TABLE OF CONTENTS – VOLUME 2

Division 21 – Fire Protection

21 13 13 Building Sprinkler System

Division 22 – Plumbing

22 01 00 Plumbing General
22 07 00 Insulation for Plumbing Pipe and Equipment
22 11 13 Potable Water System
22 13 16 Soil, Waste, and Vent System
22 16 00 Gas System
22 30 00 Plumbing Fixtures, Equipment, Trim & Schedule

Division 23 – Mechanical

23 01 00 Mechanical General
23 05 20 Pipes and Pipe Fittings
23 05 21 Piping Specialties
23 05 23 Valves
23 05 29 Supports, Anchors, and Seals
23 05 48 Vibration Isolation
23 05 53 Mechanical Identification
23 05 56 Access Doors
23 05 73 Excavation and Backfill
23 05 90 Start-Up Requirements for HVAC Systems
23 05 91 Testing, Cleaning, and Sterilization of Piping Systems
23 05 93 Testing and Balancing of Mechanical Systems
23 07 13 Exterior Insulation for Ductwork
23 07 16 Insulation for HVAC Equipment and Piping
23 31 13 HVAC Metal Ductwork
23 33 00 Ductwork Accessories
23 34 00 Fans
23 34 43 High Volume Low Speed Fans
Division 23 – Mechanical (cont.)

23 37 13 Grilles, Registers, and Ceiling Diffusers
23 37 26 Wall Louvers
23 43 18 Bi Polar Ionization Air Cleaning Equipment
23 81 03 Outside Air Preconditioning Units
23 81 26 Air Source Unitary Split System Heat Pump Units
23 81 28 Ductless Split System Air Conditioning Units
23 84 16 Mechanical Dehumidification Units

Division 26 – Electrical

26 05 00 Electrical General Requirements
26 05 19 Low Voltage Electrical Power Conductors and Cables
26 05 23 Firestop Systems and Acoustical Wall Sleeves
26 05 26 Grounding and Bonding for Electrical Systems
26 05 29 Hangers and Supports for Electrical Systems
26 05 33 Raceways and Boxes for Electrical Systems
26 05 44 Sleeves and Sleeve Seals for Electrical Raceways and Cabling
26 05 53 Identification for Electrical Systems
26 05 74 Overcurrent Protective Device Arc Flash Study
26 09 23 Lighting Control Devices
26 22 00 Low Voltage Transformers
26 24 16 Panelboards
26 27 26 Wiring Devices
26 28 16 Enclosed Switches and Circuit Breakers
26 32 13 Engine Generators
26 36 00 Transfer Switches
26 29 23 Variable Frequency Motor Controllers
26 43 13 Surge Protection for Low Voltage Electrical Power Circuits
26 51 19 LED Interior Lighting
26 52 19 Emergency and Exit Lighting
Division 27 – Communications

27 05 26 Grounding and Bonding for Communications Systems
27 05 28 Pathways for Communications Systems
27 05 36 Cable Trays for Communications Systems
27 11 00 Communications Equipment Room Fittings
27 15 00 Communications Horizontal Cabling
27 15 33 Communications Horizontal Coax Cabling
27 41 00 AV Systems
27 51 16 Public Address Systems
27 51 23 Intercommunications and Program Systems

Division 28 – Fire Alarm

28 31 11 Digital, Addressable Fire-Alarm System

Division 31 - Soils

31 31 16 Termite Control

Division 32 – Landscape and Irrigation

32 84 00 Planting Irrigation
32 91 13 Soil Preparation
32 92 00 Turf and Grasses
32 93 00 Plants
This Page Intentionally Left Blank
SECTION 21 13 13 - BUILDING SPRINKLER SYSTEM

1 GENERAL

1.1 Drawings and General provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.2 Division-23 Basic Mechanical Requirements and Basic Mechanical Materials and Methods sections apply to work of this section.

1.3 Provide hydraulic calculations and shop drawings for the installation of a wet pipe sprinkler system as shown on the construction documents.

1.4 Quality Assurance: The Sprinkler Contractor shall be qualified as follows:

1.4.1 Experience: The Fire Sprinkler Contractor shall be a registered entity with a minimum history of ten years continuous experience.

1.4.2 Home Office: The home office for the contractor shall be located within 125 miles of the project site.

1.5 Codes and Standards:

1.5.1 State of Florida Codes: Conform to the State of Florida Building Codes including State of Florida Fire Code and State Fire Marshal Rules 69A.

1.5.3 UL Compliance: Provide fire protection products in accordance with UL standards; provide UL label on each product.

1.5.4 Fire Department/Marshal Compliance: Install fire protection systems in accordance with local regulations of fire department or fire marshal.

