated test method. Use of magnets is prohibited. Testing of duct smoke detectors
shall comply with the requirements of NFPA 72 except that, for item 12(e) (Supervision) in Table 14.4.2.2, disconnect at least 20 percent of devices. If there is a failure at these devices, then supervision shall be tested at each device.

f. Test the system for specified functions in accordance with the contract drawings and specifications and the manufacturer's O&M manual.

g. Test both primary power and secondary power. Verify, by test, the secondary power system is capable of operating the system for the time period and in the manner specified.

h. Determine that the system is operable under trouble conditions as specified.

i. Visually inspect wiring.

j. Test the battery charger and batteries.

k. Verify that software control and data files have been entered or programmed into the FACP. Hard copy records of the software shall be provided to the Contracting Officer.

l. Verify that red-line drawings are accurate.

m. Measure the current in circuits to ensure there is the calculated spare capacity for the circuits.

n. Measure voltage readings for circuits to ensure that voltage drop is not excessive.

o. Disconnect the verification feature for smoke sensors during tests to minimize the amount of smoke needed to activate the sensor. Testing of smoke sensors shall be conducted using real smoke or the use of canned smoke which is permitted.

p. Measure the voltage drop at the most remote appliance (based on wire length) on each notification appliance circuit.

3.6.3.1 Intelligibility Tests

Intelligibility testing of the System shall be accomplished in accordance with NFPA 72 for Voice Evacuation Systems, IEC 60268-16, and ASA S3.2. Following are the specific requirements for intelligibility tests:

a. Intelligibility Requirements: Verify intelligibility by measurement after installation.

b. Ensure that a CIS value greater than the required minimum value is provided in each area where building occupants typically could be found. The minimum required value for CIS is .8.

c. Areas of the building provided with hard wall and ceiling surfaces (such as metal or concrete) that are found to cause excessive sound reflections may be permitted to have a CIS score less than the minimum required value if approved by the DOD installation, and if building occupants in these areas can determine that a voice signal is being broadcast and they must walk no more than 33 feet to find a location with at least the minimum required CIS value within the same area.
d. Areas of the building where occupants are not expected to be normally present are permitted to have a CIS score less than the minimum required value if personnel can determine that a voice signal is being broadcast and they must walk no more than 50 feet to a location with at least the minimum required CIS value within the same area.

e. Take measurements near the head level applicable for most personnel in the space under normal conditions (e.g., standing, sitting, sleeping, as appropriate).

f. The distance the occupant must walk to the location meeting the minimum required CIS value shall be measured on the floor or other walking surface as follows:

1. Along the centerline of the natural path of travel, starting from any point subject to occupancy with less than the minimum required CIS value.

2. Curving around any corners or obstructions, with a 12 inches clearance there from.

3. Terminating directly below the location where the minimum required CIS value has been obtained.

Use commercially available test instrumentation to measure intelligibility as specified by ISO 7240-19 and ISO 7240-16 as applicable. Use the mean value of at least three readings to compute the intelligibility score at each test location.

-- End of Section --
DESIGN ANALYSIS – 35% SUBMITTAL

FTEV 14-1043

REPL FIRE PUMPS 90711/FIRE SUPP SYS BLDG 90710
HURLBURT FIELD, FLORIDA

19 OCTOBER 2015
August 10, 2015

Mr. Philip Morgan
Heffernan Holland and Morgan Architecture
312 South Alcaniz Street
Pensacola, Florida 32501

Re: Limited Asbestos and LBP Survey
Building 90710 & 90711
Hurlburt Field, Florida
PSI Project Number: 0638714

Dear Mr. Morgan:

Professional Service Industries, Inc. (PSI) is pleased to inform you of our findings for the above referenced project. The project encompassed surveys for asbestos-containing materials (ACM) and lead-based paint (LBP) in Buildings 90710 and 90711. The surveys were limited to building components likely to be impacted by the renovations to the existing building structures. The site visits were conducted on June 3 and July 16, 2015 by PSI’s Mr. Adam P. Beasley and Mr. Jeremy R. Jernigan of PSI.

ASBESTOS SURVEY

The asbestos survey was conducted to assist the client in complying with requirements of 40 CFR Part 61, the National Emission Standards for Hazardous Air Pollutants (NESHAP). PSI investigated for both friable and non-friable ACM. Friable ACM is defined by the EPA as any material that when dry, can be crumbled, pulverized, or reduced to powder by hand pressure. The EPA defines ACM as any material that contains greater than one-percent asbestos. All samples collected were submitted for analysis by the EPA recommended Polarized Light Microscopy (PLM) with dispersion staining. The following materials were sampled as suspect ACM:

<table>
<thead>
<tr>
<th>Material</th>
<th>Location</th>
<th>Estimated Quantity</th>
<th>Condition</th>
<th>Friable</th>
<th>Asbestos Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drywall System</td>
<td>LRS SNC</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>Gray Heating Ventilation and Air Conditioning (HVAC) Duct Mastic</td>
<td>LRS</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>White 2’ x 4’ Ceiling Tile</td>
<td>LRS Office</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>White 2” Steam Pipe Insulation</td>
<td>LRS</td>
<td>840 LF</td>
<td>Good</td>
<td>Yes</td>
<td>5% CH</td>
</tr>
<tr>
<td>White Popcorn Ceiling Texture</td>
<td>LRS Restroom</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>White 2’ x 2” “Textured” Ceiling Tile</td>
<td>LRS Office</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>Tan 12” x 12” Floor Tile with Yellow Mastic</td>
<td>LRS Office</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
</tbody>
</table>

Notes: SF = Square Feet, LF = Linear Feet, NAD = No Asbestos Detected
Building 90710 (Continued)

<table>
<thead>
<tr>
<th>Material</th>
<th>Location</th>
<th>Estimated Quantity</th>
<th>Condition</th>
<th>Friable</th>
<th>Asbestos Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>White 2’ x 4’ “Fissured” Ceiling Tile</td>
<td>SNC</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>Drywall System</td>
<td>LCI</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>Drywall System</td>
<td>TAC-COM Office</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>Gray Covebase with Yellow Mastic</td>
<td>LRS/TAC-COM Office</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Black Pipe Insulation with White Wrap</td>
<td>LCI Chilled Water Pipe</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>White HVAC Duct Mastic</td>
<td>LCI HVAC System</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>White HVAC Duct Mastic</td>
<td>LCI Store</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Pink 12” Floor Tile with Brown Mastic and Beige Sub-Flooring</td>
<td>LCI Store</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>White 12” Floor Tile with Yellow Mastic</td>
<td>LCI Store</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>White “Hot Water Pipe” Mastic</td>
<td>Mechanical Room</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Brown Boiler Insulation</td>
<td>Mechanical Room</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
<tr>
<td>Drywall System</td>
<td>LCI Store</td>
<td>N/A</td>
<td>Good</td>
<td>Yes</td>
<td>NAD</td>
</tr>
</tbody>
</table>

Notes: SF = Square Feet, LF = Linear Feet, NAD = No Asbestos Detected

Building 90711

<table>
<thead>
<tr>
<th>Material</th>
<th>Location</th>
<th>Estimated Quantity</th>
<th>Condition</th>
<th>Friable</th>
<th>Asbestos Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Exhaust Manifold Wrap</td>
<td>Building 90711</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
<tr>
<td>Red Pipe Gasket</td>
<td>Building 90711</td>
<td>N/A</td>
<td>Good</td>
<td>No</td>
<td>NAD</td>
</tr>
</tbody>
</table>

Notes: SF = Square Feet, LF = Linear Feet, NAD = No Asbestos Detected

Bulk samples of these materials were collected and sent to PSI’s environmental laboratory in Pittsburgh, Pennsylvania for analysis by PLM. The U. S. National Institute of Standards and Technology (NIST) accredits PSI’s laboratory under the National Voluntary Laboratory Accreditation Program (NVLAP) for the analysis of bulk asbestos.

The White 2” Steam Pipe Insulation is considered a Regulated Asbestos Containing Material (RACM) and is friable. The material is not required to be removed, unless planned renovation activities will disturb the material. PSI recommends that the asbestos containing Pipe Insulation be removed by a Florida Licensed Abatement Contractor if the planned renovations will disturb this material.

If additional suspect materials are discovered that were not assessed during this survey, work should be stopped and the materials tested by a Florida licensed asbestos consultant.

LEAD PAINT SURVEY

The EPA and the U.S. Department of Housing and Urban Development (HUD) define a LBP as any coating having 1.0 milligram per square centimeter (mg/cm²) or greater lead when tested by an X-Ray Fluorescence (XRF) device or 0.5% lead by weight by analysis of paint chip samples. For this survey, XRF readings were collected of representative surface coatings.
XRF Testing

XRF field-testing was performed with the LPA-1 manufactured by Radiation Monitoring Devices (RMD). The use of a portable, non-destructive testing device is advantageous when numerous tests must be performed because of its brief testing time and relatively low cost compared to laboratory methods.

XRF test data, including calibration checks against standards, and confirmation paint-chip samples was recorded on an inspection worksheet(s) to generate a permanent record of the field findings.

Placing the scanner on the test surface and exposing the lead paint film to gamma radiation collects XRF values. XRF analyzers are usually capable of penetrating up to 25 layers of paint to determine lead content. At the conclusion of each test, the shutter is closed and the display on the control console shows the lead concentration in mg/cm² for manual tabulation.

The accuracy and precision of any measurement is determined by the length of each test, instrument calibration checks against known standards or control blocks, measurement conditions, and mathematical laws of random error. Even when XRF equipment is properly operated within the manufacturer’s specification, unusual substrates, paint additives, uneven paint applications, electrical fields, lead components in wall cavities, and many other variables may cause significant fluctuations in apparent test values. Due to the limitations and inherent problems associated with XRF field-testing, confirmation sampling and assessment of XRF data is recommended before major abatement activities are started. A copy of the XRF testing log is attached.

LBP was identified during this survey on the following building components:

- White Metal Columns (Building 90710)
- Brown Horizontal Support Members (Building 90710)
- Yellow Metal Fuel Tanks, Supports and Piping (Building 90711)

Please note that the U.S. Occupational Safety and Health Administration (OSHA) regulations, 29 Code of Federal Regulations (CFR) 1926.62, applies to activities involving disturbance of coatings containing lead in any concentration. This OSHA regulation governs workers exposure to lead paint concentrations in any amount. It is possible for paints containing less than 1.0 mg/cm² lead by XRF testing and less than 0.50% lead by laboratory analysis of paint chip samples to cause worker exposures above the OSHA Action Level (AL) 30 micrograms per cubic meter of air (30 µg/m³) averaged over an 8-hour period or Permissible Exposure Limit (PEL) of 50 µg/m³ averaged over an 8-hour period depending on the type of work being performed.

A case by case assessment of each construction activity should be conducted to determine which components should be abated prior to disturbance. The assessment should include an evaluation of the type of work that will be conducted (i.e. drilling, sawing, demolition, repainting etc.), the concentration of lead detected in the painted surface, and the results of any available prior negative exposure air monitoring data. Contractors should follow these regulations when working with lead painted components and avoid activities (sanding, torch cutting, grinding, abrading) which could produce lead fume or respirable dust.

Non-sampled or tested painted building components should be treated as if they contain lead until sampled.
WARRANTY

The information contained in this report is based upon the data furnished by the Client and observations and test results provided by PSI. These observations and results are time dependent, are subject to changing site conditions, and revisions to Federal, State and local regulations.

PSI warrants that these findings have been promulgated after being prepared in general accordance with generally accepted practices in the asbestos and/or lead-based paint testing and abatement industries. PSI also recognizes that raw laboratory test data are not usually sufficient to make all abatement and management decisions.

This report was prepared pursuant to the contract PSI has with Heffernan Holland and Morgan Architecture. That contractual relationship included an exchange of information about the subject site that was unique and between PSI and its client and serves as the basis upon which this report was prepared. Because of the importance of the communication between PSI and its client, reliance or any use of this report by anyone other than Heffernan Holland and Morgan Architecture, for whom it was prepared, is prohibited and therefore not foreseeable to PSI.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to PSI’s contract with Heffernan Holland and Morgan Architecture. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at third party’s risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

No other warranties are implied or expressed.

UNIDENTIFIABLE CONDITIONS

This report is necessarily limited to the conditions observed and to the information available at the time of the work. Due to the nature of the work, there is a possibility that there may exist conditions which could not be identified within the scope of work or which were not apparent at the time of our site work. This report is also limited to information available from the client at the time it was conducted. The report may not represent all conditions at the subject site as it only reflects the information gathered from specific locations.
PSI appreciates the opportunity to have been of service to you. If you have any questions regarding our findings, please do not hesitate to give us a call.

Sincerely,

PROFESSIONAL SERVICE INDUSTRIES, INC.

Jeremy Jernigan, CIH, CSP, CHMM
Florida Licensed Asbestos Consultant
License No. AX73

Attachments: Asbestos Analytical Results/Bulk Sample Logs/Chain of Custodies
XRF Testing Results
Photographs/Diagrams
Inspector Training Certificates
REPORT OF BULK SAMPLE ANALYSIS FOR ASBESTOS

TESTED FOR:
PSI, Inc.
175 South "A" Street
Pensacola, FL 32502
Attn: Jeremy Jernigan

Project ID: 0638714
Heffernan Holland
Buildings 90710/90711
Hurlburt Field

Date Received: 6/4/2015
Date Completed: 6/10/2015
Date Reported: 6/11/2015

Analyst's Comment

<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID (Layer)</th>
<th>Sample Description (Color, Texture, Etc.)</th>
<th>Asbestos Content (Percent and Type)</th>
<th>Non-asbestos Fibers (Percent and Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>001A</td>
<td>(1) Gray, Drywall, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>002</td>
<td>002A</td>
<td>(1) Gray, Drywall, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>003</td>
<td>003A</td>
<td>(1) Gray, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>004</td>
<td>004A</td>
<td>(1) Gray, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>005</td>
<td>005A</td>
<td>(1) White, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>60% Fibrous Glass</td>
</tr>
<tr>
<td>006</td>
<td>006A</td>
<td>(1) White, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>60% Fibrous Glass</td>
</tr>
<tr>
<td>007</td>
<td>007A</td>
<td>(1) White, Pipe Insulation, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>5% Chrysotile</td>
</tr>
<tr>
<td>008</td>
<td>008A</td>
<td>Sample Not Tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>009A</td>
<td>Sample Not Tested</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>010A</td>
<td>(1) White, Popcorn Ceiling, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>011</td>
<td>011A</td>
<td>(1) White, Popcorn Ceiling, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>012</td>
<td>012A</td>
<td>(1) White, Popcorn Ceiling, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
</tbody>
</table>

Quantitation is based on a visual estimation of the relative area of bulk sample components, unless otherwise noted in the "Comments" section of this report. The results are valid only for the item tested. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Method used: E.P.A. Method for the Determination of Asbestos in Bulk Building Materials (EPA / 600/R-93/116 July 1993). Polarized Light Microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative Transmission Electron Microscopy is currently the only method that can be used to determine if the material can be considered or treated as non-asbestos containing. Samples will be disposed of within 30 days unless notified in writing by the client. No part of this report may reproduced, except in full, without written permission of the laboratory. The reporting limit is 1% by weight. NVLAP Lab Code 101350-0.

Respectfully submitted,
PSI, Inc.

Approved Signatory
Mary Cantley
<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID (Layer)</th>
<th>Sample Description (Color, Texture, Etc.)</th>
<th>Asbestos Content (Percent and Type)</th>
<th>Non-asbestos Fibers (Percent and Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>013</td>
<td>013A</td>
<td>Gray, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>30% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30% Fibrous Glass</td>
</tr>
<tr>
<td>014</td>
<td>014A</td>
<td>Gray, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>30% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30% Fibrous Glass</td>
</tr>
<tr>
<td>015</td>
<td>015A</td>
<td>White, Floor Tile, Homogeneous (1) Yellow, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None Reported</td>
</tr>
<tr>
<td>016</td>
<td>016A</td>
<td>White, Floor Tile, Homogeneous (2) Yellow, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None Reported</td>
</tr>
<tr>
<td>017</td>
<td>017A</td>
<td>Gray, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>50% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>018A</td>
<td>Gray, Ceiling Tile, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>50% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>019A</td>
<td>Gray, Drywall, Homogeneous (1) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None Reported</td>
</tr>
<tr>
<td>020</td>
<td>020A</td>
<td>Gray, Drywall, Homogeneous (2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None Reported</td>
</tr>
<tr>
<td>021</td>
<td>021A</td>
<td>Gray, Drywall, Homogeneous (2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None Reported</td>
</tr>
<tr>
<td>022</td>
<td>022A</td>
<td>Gray, Drywall, Homogeneous (2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None Reported</td>
</tr>
<tr>
<td>023</td>
<td>023A</td>
<td>Gray, Baseboard, Homogeneous (2) Yellow, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None Reported</td>
</tr>
<tr>
<td>024</td>
<td>024A</td>
<td>Gray, Baseboard, Homogeneous (2) Yellow, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None Reported</td>
</tr>
<tr>
<td>025</td>
<td>025A</td>
<td>Black, Insulation, Homogeneous (2) White, Wrap, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10% Fibrous Glass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80% Cellulose Fiber</td>
</tr>
</tbody>
</table>

Quantitation is based on a visual estimation of the relative area of bulk sample components, unless otherwise noted in the "Comments" section of this report. The results are valid only for the item tested. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Method used: E.P.A. Method for the Determination of Asbestos in Bulk Building Materials (EPA / 600/R-93/116 July 1993). Polarized Light Microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative Transmission Electron Microscopy is currently the only method that can be used to determine if the material can be considered or treated as non-asbestos containing. Samples will be disposed of within 30 days unless notified in writing by the client. No part of this report may reproduced, except in full, without written permission of the laboratory. The reporting limit is 1% by weight. NVLAP Lab Code 101350-0.