1.5.5 Screw Thread Connections: Comply with local Fire Department/Fire Marshal regulations for sizes, threading and arrangement of connections for fire department equipment to sprinkler systems.

1.6 Submittals

1.6.1 Submit shop drawings and hydraulic calculations in compliance with NFPA 13. Submit component engineering data and finishes for review. Submit design after fire department/fire marshal approval. Submit certifications for designer. Clearly label and exposed piping, system component, or inspection test outlets.

1.7 Test Reports and Verification Submittals:

1.7.1 Certificate: Submit certificates of Aboveground and Underground Installation upon completion of fire protection piping work which indicates that work has been tested in accordance with
NFPA 13 and that system is operational, complete, and has no defects.

1.7.2 **Tag:** Submit a copy of the sprinkler system tag. The installing fire sprinkler contractor shall be licensed in accordance with State Fire Marshal (SFM) Rule 4A-46. At the conclusion of the project and prior to the final inspection by the SFM the Contractor shall tag the fire sprinkler system in accordance with 69A-46.041.

1.8 **O&M Data Submittals:**

1.8.1 **Record Drawings:** At project closeout, submit record drawings of installed fire protection piping and products.

1.8.2 **Maintenance Data:** Submit a copy of all approval submittals. Submit maintenance data and parts lists for basic valves, special valves, etc.

1.8.3 **NFPA 25:** Provide a copy of NFPA 25 in each O&M Manual.

2 **PRODUCTS**

2.1 **General:** Provide materials and factory-fabricated products of sizes, types, pressure ratings, temperature ratings, and capacities as required. Provide proper selection as determined by Installer to comply with installation requirements. Provide sizes and types matching piping and equipment connections; provide fittings of materials which match pipe materials used in fire protection systems.

3 **EXECUTION**

3.1 **General:** Examine areas and conditions under which fire protection materials and products are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer. Install the system per NFPA-13 and the requirements of the Authority Having Jurisdiction. Any installation, modification, or alteration of the sprinkler system shall be performed only by a person under a certificate of competency issued by the State Fire Marshal.

3.2 All sprinkler heads in acoustical tile ceilings shall be installed in the center of the tile.

3.3 All sprinklers in finished spaces shall utilize concealed. Coordinate type with Architect.

3.4 **Extra Stock:**

3.4.1 **Heads:** For each style and temperature range required, furnish additional sprinkler heads, amounting to one unit for every 100 installed units, but not less than 5 units of each.

3.4.2 **Wrenches:** Furnish 2 spanner wrenches for each type and size of valve connection and fire hose coupling. Obtain receipt from Owner that extra stock has been received.

3.5 **Owner Instruction:** Provide technical services for one 4-hour period to instruct Owner’s personnel in operation and maintenance of building sprinkler systems. Schedule training date with Owner. Provide at least 7-day notice to Engineer and Owner of training date.

END OF SECTION 21 13 13
SECTION 22 01 00 PLUMBING GENERAL

PART 1 GENERAL

1.01 The work covered by this division consists of providing all labor, equipment and materials and performing all operations necessary for the installation of the plumbing work as herein called for and shown on the drawings.

1.02 Related Documents:

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

B. This is a Basic Plumbing Requirements Section. Provisions of this section apply to work of all Division 22 sections.

C. Provisions of all Division-23 Basic Mechanical Requirements Sections apply to work of all Division 22 sections.

D. Review all other contract documents to be aware of conditions affecting work herein.

E. Definitions:

1. Provide: Furnish and install, complete and ready for intended use.

2. Furnish: Supply and deliver to project site, ready for subsequent requirements.

3. Install: Operations at project site, including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar requirements.

1.03 Permits and Fees: Contractor shall obtain all necessary permits, meters, and inspections required for his work and pay all fees and charges incidental thereto.

1.04 Verification of Owner's Data: Prior to commencing any work the Contractor shall satisfy himself as to the accuracy of all data as indicated in these plans and specifications and/or as provided by the Owner. Should the Contractor discover any inaccuracies, errors, or omissions in the data, he shall immediately notify the Architect/Engineer in order that proper adjustments can be anticipated and ordered. Commencement by the Contractor of any work shall be held as an acceptance of the data by him after which time the Contractor has no claim against the Owner resulting from alleged errors, omissions or inaccuracies of the said data.

1.05 Delivery and Storage of Materials: Materials delivered to site shall be inspected for damage, unloaded, and stored with a minimum of handling. All material shall be stored to provide protection from the weather and accidental damage.

1.06 Extent of work is indicated by the drawings, schedules, and the requirements of the specifications. Singular references shall not be constructed as requiring only one device if multiple devices are shown on the drawings or are required for proper system operation.