Respectfully submitted,
PSI, Inc.

Approved Signatory
Mary Cantley

Professional Service Industries, Inc. 850 Poplar Street, Pittsburgh, PA 15220 Phone 412/922-4010 Fax 412/922-4014
Table of Sample Results

<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID</th>
<th>Sample Description</th>
<th>Asbestos Content</th>
<th>Non-asbestos Fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>026</td>
<td>026A</td>
<td>(1) Black, Insulation, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) White, Wrap, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Fibrous Glass</td>
</tr>
<tr>
<td>027</td>
<td>027A</td>
<td>White, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Wollastonite</td>
</tr>
<tr>
<td>028</td>
<td>028A</td>
<td>White, Mastic, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Wollastonite</td>
</tr>
</tbody>
</table>

Report Notes:

(PT) Point Count Results

Quantitation is based on a visual estimation of the relative area of bulk sample components, unless otherwise noted in the "Comments" section of this report. The results are valid only for the item tested. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Method used: E.P.A. Method for the Determination of Asbestos in Bulk Building Materials (EPA / 600/R-93/116 July 1993). Polarized Light Microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative Transmission Electron Microscopy is currently the only method that can be used to determine if the material can be considered or treated as non-asbestos containing. Samples will be disposed of within 30 days unless notified in writing by the client. No part of this report may reproduced, except in full, without written permission of the laboratory. The reporting limit is 1% by weight. NVLAP Lab Code 101350-0.

Respectfully submitted,

PSI, Inc.

Approved Signatory
Mary Cantley
REPORT OF BULK SAMPLE ANALYSIS FOR ASBESTOS

TESTED FOR: PSI, Inc.
175 South "A" Street
Pensacola, FL 32502
Attn: Adam Beasley

Date Received: 7/17/2015
Date Completed: 7/23/2015
Date Reported: 7/23/2015

Analyst: CK
Work Order: 1507365
Page: 1 of 2

<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID (Layer)</th>
<th>Sample Description (Color, Texture, Etc.)</th>
<th>Analyst's Comment</th>
<th>Asbestos Content (Percent and Type)</th>
<th>Non-asbestos Fibers (Percent and Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>029</td>
<td>001A</td>
<td>White, Mastic, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>030</td>
<td>002A</td>
<td>White, Mastic, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>2% Polyethylene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2% Wollastonite</td>
</tr>
<tr>
<td>031</td>
<td>003A</td>
<td>Pink, Floor Tile, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Brown, Mastic, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Cream, Floor Tile, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>032</td>
<td>004A</td>
<td>Pink, Floor Tile, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Brown, Mastic, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Cream, Floor Tile, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>033</td>
<td>005A</td>
<td>White, Floor Tile, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Yellow, Mastic, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>034</td>
<td>006A</td>
<td>White, Floor Tile, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Yellow, Mastic, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>035</td>
<td>007A</td>
<td>White, Mastic, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>036</td>
<td>008A</td>
<td>White, Mastic, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>2% Wollastonite</td>
</tr>
<tr>
<td>037</td>
<td>009A</td>
<td>Brown, Insulation, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>4% Fibrous Glass</td>
</tr>
<tr>
<td>038</td>
<td>010A</td>
<td>Brown, Insulation, Homogeneous</td>
<td></td>
<td>NO ASBESTOS DETECTED</td>
<td>4% Fibrous Glass</td>
</tr>
</tbody>
</table>

Quantitation is based on a visual estimation of the relative area of bulk sample components, unless otherwise noted in the "Comments" section of this report. The results are valid only for the item tested. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Method used: E.P.A. Method for the Determination of Asbestos in Bulk Building Materials (EPA / 600/R-93/116 July 1993). Polarized Light Microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative Transmission Electron Microscopy is currently the only method that can be used to determine if the material can be considered or treated as non-asbestos containing. Samples will be disposed of within 30 days unless notified in writing by the client. No part of this report may reproduced, except in full, without written permission of the laboratory. The reporting limit is 1% by weight. NVLAP Lab Code 101350-0.

Respectfully submitted,
PSI, Inc.
[Signature]
Mary Cantley

Approved Signatory
Mary Cantley

Professional Service Industries, Inc. 850 Poplar Street, Pittsburgh, PA 15220 Phone 412/922-4010 Fax 412/922-4014
<table>
<thead>
<tr>
<th>Client ID</th>
<th>Lab ID (Layer)</th>
<th>Sample Description (Color, Texture, Etc.)</th>
<th>Asbestos Content (Percent and Type)</th>
<th>Non-asbestos Fibers (Percent and Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>039</td>
<td>011A (1)</td>
<td>White, Wrap, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber 20% Fibrous Glass</td>
</tr>
<tr>
<td>040</td>
<td>012A (1)</td>
<td>White, Wrap, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>10% Cellulose Fiber 20% Fibrous Glass</td>
</tr>
<tr>
<td>041</td>
<td>013A (1)</td>
<td>Red, Gasket, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>042</td>
<td>014A (1)</td>
<td>Red, Gasket, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>043</td>
<td>015A (1)</td>
<td>White, Drywall, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>20% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
<tr>
<td>044</td>
<td>016A (1)</td>
<td>White, Drywall, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>20% Cellulose Fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) White, Joint Compound, Homogeneous</td>
<td>NO ASBESTOS DETECTED</td>
<td>None Reported</td>
</tr>
</tbody>
</table>

Report Notes: (PT) Point Count Results

Quantitation is based on a visual estimation of the relative area of bulk sample components, unless otherwise noted in the "Comments" section of this report. The results are valid only for the item tested. This report may not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. Method used: E.P.A. Method for the Determination of Asbestos in Bulk Building Materials (EPA / 600/R-93/116 July 1993). Polarized Light Microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative Transmission Electron Microscopy is currently the only method that can be used to determine if the material can be considered or treated as non-asbestos containing. Samples will be disposed of within 30 days unless notified in writing by the client. No part of this report may reproduced, except in full, without written permission of the laboratory. The reporting limit is 1% by weight. NVLAP Lab Code 101350-0.

Respectfully submitted,

PSI, Inc.

Approved Signatory
Mary Cantley

Professional Service Industries, Inc. 850 Poplar Street, Pittsburgh, PA 15220 Phone 412/922-4010 Fax 412/922-4014
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Location And Description</th>
<th>Friable (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>LRS SNC / Drywall System</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>LRS / Gray NUAC Mastic</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>LRS Office / 2x4 Ceiling Tiles</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>LRS / 2 1/2 inch Pipe Ins.</td>
<td></td>
</tr>
<tr>
<td>008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>LRS Red / Popcorn Ceiling</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>Office / 2x2 Ceiling Tile Terracotta</td>
<td></td>
</tr>
<tr>
<td>014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>12" 3/4 Floor Tile Mastic</td>
<td></td>
</tr>
<tr>
<td>016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>SNC / 2x4 Fissured CT</td>
<td></td>
</tr>
<tr>
<td>018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>LCI 3/8 Sheetrock / Drywall System</td>
<td></td>
</tr>
<tr>
<td>020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>TACCOM Office / Drywall System</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>LRS / Tacon Office / Gray Back Board</td>
<td></td>
</tr>
<tr>
<td>024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>LCI Chill/Water / 4" Foam Glass Ins</td>
<td></td>
</tr>
<tr>
<td>026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>" NUAC / NUAC Duct Mastic</td>
<td></td>
</tr>
<tr>
<td>028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Number</td>
<td>Sample Location And Description</td>
<td>Friable (Y/N)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>02-9</td>
<td>LCS Stove / HVAC Duct Mastic</td>
<td></td>
</tr>
<tr>
<td>030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>12" Pipe Fitting / Mastic / Sublayer</td>
<td></td>
</tr>
<tr>
<td>032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033</td>
<td>12" White FT / Mastic</td>
<td></td>
</tr>
<tr>
<td>034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>Mecl Roof / Hotwater Pipe Mastic</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>Duct Insulation</td>
<td></td>
</tr>
<tr>
<td>038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>90711 / Exhaust Manifold Wrap</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>Pipe Gasket</td>
<td></td>
</tr>
<tr>
<td>041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>LCF Store / Dry Wall System</td>
<td>Yes</td>
</tr>
<tr>
<td>044</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAIN OF CUSTODY - ASB/LEAD/IH

Project Information
- **Project Name:** Buildings 90710/90711 Hurlbut Field
- **Project No.:** 0638714

Send Results To:
- **Company:** Professional Service Industries, Inc.
- **Attn.:** Jeremy Jamieson
- **Address:** 175 South A Street
- **Telephone:** 850-434-1000
- **Email:** Pensacola Environmental List

Requested Turnaround Time:

<table>
<thead>
<tr>
<th>Same Day</th>
<th>1-2 Day</th>
<th>3-5 Day</th>
<th>Requested Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>☑</td>
<td></td>
</tr>
</tbody>
</table>

Parameter

<table>
<thead>
<tr>
<th>Sample ID:</th>
<th>Number of Samples</th>
<th>PLM Bulk</th>
<th>Point Count (4D0)</th>
<th>Point Count (4000)</th>
<th>Lead Wipe</th>
<th>Lead Air</th>
<th>Lead Soil</th>
<th>Lead Paint Chip</th>
<th>Lead TLP</th>
<th>PFCM</th>
<th>PFCM "B Rules"</th>
<th>TEM AIER A</th>
<th>TEM 7402</th>
<th>TEM Charfield</th>
<th>TEM Vacuum</th>
<th>TEM Wire</th>
<th>NY Plumb Friable</th>
<th>NY Plumb Non-Friable</th>
<th>NY SPF-V</th>
<th>NY TEM INOB</th>
<th>NY TEM MOB</th>
<th>Total Non-Mineral Dust</th>
<th>Respirable Dust</th>
<th>Cadmium</th>
<th>Zinc</th>
<th>Total Chromium</th>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>001-028</td>
<td>28</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Stop at First Positive
- **Y**
- **N**

Laboratory Use Only
- **Y**
- **N**

All Samples In Acceptable Condition:

Comments:

Shipping Charges Apply:

Relinquished by

Date/Time
- 6/3/15

Received by
- M. Cantley
- 10:37 AM

Date/Time
- 6/4/15

Analyst Name:

Analyst Signature:

Special Instructions / Comments:
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Component Description</th>
<th>Component Location</th>
<th>BGS</th>
<th>PC</th>
<th>XRF Reading (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>001</td>
<td>Tan Wall</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>002</td>
<td>Gray Stair Riser</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>003</td>
<td>Brown Wall</td>
<td>1 SOLRS</td>
<td>W</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>004</td>
<td>White Wall</td>
<td>1 SOLRS</td>
<td>GB</td>
<td>I</td>
<td>-0.3</td>
</tr>
<tr>
<td>005</td>
<td>White Wall</td>
<td>1 SOLRS</td>
<td>C</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>006</td>
<td>Gray Wall</td>
<td>1 SOLRS</td>
<td>C</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>007</td>
<td>Gray Door</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>008</td>
<td>Gray Door Casing</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>009</td>
<td>White Column</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td><9.9</td>
</tr>
<tr>
<td>010</td>
<td>White Column</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td><9.9</td>
</tr>
<tr>
<td>011</td>
<td>Brown Stair Riser</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>012</td>
<td>White Wall</td>
<td>1 SOLRS</td>
<td>CB</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>013</td>
<td>Brown Wall</td>
<td>1 SOLRS</td>
<td>CB</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>014</td>
<td>Brown Door</td>
<td>1 SOLRS</td>
<td>W</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>015</td>
<td>Brown Door Casing</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>016</td>
<td>Brown Horizontal Support Member</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td><9.9</td>
</tr>
<tr>
<td>017</td>
<td>Black Fire Suppression Pipe</td>
<td>1 SOLRS</td>
<td>M</td>
<td>I</td>
<td>0.4</td>
</tr>
<tr>
<td>018</td>
<td>White Column</td>
<td>TacCom</td>
<td>M</td>
<td>I</td>
<td><9.9</td>
</tr>
<tr>
<td>019</td>
<td>White Wall</td>
<td>TacCom</td>
<td>CB</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>020</td>
<td>Brown Wall</td>
<td>TacCom</td>
<td>CB</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>021</td>
<td>Yellow Floor Striping</td>
<td>TacCom</td>
<td>C</td>
<td>I</td>
<td>0.3</td>
</tr>
<tr>
<td>022</td>
<td>Brown Stairs</td>
<td>TacCom</td>
<td>M</td>
<td>I</td>
<td>-0.3</td>
</tr>
<tr>
<td>023</td>
<td>White Wall</td>
<td>TacCom</td>
<td>M</td>
<td>I</td>
<td>0.1</td>
</tr>
<tr>
<td>024</td>
<td>Brown Vertical Support Metal</td>
<td>Office Area</td>
<td>M</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>025</td>
<td>Yellow 3 ft. Columns</td>
<td>Office Area</td>
<td>M</td>
<td>I</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

PC = Paint Condition: I = Intact, D = Defective
BGS = Background Substrate: M = Metal, C = Concrete, W = Wood, B = Brick, CB = Concrete Block, GB = Gypsum Board,
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Component Description</th>
<th>Component Location</th>
<th>BGS</th>
<th>PC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>026</td>
<td>Yellow Floor Striping</td>
<td>“ Middle Warehouse</td>
<td>C</td>
<td>I</td>
<td>0.3</td>
</tr>
<tr>
<td>027</td>
<td>Yellow Floor Striping</td>
<td>I SOLRS</td>
<td>C</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>028</td>
<td>Wall</td>
<td>Front Office Area</td>
<td>GB</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>029</td>
<td>White Wall</td>
<td>Front Office Area</td>
<td>6B</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>030</td>
<td>Tan Door</td>
<td>Front Office Area</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>031</td>
<td>Gray Door Casing</td>
<td>Front Office Area</td>
<td>M</td>
<td>I</td>
<td>0.2</td>
</tr>
<tr>
<td>032</td>
<td>White Wall</td>
<td>Front Office Area</td>
<td>CB</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>033</td>
<td>Brown Wall</td>
<td>Front Office Area</td>
<td>CB</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>034</td>
<td>Yellow Corner Guard</td>
<td>Front Office Area</td>
<td>M</td>
<td>I</td>
<td>0.3</td>
</tr>
<tr>
<td>035</td>
<td>Tan Door</td>
<td>Front Office Area</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>036</td>
<td>“ Casing</td>
<td>Front Office Area</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>037</td>
<td>Fire Pro Pipe White</td>
<td>Front Office Area</td>
<td>M</td>
<td>I</td>
<td>-0.4</td>
</tr>
<tr>
<td>038</td>
<td>Red Fire Riser</td>
<td>TacCom</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>039</td>
<td>White Fire Riser</td>
<td>TacCom</td>
<td>M</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>040</td>
<td>White Fire Riser</td>
<td>Weapons MX</td>
<td>M</td>
<td>I</td>
<td>0.0</td>
</tr>
<tr>
<td>041</td>
<td>White Fire Riser</td>
<td>Weapons MX</td>
<td>M</td>
<td>I</td>
<td>-0.3</td>
</tr>
<tr>
<td>042</td>
<td>White Wall</td>
<td>Weapons MX</td>
<td>CB</td>
<td>I</td>
<td>-0.3</td>
</tr>
<tr>
<td>043</td>
<td>White Wall</td>
<td>Exterior Mech. Room</td>
<td>CB</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>044</td>
<td>White Wall</td>
<td>Exterior Mech. Room</td>
<td>CB</td>
<td>I</td>
<td>0.0</td>
</tr>
<tr>
<td>045</td>
<td>White Roof Deck</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>0.1</td>
</tr>
<tr>
<td>046</td>
<td>White Roof Deck</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>0.0</td>
</tr>
<tr>
<td>047</td>
<td>White Horizontal Support Member</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>0.4</td>
</tr>
<tr>
<td>048</td>
<td>White Horizontal Support Member</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>049</td>
<td>White Horizontal Support Member</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>050</td>
<td>Red Fire Supp. Riser</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>-0.0</td>
</tr>
<tr>
<td>051</td>
<td>Red Fire Supp. Riser</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>052</td>
<td>Large White Pipe</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>053</td>
<td>Small White Pipe</td>
<td>Exterior Mech. Room</td>
<td>M</td>
<td>I</td>
<td>0.0</td>
</tr>
</tbody>
</table>

PC = Paint Condition: I = Intact, D = Defective
BGS = Background Substrate: M = Metal, C = Concrete, W = Wood, B = Brick, CB = Concrete Block, GB = Gypsum Board
<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Component Description</th>
<th>Component Location</th>
<th>BGS</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>054</td>
<td>White Wall</td>
<td>Exterior Electrical Room</td>
<td>CB</td>
<td>I</td>
</tr>
<tr>
<td>055</td>
<td>White Roof Deck</td>
<td>Exterior Electrical Room</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>056</td>
<td>Tan Door</td>
<td>Exterior Electrical Room</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>057</td>
<td>Tan Door Frame</td>
<td>Exterior Electrical Room</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>058</td>
<td>Brown Door</td>
<td>Exterior Electrical Room</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>059</td>
<td>Brown Door Frame</td>
<td>Exterior Electrical Room</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
</tr>
</tbody>
</table>

PC = Paint Condition: I = Intact, D = Defective
BGS = Background Substrate: M = Metal, C =Concrete W = Wood, B = Brick, CB = Concrete Block, GB = Gypsum Board
LBP SURVEY XRF TESTING LOG