1.07 Field Measurements and Coordination:

A. The intent of the drawings and specifications is to obtain a complete and satisfactory installation. Separate divisional drawings and specifications shall not relieve the
Contractor or subcontractors from full compliance of work of his trade indicated on any of the drawings or in any section of the specifications.

B. Verify all field dimensions and locations of equipment to insure close, neat fit with other trades' work. Make use of all contract documents and approved shop drawings to verify exact dimension and locations.

C. Coordinate work in this division with all other trades in proper sequence to insure that the total work is completed within contract time schedule and with a minimum cutting and patching.

D. Locate all apparatus symmetrical with architectural elements. Install to exact height and locations when shown on architectural drawings. When locations are shown only on plumbing drawings, be guided by architectural details and conditions existing at job and correlate this work with that of others.

E. Install work as required to fit structure, avoid obstructions, and retain clearance, headroom, openings and passageways. Cut no structural members without written approval.

F. Carefully examine any existing conditions, piping, and premises. Compare drawings with existing conditions. Report any observed discrepancies. It shall be the Contractor's responsibility to properly coordinate the work and to identify problems in a timely manner. Written instructions will be issued to resolve discrepancies.

G. Because of the small scale of the drawings, it is not possible to indicate all offsets and fittings or to locate every accessory. Drawings are essentially diagrammatic. Study carefully the sizes and locations of structural members, wall and partition locations, trusses, and room dimensions and take actual measurements on the job. Locate piping, ductwork, equipment and accessories with sufficient space for installing and servicing. Contractor is responsible for accuracy of his measurements and for coordination with all trades. Contractor shall not order materials or perform work without such verification. No extra compensation will be allowed because field measurements vary from the dimensions on the drawings. If field measurements show that equipment or piping cannot be fitted, the Architect/Engineer shall be consulted. Remove and relocate, without additional compensation, any item that is installed and is later found to encroach on space assigned to another use.

1.08 Guarantee:

A. The Contractor shall guarantee labor, materials and equipment for a period of one (1) year from Final Completion, or from Owner's occupancy, whichever is earlier. Contractor shall make good any defects and shall include all necessary adjustments to and replacement of defective items without expense to the Owner.

B. Owner reserves right to make emergency repairs as required to keep equipment in operation without voiding Contractor's Guarantee Bond nor relieving Contractor of his responsibilities during guarantee period.

1.09 Approval Submittals:

A. When approved, the submittal control log and submittals shall be an addition to the
specifications herewith, and shall be of equal force in that no deviation will be permitted except with the approval of the Architect/Engineer.

1. Shop drawings, product literature, and other approval submittals will only be reviewed if they are submitted in full accordance with the General and Supplementary Conditions and Division 1 Specification sections and the following.

2. Submittals shall be properly organized in accordance with the approved submittal control log.

3. Submittals shall not include items from more than one specification section in the same submittal package unless approved in the submittal control log.

4. Submittals shall be properly identified by a cover sheet showing the project name, Architect and Engineer names, submittal control number, specification section, a list of products or item names with model numbers in the order they appear in the package, and spaces for approval stamps. A sample cover sheet is included at the end of this section.

5. Submittals shall have been reviewed and approved by the General Contractor (or Prime Contractor). Evidence of this review and approval shall be an "Approved" stamp with a signature and date on the cover sheet.

6. Submittals that include a series of fixtures or devices (such as plumbing fixtures or valves) shall be organized by the fixture number or valve type and be marked accordingly. Each fixture must include all items associated with that fixture regardless of whether or not those items are used on other fixtures.

7. The electrical design shown on the drawings supports the plumbing equipment basis of design specifications at the time of design. If plumbing equipment is submitted with different electrical requirements, it is the responsibility of the plumbing contractor to resolve all required electrical design changes (wire and conduit size, type of disconnect or overload protection, point(s) of connection, etc.) and clearly show the new electrical design on the plumbing submittal with a written statement that this change will be provided at no additional cost. Plumbing submittals made with no written reference to the electrical design will be presumed to work with the electrical design. Any corrections required will be at no additional cost.

B. If the shop drawings show variation from the requirements of contract because of standard shop practice or other reasons, the Contractor shall make specific mention of such variation in writing in his letter of transmittal and on the submittal cover sheet in order that, if acceptable, Contractor will not be relieved of the responsibility for executing the work in accordance with the contract.

C. Review of shop drawings, product literature, catalog data, or schedules shall not relieve the Contractor from responsibility for deviations from contract drawings or specifications, unless he has in writing called to the attention of the Architect/Engineer each such deviation in writing at the time of submission, nor shall it relieve him from responsibility for errors of any sort in shop drawings, product literature, catalog data, or schedules. Any feature or function specified but not mentioned in the submittal shall be assumed to be included per the specification.