Client: HHMA
Date: 7/16/15
Page: 1 of 1

XRF Serial No.: 1193
Inspector: Adam Beasley

Project Site: Building 90711
Project No.: 0638714

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Component Description</th>
<th>Component Location</th>
<th>BGS</th>
<th>PC</th>
<th>XRF Reading (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>001</td>
<td>Beige Wall</td>
<td>Exterior</td>
<td>CB</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>002</td>
<td>Beige Wall</td>
<td>Exterior</td>
<td>CB</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>003</td>
<td>Beige Door</td>
<td>Exterior</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>004</td>
<td>Beige Door Frame</td>
<td>Exterior</td>
<td>M</td>
<td>I</td>
<td>0.1</td>
</tr>
<tr>
<td>005</td>
<td>Beige Wall</td>
<td>Interior</td>
<td>CB</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>006</td>
<td>Beige Wall</td>
<td>Interior</td>
<td>CB</td>
<td>I</td>
<td>-0.5</td>
</tr>
<tr>
<td>007</td>
<td>Brown Louvers</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>0.4</td>
</tr>
<tr>
<td>008</td>
<td>Red Fire Supp. Pipe</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>-0.4</td>
</tr>
<tr>
<td>009</td>
<td>Red Fire Supp. Pipe</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>010</td>
<td>Red Fire Supp. Pipe</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>011</td>
<td>Red Fire Supp. Pipe</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>0.0</td>
</tr>
<tr>
<td>012</td>
<td>Yellow Fuel Tank No. 1</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>013</td>
<td>Yellow Fuel Tank No. 2</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>014</td>
<td>Yellow Supports</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>015</td>
<td>Yellow Pipe</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>016</td>
<td>Beige Roof Deck</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>0.0</td>
</tr>
<tr>
<td>017</td>
<td>Beige Roof Deck</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>-0.2</td>
</tr>
<tr>
<td>018</td>
<td>Beige Horizontal Support Member</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>-0.1</td>
</tr>
<tr>
<td>019</td>
<td>Beige Horizontal Support Member</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>0.1</td>
</tr>
<tr>
<td>020</td>
<td>Brown Louvers</td>
<td>Interior</td>
<td>M</td>
<td>I</td>
<td>0.1</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
<td>1.0</td>
</tr>
<tr>
<td>-</td>
<td>RMD 1.0 mg/cm² Reference Test Block</td>
<td>Parking Area</td>
<td>W</td>
<td>I</td>
<td>1.0</td>
</tr>
</tbody>
</table>

PC = Paint Condition: I = Intact, D = Defective
BGS = Background Substrate: M = Metal, C = Concrete, W = Wood, B = Brick, CB = Concrete Block, GB = Gypsum Board,
Photo No. 1: VIEW OF THE METAL COLUMNS LOCATED IN BUILDING 90710 WHICH ARE COATED WITH LEAD-BASED PAINT.

Photo No. 2: VIEW OF THE BROWN HORIZONTAL SUPPORT MEMBERS IN BUILDING 90710 WHICH ARE COATED WITH LEAD-BASED PAINT.
Photo No. 3: VIEW OF THE YELLOW FUEL TANKS, SUPPORTS, AND PIPING IN BUILDING 90711 WHICH ARE COATED WITH LEAD-BASED PAINT.

Photo No. 4: VIEW OF THE 2” STEAM PIPE. THE PIPE INSULATION CONTAINS ASBESTOS.
Asbestos Containing Piping Location Plan

LEGEND
Asbestos Containing Piping Location

Building 90710
Hurlburt Field, Florida
PSI Project # 0638714

Figure #1
Sheet 1 of 1
8/10/15
certifies

Adam P. Beasley

PSI, Inc., 175 South A Street, Pensacola, FL 32502

Having passed a 25-question exam with a score of 70% or higher has successfully met training requirements for

Asbestos Refresher: Inspector

FDBPR Asbestos Licensing Unit: Provider #0000995; Course #FL49-0004731 (½ Day; 3.40 Contact Hours)
(Reaccreditation for Inspector under TSCA Title II/AHERA)
Conducted

08/04/2015

Certificate #: 160042-5210
Exam Date: 08/04/2015
EPA accreditation expires: 08/04/2016
Principal Instructor: Brian Duchene, PE, LAC
CEUs: .4

FBPR LAC: #0000995; Course #0004731
FBPE PDHs: #0004021; Course #0009083/Educational Institutions: 4 PDHs

Carol Hinton, Associate Director

University of Florida TREEO Center • 3900 SW 63 Boulevard • Gainesville, FL 32608-3800 • 352-392-9570 • www.treeo.ufl.edu
United States Environmental Protection Agency

This is to certify that

Adam Pride Beasley

has fulfilled the requirements of the Toxic Substances Control Act (TSCA) Section 402, and has received certification to conduct lead-based paint activities pursuant to 40 CFR Part 745.226 as a:

Risk Assessor

In the Jurisdiction of:

Florida

This certification is valid from the date of issuance and expires

February 1, 2017

FL-R-90245-2
Certification #
OCT 17 2013

Issued On

Anthony G. Toney, Chief
Pesticides and Toxic Substances Branch
Asbestos Containing Materials and Lead-based Paint Survey
Building 90710
Hurlburt Field AFB, Fort Walton Beach, FL

1 June 2009

Report Prepared By:
HTRW Environmental Support Section
Engineering Division
U. S. Army Corps of Engineers, Mobile District
EXECUTIVE SUMMARY

Mr. Terry L. Williams and Mr. Alou Rice of the U. S. Army Corps of Engineers, Mobile District Engineering Division HTRW and Environmental Support Section (EN-GE) conducted a survey to determine if asbestos containing materials (ACM) and/or lead based paint was present within or on Building 90710 at Hurlburt Air Force Base near Fort Walton Beach, FL. This survey was conducted on May 5, 2009.

Building 90710 is in use as a warehouse and distribution center for Hurlburt Air Force Base and is approximately 150,000 square feet in size. This structure was built in 1956 and is in good condition.

The structure consists of three definable sections of approximately 200 X 200 feet. Each area is separated by large, loading dock type sliding doors with bollards at the openings on each side of the doors.

Newer definable warehouse areas have been added to the north and south of the main structure.

The area inspected included all areas of Building 90710.

This structure has concrete floors, painted cmu walls with painted steel columns and steel beams for structural support.

The exterior is constructed of painted cmu (concrete masonry unit) block walls.

The survey was performed in general accordance with industry standards and good commercial and customary practices for commercial buildings.

ASBESTOS

Seven suspect asbestos samples were collected from various locations in the building. Suspect material included wallboard, joint compound, floor tile and TSI.

Gray and green floor tile samples from the normally locked storage rooms in the GSA Fleet office area were found to be positive for chrysotile asbestos. Both the floor tiles and mastic were positive for asbestos. This tile is present in the two storage rooms which are approximately 12 X 12 feet in area. This ACM is not friable.

In addition, the insulation (TSI) around the pipe along the south wall of the middle warehouse area was found to be positive for amosite and chrysotile asbestos. This pipe comes through the middle of the wall, ascends up to and across the ceiling to the other side of the building. It is estimated that this run of pipe is more than 200 feet in length. This ACM is friable.

Details of locations, values and photographs of areas that were found to be positive for ACM are found in the body and Appendix of this report.
A previous ACM survey indicated that asbestos was present within floor tile in the break room. Which was confirmed in this survey, however this location will not be affected by the planned demolition of the older portion of the building.

The steam fitting that was previously found to be positive for ACM in the mechanical room, was not found in this survey.

LEAD-BASED PAINT

Mr. Williams and Mr. Rice analyzed building paint substrate at 300 locations on the interior and exterior surfaces of Building 90710.

The results of this inspection indicate that several components were consistently positive for lead in amounts greater than or equal to 1.0 mg/cm² (or equivalent), using the inspection construction protocol in Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing.

Lead-based paint was consistently found on the structural columns and overhead support beams within the original structure, not on the columns and beams in the newer additions on the north and south of the building, however.

Lead-based paint was also found on the bollards at the bay doors, the bay door frames, the metal entrance ramps between sections and yellow floor striping.

On the exterior of the building, lead-based paint was found on the roll up bay door frames and on the surfaces of the six loading docks located on all sides of the building. The colors of this paint are brown, yellow, gray and beige.

The mechanical room door located on the west end of the building was also found to have had lead-based paint applied.

Some painted surfaces may contain levels of lead below 1.0 mg/cm², which could create lead dust or lead-contaminated soil hazards if the paint is turned into dust by abrasion, scraping, or sanding.

Details of locations, values and photographs of areas that were found to be positive for lead-based paint are found in the body of this report.
1.0 **Scope of Services**

The Scope of Work included the on-site survey of the all interior and exterior areas of the building, surveying for the presence of lead-based paint and surveying for the presence of asbestos containing materials (ACM). Suspect asbestos samples were analyzed by a certified laboratory in accordance with EPA, NESHAP, OSHA, and other pertinent federal, state, and local regulations.

A report detailing the results of these surveys identifying the location of any of the target materials is presented here.

2.0 **Sampling Methodology**

Mr. Williams is an EPA trained lead-based paint inspector and an Asbestos Hazard Emergency Response Act (AHERA) certified inspector.

To conduct the survey of the building for lead-based paint, a systematic survey of painted surveys was conducted using the Niton XL-300 XRF (x-ray florescence) device analyzer. This is a direct reading instrument that determines the presence of lead in paint on site.

To conduct the survey for asbestos containing materials, all accessible areas were observed for the presence of suspect ACM.

3.0 **Physical Condition**

Building 90710 was built in 1956 and is in fair excellent condition.

4.0 **Field and Laboratory Results**

4.1 **Asbestos-Containing Materials**

The inspection for suspect asbestos-containing materials (ACM) was performed during the site survey.

A visual inspection of any suspect friable and non-friable building materials was conducted. EPA/NESHAP regulations define asbestos as any material containing 1 percent or more of asbestos in bulk samples.

Any material observed was assessed for physical condition and fiber release potential in accordance with the EPA’s Guide for Assessing and Managing Exposure to Asbestos in Buildings.
Six samples of suspect ACM were collected from floor tile, TSI, wallboard and joint compound throughout Building 90710.

Two of the samples collected were found to be positive for ACM.

The floor tile samples collected from storage rooms in entrance hallway at the east end of the office were found to be positive for ACM. The floor tile and mastic samples collected in these rooms were found to be positive for chrysotile asbestos. These storage rooms are typically locked and are approximately 12 X 12 feet in size. This ACM is not friable.

The second sample that was positive for ACM was collected was from TSI insulating a pipe coming out of the middle of the wall at the middle warehouse section, which is on the south side of the building. This run of pipe rose to the ceiling and across to the north side. This run of pipe was at least 200 feet in length. However, it could not be traced to its terminus or its inception; therefore the total length is not known; although it appears that length can not be longer than 300 feet.

A table presenting the values and locations of positive samples is presented below.

TABLE 1 – SUSPECT ACM BUILDING 90710

<table>
<thead>
<tr>
<th>SAMPLE ID.</th>
<th>SUSPECT ACM/LOCATIONS</th>
<th>PHYSICAL CONDITION</th>
<th>RESULTS (weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90710-1A</td>
<td>Entrance office Floor Tile</td>
<td>Fair</td>
<td>ND</td>
</tr>
<tr>
<td>90710-2A</td>
<td>Electrical closet Floor Tile</td>
<td>Fair</td>
<td>ND</td>
</tr>
<tr>
<td>90710-3A</td>
<td>Floor tile mastic, GSA Fleet Office</td>
<td>Fair</td>
<td>5%</td>
</tr>
<tr>
<td>90710-3A</td>
<td>Floor tile, green GSA Fleet Office</td>
<td>Fair</td>
<td>2%</td>
</tr>
<tr>
<td>90710-3A</td>
<td>Floor tile, gray GSA Fleet Office</td>
<td>Fair</td>
<td>4%</td>
</tr>
<tr>
<td>90710-4A</td>
<td>Floor tile speckled, break room</td>
<td>Good</td>
<td>ND</td>
</tr>
<tr>
<td>90710-5A</td>
<td>Floor tile speckled, break room</td>
<td>Good</td>
<td>ND</td>
</tr>
<tr>
<td>90710-6A</td>
<td>TSI, central warehouse wall south</td>
<td>Poor</td>
<td>8% Chrysotile 15% Amosite</td>
</tr>
</tbody>
</table>

4.2 Lead-based Paint

Lead-based paint samples were analyzed on site with a direct reading instrument, the Niton XL-300 XRF. This instrument analyzes the substrate for the presence of lead using radioactive technology and is accepted by the Department of Housing and Urban Development as equivalent to laboratory analysis.

Mr. Williams and Mr. Rice analyzed building paint substrate at 300 locations on the interior and exterior surfaces of Building 90710.

The results of this inspection indicate that several locations were found to contain LBP in amounts greater than or equal to 1.0 mg/cm² (or equivalent) using the inspection construction protocol in Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing.
Lead-based paint was found on all structural columns and support beams in the three large bays of the warehouse facility; not on the structures in the additions to the building on the north and south sides.

Within the facility, lead-based paint was found on the bollards at the doors separating the warehouse sections, on the door frames of these doors and the wall adjacent to the bay doors. The color scheme of these components was yellow, brown and white.

Lead-based paint was within the yellow floor striping present in all three sections of the warehouse.

On the exterior, lead-based paint was found within the paint on all of the loading docks that surround the building. The colors of this paint were yellow, gray, beige, brown and white. This paint was typically in poor condition.

The door frames at the loading docks were also positive for lead-based paint.

Hand railings was found to be positive for lead-based paint.

Lead-based paint was found on the exterior door frames and on the mechanical room door.

However, some painted surfaces may contain levels of lead below 1.0 mg/cm², which could create lead dust or lead-contaminated soil hazards if the paint is turned into dust by abrasion, scraping, or sanding.

TABLE 1 – SUSPECT LBP BUILDING 90710

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>COMPONENT COLOR</th>
<th>LOCATION (INTERIOR)</th>
<th>RESULT (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90710-13L</td>
<td>Column, yellow and white</td>
<td>West bay area</td>
<td>10.1</td>
</tr>
<tr>
<td>90710-14L</td>
<td>Column, yellow and white</td>
<td>West bay area</td>
<td>10.1</td>
</tr>
<tr>
<td>90710-17L</td>
<td>Floor stripe, yellow</td>
<td>West bay area</td>
<td>1.2</td>
</tr>
<tr>
<td>90710-18L</td>
<td>I-beam, beige</td>
<td>Ceiling</td>
<td>72.2</td>
</tr>
<tr>
<td>90710-29L</td>
<td>Bay door frame, yellow</td>
<td>West bay, middle bay area</td>
<td>10.1</td>
</tr>
<tr>
<td>90710-31L</td>
<td>Bay door wall, yellow</td>
<td>Yellow</td>
<td>3.2</td>
</tr>
<tr>
<td>90710-60L</td>
<td>Floor stripe, yellow</td>
<td>East bay door area</td>
<td>1.1</td>
</tr>
<tr>
<td>90710-63L</td>
<td>Bollard, yellow</td>
<td>East bay door area</td>
<td>7.1</td>
</tr>
<tr>
<td>90710-64L</td>
<td>Bollard, yellow</td>
<td>East bay door area</td>
<td>7.9</td>
</tr>
<tr>
<td>90710-65L</td>
<td>Entrance ramp, yellow</td>
<td>East bay door</td>
<td>5.7</td>
</tr>
<tr>
<td>90710-74L</td>
<td>Bollard, yellow</td>
<td>West bay door</td>
<td>3.3</td>
</tr>
<tr>
<td>90710-78L</td>
<td>Bollard, yellow</td>
<td>West bay door</td>
<td>2.6</td>
</tr>
<tr>
<td>90710-84L</td>
<td>Bay door frame, gray</td>
<td>Southeast bay door</td>
<td>9.7</td>
</tr>
<tr>
<td>SAMPLE No.</td>
<td>COMPONENT COLOR</td>
<td>LOCATION (EXTERIOR)</td>
<td>RESULT (mg/cm²)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>90710-95L</td>
<td>Bay door frame,</td>
<td>West area</td>
<td>97.2</td>
</tr>
<tr>
<td>90710-102L</td>
<td>Loading dock, brown</td>
<td>West side</td>
<td>3.4</td>
</tr>
<tr>
<td>90710-103L</td>
<td>Loading dock, brown</td>
<td>West area</td>
<td>8.6</td>
</tr>
<tr>
<td>90710-108L</td>
<td>Loading dock steps, brown</td>
<td>West area</td>
<td>3.2</td>
</tr>
<tr>
<td>90710-118L</td>
<td>Loading dock ramp, yellow</td>
<td>Northwest area</td>
<td>5.3</td>
</tr>
<tr>
<td>90710-120L</td>
<td>Bay door frame, gray</td>
<td>Northwest area</td>
<td>9.7</td>
</tr>
<tr>
<td>90710-123L</td>
<td>Loading dock steps, brown</td>
<td>Northwest area</td>
<td>6.3</td>
</tr>
<tr>
<td>90710-133L</td>
<td>Loading dock ramp, yellow</td>
<td>North area</td>
<td>5.0</td>
</tr>
<tr>
<td>90710-137L</td>
<td>Loading dock wall, gray</td>
<td>North area</td>
<td>4.4</td>
</tr>
<tr>
<td>90710-144L</td>
<td>Door frame, beige</td>
<td>North area</td>
<td>81.0</td>
</tr>
<tr>
<td>90710-150L</td>
<td>Loading dock door frame, yellow</td>
<td>North area</td>
<td>1.5</td>
</tr>
<tr>
<td>90710-151L</td>
<td>Loading dock step, gray</td>
<td>North area</td>
<td>6.2</td>
</tr>
<tr>
<td>90710-152L</td>
<td>Loading dock wall, gray</td>
<td>North area</td>
<td>8.2</td>
</tr>
<tr>
<td>90710-153L</td>
<td>Door frame, beige</td>
<td>North area</td>
<td>73.9</td>
</tr>
<tr>
<td>90710-157L</td>
<td>Loading dock wall, gray</td>
<td>Middle of north area</td>
<td>10.1</td>
</tr>
<tr>
<td>90710-158L</td>
<td>Loading dock door frame, beige</td>
<td>Middle of north area</td>
<td>10.1</td>
</tr>
<tr>
<td>90710-160L</td>
<td>Hand rail, brown</td>
<td>Middle of north area</td>
<td>4.4</td>
</tr>
<tr>
<td>90710-201L</td>
<td>Loading dock wall, brown east area</td>
<td>East area</td>
<td>7.8</td>
</tr>
<tr>
<td>90710-202L</td>
<td>Top of loading dock wall, yellow</td>
<td>East area</td>
<td>9.7</td>
</tr>
<tr>
<td>90710-203L</td>
<td>Bollard, brown</td>
<td>East area</td>
<td>7.5</td>
</tr>
<tr>
<td>90710-206L</td>
<td>Bollard, brown</td>
<td>East area</td>
<td>10.1</td>
</tr>
<tr>
<td>90710-225L</td>
<td>Hand rail, beige</td>
<td>GSA office entrance</td>
<td>1.5</td>
</tr>
<tr>
<td>90710-234L</td>
<td>Mechanical room, beige</td>
<td>Southwest area</td>
<td>3.3</td>
</tr>
</tbody>
</table>

5.0 CONCLUSIONS

ASBESTOS CONTAINING MATERIALS

Asbestos containing material was found in floor tile and mastic in storage rooms accessed from the GSA Fleet office hallway.