D. Submit shop drawings as called for in other sections after award of the contract and
before any material is ordered or fabricated. Shop drawings shall consist of plans, sections, elevations and details to scale (not smaller than ¼" per foot), with dimensions clearly showing the installation. Direct copies of small scale project drawings issued to the Contractor are not acceptable. Drawings shall take into account equipment furnished under other sections and shall show space allotted for it. Include construction details and materials.

1.10 Test Reports and Verification Submittals: Submit test reports, certifications and verification letters as called for in other sections. Contractor shall coordinate the required testing and documentation of system performance such that sufficient time exists to prepare the reports, submit the reports, review the reports and take corrective action within the scheduled contract time.

1.11 O&M Data Submittals: Submit Operation and Maintenance data as called for in other sections. When a copy of approval submittals is included in the O&M Manual, only the final "Approved" or "Approved as Noted" copy shall be used. Contractor shall organize these data in the O&M Manuals tabbed by specification number. Prepare O&M Manuals as required by Division 1 and as described herein. Submit manuals at the Substantial Completion inspection.

PART 2 PRODUCTS

2.01 All materials shall be new or Owner-supplied reused as shown on the drawings, the best of their respective kinds, suitable for the conditions and duties imposed on them at the building and shall be of reputable manufacturers. The description, characteristics, and requirements of materials to be used shall be in accordance with qualifying conditions established in the following sections.

2.02 Equipment and Materials:

A. Shall be new and the most suitable grade for the purpose intended. Equipment furnished under this division shall be the product of a manufacturer regularly engaged in the manufacture of such items for a period of three years. Where practical, all of the components shall be products of a single manufacturer in order to provide proper coordination and responsibility. Where required, Contractor shall furnish proof of installation of similar units or equipment.

B. Each item of equipment shall bear a name plate showing the manufacturer's name, trade name, model number, serial number, ratings and other information necessary to fully identify it. This plate shall be permanently mounted in a prominent location and shall not be concealed, insulated or painted.

C. The label of the approving agency, such as UL, IBR, ASME, ARI, AMCA, by which a standard has been established for the particular item shall be in full view.

D. The equipment shall be essentially the standard product of a manufacturer regularly engaged in the production of such equipment and shall be a product of the manufacturer's latest design.

E. A service organization with personnel and spare parts shall be available within two hours for each type of equipment furnished.

F. Install in accordance with manufacturer's recommendations. Place in service by a factory trained representative where required.
G. Materials and equipment are specified herein by a single or by multiple manufacturers to indicate quality, material and type of construction desired. Manufacturer's products shown on the drawings have been used as basis for design; it shall be the Contractor's responsibility to ascertain that alternate manufacturer's products, or the particular products of named manufacturers, meet the detailed specifications and that size and arrangement of equipment are suitable for installation.

H. Model Numbers: Catalog numbers and model numbers indicated in the drawings and specifications are used as a guide in the selection of the equipment and are only listed for the contractor's convenience. The contractor shall determine the actual model numbers for ordering materials in accordance with the written description of each item and with the intent of the drawings and specifications.

2.03 Requests for Substitution:

A. Where a particular system, product or material is specified by name, consider it as standard basis for bidding, and base proposal on the particular system, product or material specified.

B. Requests by Contractor for substitution will be considered only when reasonable, timely, fully documented, and qualifying under one or more of the following circumstances:

1. Required product cannot be supplied in time for compliance with Contract time requirements.
2. Required product is not acceptable to governing authority, or determined to be non-compatible, or cannot be properly coordinated, warranted or insured, or has other recognized disability as certified by Contractor.
3. Substantial cost advantage is offered Owner after deducting offsetting disadvantages including delays, additional compensation for redesign, investigation, evaluation and other necessary services and similar considerations.

C. All requests for substitution shall contain a "Comparison Schedule" and clearly and specifically indicate any and all differences or omissions between the product specified as the basis of design and the product proposed for substitution. Differences shall include but shall not be limited to data as follows for both the specified and substituted products:

- Principal of operation.
- Materials of construction or finishes.
- Thickness of gauge of materials.
- Weight of item.
- Deleted features or items.
- Added features or items.
- Changes in other work caused by the substitution.
- Performance curves.

If the approved substitution contains differences or omissions not specifically called to the attention of the Architect/Engineer, the Owner reserves the right to require equal or similar features to be added to the substituted products (or to have the substituted products replaced) at the Contractor's expense.
PART 3 EXECUTION

3.01 Workmanship: All materials and equipment shall be installed and completed in a first-class workmanlike manner and in accordance with the best modern methods and practice. Any materials installed which do not present an orderly and reasonably neat and/or workmanlike appearance, or do not allow adequate space for maintenance, shall be removed and replaced when so directed by the Architect/Engineer.

3.02 Coordination:

A. The Contractor shall be responsible for full coordination of the plumbing systems with shop drawings of the building construction so the proper openings and sleeves or supports are provided for piping, ductwork, or other equipment passing through slabs or walls.

B. Any additional steel supports required for the installation of any plumbing equipment, piping, or ductwork shall be furnished and installed under the section of the specifications requiring the additional supports.

C. It shall be the Contractor’s responsibility to see that all equipment such as valves, dampers, filters and such other apparatus or equipment that may require maintenance and operation are made easily accessible, regardless of the diagrammatic location shown on the drawings.

D. All connections to fixtures and equipment shown on the drawings shall be considered diagrammatic unless otherwise indicated by detail. The actual connections shall be made to fully suit the requirements of each case and adequately provide for expansion and servicing.

E. The contractor shall protect equipment, material, and fixtures at all times. He shall replace all equipment, material, and fixtures which are damaged as a result of inadequate protection.

F. Prior to starting and during progress of work, examine work and materials installed by others as they apply to work in this division. Report conditions which will prevent satisfactory installation.

G. Start of work will be construed as acceptance of suitability of work of others.

3.03 Interruption of Service: Before any equipment is shut down for disconnecting or tie-ins, arrangements shall be made with the Architect/Engineer and this work shall be done at the time best suited to the Owner. This will typically be on weekends and/or holidays and/or after normal working hours. Services shall be restored the same day unless prior arrangements are made. All overtime or premium costs associated with this work shall be included in the base bid.

3.04 Phasing: Provide all required temporary valves, piping, ductwork, equipment and devices as required. Maintain temporary services to areas as required. Remove all temporary material and equipment on completion of work unless Engineer concurs that such material and equipment would be beneficial to the Owner on a permanent basis.

3.05 Cutting and Patching: Notify General Contractor to do all cutting and patching of all holes, chases, sleeves, and other openings required for installation of equipment furnished and
installed under this section. Utilize experienced trades for cutting and patching. Obtain permission from Architect/Engineer before cutting any structural items.

3.06 **Equipment Setting:** Bolt equipment directly to concrete pads or vibration isolators as required, using hot-dipped galvanized anchor bolts, nuts and washers. Level equipment.

3.07 **Painting:** Touch-up factory finishes on equipment located inside and outside shall be done under Division 22. Obtain matched color coatings from the manufacturer and apply as directed. If corrosion is found during inspection on the surface of any equipment, clean, prime, and paint, as required.

3.08 **Clean-up:** Thoroughly clean all exposed parts of apparatus and equipment of cement, plaster, and other materials and remove all oil and grease spots. Repaint or touch up as required to look like new. During progress of work, contractor is to carefully clean up and leave premises and all portions of building free from debris and in a clean and safe condition.

3.09 **Start-up and Operational Test:** Start each item of equipment in strict accordance with the manufacturer's instructions; or where noted under equipment specification, start-up shall be done by a qualified representative of the manufacturer. Alignment, lubrication, safety, and operating control shall be included in start-up check.

3.10 **Record Drawings:**

A. During the progress of the work the Contractor shall record on their field set of drawings the exact location, as installed, of all piping, ductwork, equipment, and other systems which are not installed exactly as shown on the contract drawings.

B. Upon completion of the work, record drawings shall be prepared as described in the General Conditions, Supplementary Conditions, and Division 1 sections.

3.11 **Acceptance:**

A. **Punch List:** Submit written confirmation that all punch lists have been checked and the required work completed.

B. **Instructions:** At completion of the work, provide a competent and experienced person who is thoroughly familiar with project, for one day to instruct permanent operating personnel in operation of equipment and control systems. This is in addition to any specific equipment operation and maintenance training.

C. **Operation and Maintenance Manuals:** Furnish four complete manuals bound in ring binders with Table of Contents, organized, and tabbed by specification section. Manuals shall contain:

- Detailed operating instructions and instructions for making minor adjustments.
- Complete wiring and control diagrams.
- Routine maintenance operations.
- Manufacturer's catalog data, service instructions, and parts lists for each piece of operating equipment.
- Copies of approved submittals.
- Copies of all manufacturer's warranties.
- Copies of test reports and verification submittals.
D. Record Drawings: Submit record drawings.

END OF SECTION 22 01 00
SECTION 22 07 00 INSULATION FOR PLUMBING EQUIPMENT AND PIPING

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-22 Basic Plumbing Materials and Methods Sections apply to work of this section.