Asbestos containing TSI was found wrapped around piping located in the middle warehouse section. This piping came out of the middle of the south wall in this section. It ascended to the ceiling and across to the north wall. This run of pipe is at least 200 feet in length but may be up to 300 feet long.

LEAD BASED-PAINT

Mr. Williams and Mr. Rice analyzed building paint substrate at 24 locations on the interior and exterior surfaces of Building 90710A.

The results of this inspection indicate that lead in amounts greater than or equal to 1.0 mg/cm² (or equivalent) in paint was found on any building components, using the inspection construction
protocol in Chapter 7 of the HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing.

However, some painted surfaces may contain levels of lead below 1.0 mg/cm², which could create lead dust or lead-contaminated soil hazards if the paint is turned into dust by abrasion, scraping, or sanding.

LIMITATIONS

The findings of this screening survey are based on observations of existing conditions and observations at the Site at the time of the on-site visit. This assessment was conducted on behalf of, and for the exclusive and sole use of Hurlburt Air Force and its associates for the subject Site.

Topics not explicitly discussed within this document should not be assumed to have been investigated. The data reported and the findings, observations, conclusions, and recommendations expressed in the report are limited by the Scope of Services. The Scope of Services was defined by the requests of the Client, the time and budgetary constraints imposed by the Client, and the availability of access to the subject property.

Because of the limitations stated above, the findings, observations, conclusions, and recommendations expressed in this report are limited to the information obtained and the investigation undertaken should not be considered an opinion concerning the compliance of any past or current owner or operator of the subject property with any federal, state, or local law or regulation. No warranty or guarantee, whether express or implied, is made with respect to the data reported or findings, observations, conclusions, and recommendations expressed in this report. Further, such data, findings, observations, conclusions, and recommendations are based solely upon-site conditions in existence at the time of the investigation.

The U. S. Army Corps of Engineers, Mobile District appreciates the opportunity to have provided this service to Hurlburt AFB near Fort Walton Beach, FL. Should you have any questions or concerns regarding this project, please contact me at (251) 694-3602.

Prepared by:

Terry L. Williams
Environmental Protection Specialist

Alou Rice
Environmental Engineer

Cc: Subject File
ASBESTOS CHAIN OF CUSTODY
AND
LABORATORY RESULTS DOCUMENT
<table>
<thead>
<tr>
<th>Date</th>
<th>Field ID</th>
<th>Location</th>
<th>Components / Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Sep 06</td>
<td>1-01A</td>
<td>Entry Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-02A</td>
<td>Operations Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-03A</td>
<td>U. S. Protect Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-04A</td>
<td>Interview Room Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-05A</td>
<td>Desk Sgt Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-06A</td>
<td>Training Room Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-07A</td>
<td>A/C Room Vinyl Tile/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-08A</td>
<td>NCOIC Operations Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-09A</td>
<td>NCOIC Operations Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-10A</td>
<td>Learning Center Carpet/Mastic</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-11A</td>
<td>Cloth Pipe Covering</td>
<td></td>
</tr>
<tr>
<td>6 Sep 06</td>
<td>1-12A</td>
<td>Ceiling Tile</td>
<td></td>
</tr>
</tbody>
</table>

Relinquished By: [Signature]
Date: 6/8/2006
Time: 1500

Received By: [Signature]
Date: 9/7/06
Time: 2:00 PM

Comments:
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Description</th>
<th>Asbestos Percent</th>
<th>Other Fibers</th>
<th>Non-Fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>CALI Color</td>
<td>Texture</td>
<td>Homogeneous</td>
<td>Chrysotile</td>
</tr>
<tr>
<td>90710-1A</td>
<td>52030</td>
<td>Gray</td>
<td>Powdery</td>
<td>No</td>
</tr>
<tr>
<td>Analyzed</td>
<td>5/12/2009 by CC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>No Asbestos Detected. Drywall and joint mud NAD.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90710-2A</td>
<td>52031</td>
<td>Gray</td>
<td>Powdery</td>
<td>Yes</td>
</tr>
<tr>
<td>Analyzed</td>
<td>5/12/2009 by CC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>No Asbestos Detected. Joint mud NAD. No drywall present.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90710-3A</td>
<td>52032</td>
<td>Black</td>
<td>Gummy</td>
<td>Yes</td>
</tr>
<tr>
<td>Analyzed</td>
<td>5/12/2009 by CC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Asbestos Detected. Black mastic.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90710-3A</td>
<td>52032</td>
<td>Green</td>
<td>Consolidated</td>
<td>Yes</td>
</tr>
<tr>
<td>Analyzed</td>
<td>5/12/2009 by CC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Asbestos Detected. Green tile.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90710-3A</td>
<td>52032</td>
<td>Gray</td>
<td>Consolidated</td>
<td>Yes</td>
</tr>
<tr>
<td>Analyzed</td>
<td>5/12/2009 by CC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Asbestos Detected. Grey tile.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wednesday, May 13, 2009 Page 1 of 2
PLM Analysis Summary

Call Analytical Laboratories
283 Camden Trail
Dallas, GA 30157
(770) 505-7593

CALI Project Number 003-09-005
Client Project Number None Given
Project Name Hurlburt AFB 90710

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Description</th>
<th>Asbestos Percent</th>
<th>Other Fibers</th>
<th>Non-Fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Chrysotile</td>
<td>Amosite</td>
<td>Crocidolite</td>
</tr>
<tr>
<td>90710-4A</td>
<td>52033 Multi</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzed</td>
<td>5/12/2009 by CC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>No Asbestos Detected. All 3 tiles and brown mastic NAD.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

90710-5A	52034 Gray	Consolidated No									100
Analyzed	5/12/2009 by CC										
Comment	No Asbestos Detected. Tile, brown mastic and leveling compound NAD.										

90710-6A	52035 Gray	Fibrous Yes	8	15							77
Analyzed	5/12/2009 by CC										
Comment	Asbestos Detected. TSI.										
Storage Room Accessed From GSA Fleet Office Hallway
Chrysotile Asbestos
Mastic 5%
Green Tile 2%
Gray Tile 4%
Double Run Of TSI Covered Piping Observed From Middle of Wall of Middle Section of Warehouse
15% Amosite Asbestos
8% Chrysotile Chrysotile
Photos of Locations Positive for Lead-based Paint
Typical Column in Building 90710
Positive for Lead-based Paint
Floor Stripe in Building 90710
Example of Positive Ceiling Beam Not Visible in this Picture
Example of Positive Ceiling Beam
Bay Door Wall and Bay Door Frame
Floor Stripe at East End of Building
Bollards and Entrance Ramp at East Bay Door
Bollards at West Section of Warehouse
Southeast Bay Doorframe
EXTERIOR AREAS

West End Bay Door Frame
West End Loading Dock
Northwest End Bay Door Frame
Northwest End Loading Dock
North Loading Dock Ramp
North Loading Dock Wall
Small North Loading Dock
(Gray and Yellow)
North Middle Loading Dock Door Frame Opening
North Middle Loading Dock Door Hand Railing
East Loading Dock
(Brown and Yellow)
Hurlburt AFB, FL
5/5/09
Bldg #90710
90710-2031

East Loading Dock Bollard
East Loading Dock Bollard
Hurlburt AFB, FL
5/6/09
Bldg #90710
90710-225L

GSA Fleet Office Entrance Hand Rail
Mechanical Room, Southwest Side
SUBMITTAL LIST

===
This report lists all the submittal numbers and descriptions found in the
Section Submittal Articles, along with the Section and subpart in which the
descriptions appear. The explanatory text immediately below each submittal
description is for information only, and appears in the Submittal Procedure
Section, but does not appear in the Sections listed in this report.