1.03 Approval Submittals:

A. Product Data: Submit a producer's data sheets and installation instructions on each insulation system including insulation, coverings, adhesives, sealers, protective finishes, and other material recommended by the manufacturer for applications indicated. Submit for:

1. Fiberglass pipe insulation
2. Flexible unicellular piping insulation

1.04 O&M Data Submittals: Submit a copy of all approval submittals. Include in O&M Manual.

PART 2 PRODUCTS

2.01 Acceptable Manufacturers: Subject to compliance with requirements, provide insulation products by Armstrong, Johns Manville, Knauf, Owens Corning, Pittsburgh Corning, U.S. Rubber, or approved equal. All products shall be asbestos-free.

2.02 Flame/Smoke Ratings: Provide composite mechanical insulation (insulation, jackets, coverings, sealers, mastics, and adhesive) with a flame-spread rating of 25 or less, and a smoke-developed rating of 50 or less, as tested by ANSI/ASTM E84.

2.03 Pipe Insulation Materials:

A. Fiberglass Pipe Insulation: ASTM C547, Class 1 unless otherwise indicated. (Preformed sleeving with white all-service jacket, suitable for temperatures up to 450°F)

B. Flexible Unicellular Pipe Insulation: ASTM C534, Type I. (Tubular, suitable for use to 200°F.)

C. Staples, Bands, Wires, and Cement: As recommended by the insulation manufacturer for applications indicated.

D. Adhesives, Sealers, Protective Finishes: Products recommended by the insulation manufacturer for the application indicated.

E. Jackets: ASTM C921, Type I (vapor barrier) for piping below ambient temperature, Type II (vapor permeable) for piping above ambient temperature. Type I may be used for all piping at Installer's option.

PART 3 EXECUTION

3.01 General:
A. Install thermal insulation products in accordance with manufacturer's written instructions, and in compliance with recognized industry practices to ensure that insulation serves intended purpose.

B. Install insulation materials with smooth and even surfaces and on clean and dry surfaces. Redo poorly fitted joints. Do not use mastic or joint sealer as filler for gapping joints and excessive voids resulting from poor workmanship.

C. Maintain integrity of vapor-barrier on insulation and protect it to prevent puncture and other damage. Label all insulation "ASBESTOS FREE".

D. Do not apply insulation to surfaces while they are hot or wet.

E. Do not install insulation until systems have been checked and found free of leaks. Surfaces shall be clean and dry before attempting to apply insulation. A professional insulator with adequate experience and ability shall install insulation.

F. Do not install insulation on pipe systems until acceptance tests have been completed except for flexible unicellular insulation. Do not install insulation until the building is "dried-in".

3.02 Fiberglass Pipe Insulation:

A. Insulate the following piping systems (indoor locations):
 1. Domestic hot water, ≤180° F: up to 2” pipe - 1½” thick, over 2” pipe 2” thick.
 2. Domestic hot water, ≤140° F: up to 3” pipe - 1½” thick, over 3” pipe - 2” thick.

B. Apply insulation to pipe with all side and end joints butted tightly. Seal longitudinal lap by pressurizing with plastic sealing tool. Apply 3 inch wide self sealing butt strips to joints between insulation sections. Insulate all fittings, flanges, valves and strainers with premolded insulation. Apply coat of insulating cement to fittings and wrap with glass cloth overlapping each wrap 1” and adjacent pipe 2”. Finish with heavy coat of general purpose mastic. Premolded PVC covers may also be used, but no flexible inserts are allowed.

C. Provide hanger or pipe support shields of 16 gauge (minimum) galvanized steel over the insulation which extends halfway up the pipe insulation cover and at least 6” on each side of the hanger.

D. Omit insulation on exposed plumbing fixture runouts from faces of wall or floor to fixture; on unions, flanges, strainer blowoffs, flexible connections and expansion joints.

3.03 Flexible Unicellular Pipe Insulation:

A. Insulate the following piping systems:
 1. Horizontal above-grade waste piping receiving condensate from air conditioning units to points of connection receiving waste from 4 or more fixtures - ½” thick.
 2. Horizontal above grade waste piping receiving discharge from ice machines, coolers, freezers or similar units to points of connection receiving waste from 4 or more fixtures - ½” thick.
3. Floor drain bodies located above ceiling or above grade and receiving condensate from air conditioning units.

4. Cold water pipe in unconditioned spaces—1/2" thick.

B. Apply insulation in accordance with the manufacturer’s recommendations and instructions. Mitre cut insulation to fit pipe fittings. Use approved cement to seal all joints and ends in the insulation.

END OF SECTION 22 07 00
SECTION 22 11 13 POTABLE WATER SYSTEM

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-22 Basic Plumbing Requirements and Basic Plumbing Materials and Methods sections apply to work of this section.

1.03 Extent of potable water systems work, is indicated on drawings and schedules, and by requirements of this section.

1.04 Refer to appropriate Division-2 sections for exterior potable water system; not work of this section unless noted.

1.05 Insulation for potable water piping is specified in other Division-22 sections, and is included as work of this section. Insulation requirements include:

 A. Domestic hot water piping
 B. Cold water piping in unconditioned spaces.

1.06 Excavation and backfill required in conjunction with water piping is specified in other Division-23 sections, and is included as work of this section.