HINT: Double-clicking a Section number will open the Section in the Editor.
===

SD-01 Preconstruction Submittals

Submittals which are required prior to

SECTION: 01 33 00 SUBPART: 1.2
SECTION: 01 35 13 SUBPART: 1.3
SECTION: 01 50 00 SUBPART: 1.2
SECTION: 02 41 00 SUBPART: 1.5
SECTION: 03 20 00.00 10 SUBPART: 1.2
SECTION: 23 05 93 SUBPART: 1.4

SD-02 Shop Drawings

Drawings, diagrams and schedules specifically prepared to illustrate some
portion of the work.

SECTION: 03 20 00.00 10 SUBPART: 1.2
SECTION: 03 30 53 SUBPART: 1.4
SECTION: 04 20 00 SUBPART: 1.2
SECTION: 05 50 13 SUBPART: 1.2
SECTION: 06 41 16.00 10 SUBPART: 1.3
SECTION: 07 84 00 SUBPART: 1.3
SECTION: 08 11 13 SUBPART: 1.2
SECTION: 08 33 23 SUBPART: 1.2
SECTION: 08 71 00 SUBPART: 1.2
SECTION: 09 22 00 SUBPART: 1.2
SECTION: 09 51 00 SUBPART: 1.3
SECTION: 09 65 00 SUBPART: 1.3
SD-03 Product Data

Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions and brochures illustrating size, physical appearance and other characteristics of materials, systems or equipment for some portion of the work.
SD-04 Samples

Fabricated or unfabricated physical examples of materials, equipment or workmanship that illustrate functional and aesthetic characteristics of a material or product and establish standards by which the work can be judged.

SD-05 Design Data

Design calculations, mix designs, analyses or other data pertaining to a part of work.

SD-06 Test Reports

Report signed by authorized official of testing laboratory that a material, product or system identical to the material, product or system to be provided has been tested in accord with specified requirements. Unless specified in another section, testing must have been within three years of date of contract award for the project.
SD-07 Certificates

Statements printed on the manufacturer's letterhead and signed by responsible officials of manufacturer of product, system or material attesting that the product, system, or material meets specification requirements. Must be dated after award of project contract and clearly name the project.

SECTION: 02 41 00 SUBPART: 1.5
SECTION: 03 20 00.00 10 SUBPART: 1.2
SECTION: 03 30 53 SUBPART: 1.4
SECTION: 06 41 16.00 10 SUBPART: 1.3
SECTION: 07 84 00 SUBPART: 1.3
SECTION: 07 92 00 SUBPART: 1.2
SECTION: 09 29 00 SUBPART: 1.2
SECTION: 09 51 00 SUBPART: 1.3
SECTION: 09 90 00 SUBPART: 1.2
SECTION: 10 26 13 SUBPART: 1.2
SECTION: 23 05 93 SUBPART: 1.4
SECTION: 23 82 02.00 10 SUBPART: 1.3
SECTION: 26 51 00 SUBPART: 1.4
SD-08 Manufacturer's Instructions

Preprinted material describing installation of a product, system or material, including special notices and (MSDS) concerning impedances, hazards and safety precautions.

SD-09 Manufacturer's Field Reports

Documentation of the testing and verification actions taken by manufacturer's representative at the job site, in the vicinity of the job site, or on a sample taken from the job site, on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must be signed by an authorized official of a testing laboratory or agency and state the test results; and indicate whether the material, product, or system has passed or failed the test.

SD-10 Operation and Maintenance Data

Data that is furnished by the manufacturer, or the system provider, to the equipment operating and maintenance personnel, including manufacturer's help and product line documentation necessary to maintain and install equipment. This data is needed by operating and maintenance personnel for the safe and efficient operation, maintenance and repair of the item.
SD-11 Closeout Submittals

Documentation to record compliance with technical or administrative requirements or to establish an administrative mechanism.
TEST REQUIREMENT LIST

This report lists all the test requirements cited in the text.

HINT: Double-clicking a Section number will open the Section in the Editor.

SECTION: 01 35 13 SUBPART: 3.1.7

Obtain an approved BCE Work Clearance Request, AF Form 103, prior to the start of excavation, digging work, or work that disrupts aircraft or vehicular traffic flow, base utility services, fire and intrusion alarm system, or routine activities of the Activity.

SECTION: 02 41 00 SUBPART: 1.3

Provide new supports and reinforcement for existing construction weakened by demolition, deconstruction, or removal work. Repairs, reinforcement, or structural replacement require approval by the Contracting Officer prior to performing such work.

SECTION: 05 50 13 SUBPART: 3.5

Perform welding, welding inspection, and corrective welding, in accordance with AWS D1.1/D1.1M.

SECTION: 08 33 23 SUBPART: 2.1.2.1

Provide test data showing compliance with ASTM E330/E330M

SECTION: 08 33 23 SUBPART: 2.2.1.2

The insulated slat assembly requires a flame spread rating of not more than 25 and a smoke development factor of not more than 50 when tested in accordance with ASTM E84.

SECTION: 08 33 23 SUBPART: 3.2.1

Test the door opening and closing operation when activated by controls or alarm-connected fire-release system. Adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. Reset door-closing mechanism after successful test.

SECTION: 08 33 23 SUBPART: 3.2.1.1

Not more than 90 calendar days after completion and acceptance of the project, examine, lubricate, test, and re-adjust doors as required for proper operation.

SECTION: 08 71 00 SUBPART: 1.7

Deliver permanent keys and removable cores to the Contracting Officer, either directly or by certified mail. Deliver construction master keys with the locks.

SECTION: 08 71 00 SUBPART: 3.4
Demonstrate that permanent keys operate respective locks, and give keys to the Contracting Officer.

SECTION: 09 65 00 **SUBPART:** 3.3

MOISTURE, ALKALINITY AND BOND TESTS

SECTION: 23 05 93 **SUBPART:** 1.3.1

Test, adjust, and balance systems (TAB) in compliance with this section.

SECTION: 23 05 93 **SUBPART:** 3.3.1

Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents.

That is, comply with the the requirements of AABC MN-1 or SMACNA 1780 (TABB) and SMACNA 1858 (TABB), except as supplemented and modified by this section.

Provide instruments and consumables required to accomplish the TAB work. Calibrate and maintain instruments in accordance with manufacturer's written procedures.

Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents. Conduct TAB work, including measurement accuracy, and sound measurement work in conformance with the AABC MN-1 and AABC MN-4, or NEBB TABES and NEBB MASV, or SMACNA 1780 (used by TABB) and SMACNA 1858 sound measurement procedures, except as supplemented and modified by this section.

SECTION: 26 20 00 **SUBPART:** 3.5.1

Operate each device subject to manual operation at least five times, demonstrating satisfactory operation each time.

SECTION: 26 20 00 **SUBPART:** 3.5.2

Test wiring rated 600 volt and less to verify that no short circuits or accidental grounds exist. Perform insulation resistance tests on wiring No. 6 AWG and larger diameter using instrument which applies voltage of approximately 500 volts to provide direct reading of resistance.

SECTION: 26 20 00 **SUBPART:** 3.5.3

Test grounding system to ensure continuity, and that resistance to ground is not excessive.

SECTION: 26 51 00 **SUBPART:** 3.1.2

Obtain approval of the exact mounting height on the job before commencing installation and, where applicable, after coordinating with the type, style, and pattern of the ceiling being installed.

SECTION: 27 10 00 **SUBPART:** 2.10.1

Provide documentation of the testing and verification actions taken by
manufacturer to confirm compliance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-526-7 for single mode optical fiber, and TIA-526-14 for multimode optical fiber cables.

SECTION: 27 10 00 SUBPART: 3.5.1

Perform telecommunications cabling inspection, verification, and performance tests in accordance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3.

SECTION: 27 10 00 SUBPART: 3.5.1.2

UTP backbone copper cabling shall be tested for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has overall shield. Test operation of shorting bars in connection blocks. Test cables after termination but prior to being cross-connected.

SECTION: 27 10 00 SUBPART: 3.5.1.2

For multimode optical fiber, perform optical fiber end-to-end attenuation tests in accordance with TIA-568-C.3 and TIA-526-14 using Method B, OTDR for multimode optical fiber. For single-mode optical fiber, perform optical fiber end-to-end attenuation tests in accordance with TIA-568-C.3 and TIA-526-7 using Method B, OTDR for single-mode optical fiber. Perform verification acceptance tests.

SECTION: 27 10 00 SUBPART: 3.5.1.3

Perform testing for each outlet and MUTOA as follows:

SECTION: 27 10 00 SUBPART: 3.5.1.3

a. Perform Category 6 link tests in accordance with TIA-568-C.1 and TIA-568-C.2. Tests shall include wire map, length, insertion loss, NEXT, FSNEXT, ELFEXT, PSELFEXT, return loss, propagation delay, and delay skew.

SECTION: 27 10 00 SUBPART: 3.5.1.3

b. Optical fiber Links. Perform optical fiber end-to-end link tests in accordance with TIA-568-C.3.

SECTION: 27 10 00 SUBPART: 3.5.1.4

Perform verification tests for UTP and optical fiber systems after the complete telecommunications cabling and workstation outlet/connectors are installed. Comm Squad personnel to be on site to verify all ISP and Fiber testing by the contractor prior to acceptance.