1.07 Code Compliance: Comply with applicable portions of Florida Building Code-Plumbing pertaining to selection and installation of plumbing materials and products. Comply with local utility requirements.

1.08 Approval Submittals:

 A. Product Data: Submit manufacturer's technical product data and installation instructions for:

 Valves
 Strainers
 Hose bibbs
 Wall hydrants
 Water hammer arresters
 Meters and gauges
 Relief valves
 Trap primers
 Access doors

1.09 Test Reports and Verification Submittals:

 A. Disinfection: Submit report by Health Department.

1.10 O&M Data Submittals: Submit a copy of all approval submittals. Submit maintenance data and parts lists for valves, trap primers. Include these data in O&M manual.

PART 2 PRODUCTS

2.01 General: Provide piping materials and factory-fabricated piping products of sizes, types, pressure ratings, temperature ratings, and capacities as indicated. Where not indicated,
provide proper selection as determined by Installer to comply with installation requirements. Provide materials and products complying with Florida Building Code-Plumbing where applicable. Provide sizes and types matching pipe materials used in potable water systems. Where more than one type of materials or products is indicated, selection is Installer’s option.

2.02 **Acceptable Manufacturers**: Subject to compliance with requirements, provide products of one of the following listed for each item.

2.03 **Identification**: Provide identification complying with Division-23 Basic Mechanical Materials and Methods section “Mechanical Identification”.

2.04 **Pipes and Fittings**: Provide pipes and pipe fittings complying with Division-23 Basic Mechanical Materials and Methods section "Pipes and Pipe Fittings", in accordance with the following listing:

A. **Interior Water Piping**:
 1. **Above Grade**: Copper tube; Type L, hard-drawn temper; wrought-copper fittings, solder-joints.
 2. **Below Grade**: Copper tube; Type L, soft-annealed temper; no joints below floor.

B. **Exterior Water Piping**:
 1. Copper tube; Type L, hard-drawn temper; wrought-copper fittings, solder-joints.

C. **Solder joints** shall be made with 95-5 solder.

2.05 **Piping Specialties**: Provide piping specialties complying with Division-23 Basic Mechanical Materials and Methods section "Piping Specialties".

2.06 **Supports and Anchors**: Provide supports and anchors complying with Division-23 Basic Mechanical Materials and Methods section "Supports and Anchors".

2.07 **Interior Valves**: Provide valves complying with Division-23 Basic Mechanical Materials and Methods section "Valves", in accordance with the following listing:

A. **Sectional and Shutoff Valves**: GA1, GA2, GA3, BA1, BA2.

B. **Drain Valves**: GA1, GA2, BA1, BA2.

C. **Throttling Valves**: BA1, BA2.

D. **Check Valves**: CK1, CK2, CK3.

2.08

2.09 **Hose Bibbs**: Provide rough nickel plated hose bibbs with lock shield compression stop and removable handle, solid flange, female connection with ¾” male threaded hose end, and straight line type non-removable vacuum breaker with ¾” male threaded hose end. Acorn 8121 RCP or equal model by Woodford.

2.10 **Non-freeze Wall Hydrants**: Provide ¾” anti-syphon, non-freeze wall hydrant with bronze casing, satin bronze box, inlet connection to match installed conditions, and integral vacuum breaker-backflow preventer, Wade W-8625 or approved equal.

2.11 **Water Hammer Arresters**: Provide bellows type water hammer arresters, stainless steel
casing and bellows, pressure rated for 250 psi, tested and certified in accordance with PDI Standard WH-201. Precision Plumbing Products, Josam, Zurn, Amtrol, Wade, Jay R. Smith, or approved equal.

2.12 Meters and Gauges: Provide meters and gauges complying with Division-23 Basic Mechanical Materials and Methods section "Meters and Gauges", in accordance with the following listing:

- Thermometers
- Pressure gauges
- Calibrated balancing cocks

2.13 Combined Pressure-Temperature Relief Valves: Provide relief valves as indicated, of size and capacity as selected by Installer for proper relieving capacity, in accordance with ASME Boiler and Pressure Vessel Code. Provide bronze body, test lever and thermostat complying with ANSI Z21.22 listing requirements for temperature discharge capacity. Provide temperature relief at 210°F, and pressure relief at 150 psi. Watts, Cash, Zurn, or approved equal.

2.14 Trap Primers: Provide brass trap primers and distribution units to seal floor drains indicated on drawings. Trap primer valves shall be automatic, self contained type with no springs or diaphragms and shall not require adjustment. Trap primer valves shall be the type that can be installed anywhere on cold water piping. Distribution units shall supply 1-4 floor drains. Trap primer valves shall comply with ASSE 1018. Precision Plumbing Products PR-500, or approved equal. Where P-trap primers are indicated use "Prime-Eze" by Jay R. Smith, or approved equal.

2.15 Access Doors: Provide access doors to service all valves and other devices as required in accordance with Division-22 Basic Materials and Methods Section “Access Doors”.

PART 3 EXECUTION

3.01 General: Examine areas and conditions under which potable water systems are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.02 Install plumbing identification in accordance with Division-23 Basic Mechanical Materials and Methods section "Mechanical Identification".

3.03 Install water distribution piping in accordance with Division-23 Basic Mechanical Materials and Methods section "Pipes and Pipe Fittings".

- Install piping with 1/32" per foot (¼%) downward slope towards drain point.
- Locate groups of pipes parallel to each other, spaced to permit applying full insulation and servicing of valves.

3.04 Install piping specialties in accordance with Division-23 Basic Mechanical Materials and Methods section "Piping Specialties".

3.05 Install supports and anchors in accordance with Division-23 Basic Mechanical Materials and Methods section "Supports and Anchors".

3.06 Install valves in accordance with Division-23 Basic Mechanical Materials and Methods section "Valves".

- Sectional Valves: Install on each branch and riser, close to main, where branch or riser serves two or more plumbing fixtures or equipment connections, and elsewhere as
indicated.

B. **Shutoff Valves:** Install on inlet of each plumbing equipment item, and on inlet of each plumbing fixture, and elsewhere as indicated.

C. **Drain Valves:** Install on each plumbing equipment item located to completely drain equipment for service or repair. Install at base of each riser, at base of each rise or drop in piping system, and elsewhere where indicated or required to completely drain potable water system.

D. **Check Valves:** Install where indicated.

E. **Calibrated Balancing Cocks:** Install in each hot water recirculating loop, and elsewhere as indicated.

3.07 **Hose Bibbs and Wall Hydrants:** Install on concealed piping where indicated with vacuum breaker. Mount 18 inches above grade or finished floor.

3.08 **Install meters and gauges** in accordance with Division-23 Basic Mechanical Materials and Methods section "Meters and Gauges".

3.09 **Install relief valves** on each water heater, and where indicated in accordance with the manufacturer's instructions. Pipe full size outside or to floor drain. Cut the end of the pipe at a 45° angle and terminate 6 inches above the floor or grade.

3.10 **Piping Runouts to Fixtures:** Provide hot and cold water piping runouts to fixtures of sizes indicated, but in no case smaller than required by Florida Building Code-Plumbing.

3.11 **Plumbing Equipment Connections:** Connect hot and cold water piping system to plumbing equipment as indicated, and comply with equipment manufacturer's installation instructions. Provide shutoff valve and union for each connection, provide drain valve on drain connection.

3.12 **Install water hammer arresters** in upright position, in locations and of sizes indicated in accordance with PDI Standard WH-201.

3.13 **Install trap primers** as indicated, and in accordance with manufacturer's installation instructions. Provide access panels to all trap primers unless accessible through a lay-in ceiling.

3.14 **Locate** and coordinate installation of access doors for all valves and devices in accordance with Division-23 Basic Mechanical Materials and Methods section "Access Doors".

3.15 **Piping Tests:** Test, clean, and sterilize potable water piping in accordance with testing requirements of Division-23 Basic Mechanical Materials and Methods section "Testing, Cleaning, and Sterilization of Piping Systems".

END OF SECTION 22 11 13
SECTION 22 13 16 SOIL, WASTE AND VENT SYSTEM

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-22 Basic Plumbing Requirements and Basic Plumbing Materials and Methods sections apply to work of this section.

1.03 Extent of soil waste and vent systems work is indicated on drawings and schedules, and by requirements of this section.

1.04 Refer to appropriate Division-2 sections for exterior sanitary sewer system required in conjunction with soil and waste systems; not work of this section.

1.05 Insulation for soil and waste systems is specified in other Division-22 sections, and is included as work of this section. Insulation requirements include:

A. Horizontal above grade waste pipes receiving discharge from ice machines, coolers, freezers or similar units to points of connection receiving waste from 4 or more fixtures.

B. Horizontal above grade waste pipes receiving condensate from air conditioning equipment to point of connection receiving waste from 4 or more fixtures.

1.06 Excavation and backfill required in conjunction with soil, waste and vent piping is specified in other Division-22 sections and is included as work of this section.

1.07 Refer to Division-7 section "Flashing and Sheet Metal" for flashings required in conjunction with soil and waste systems; not work of this section.

1.08 Code Compliance: Comply with applicable portions of Florida Building Code-Plumbing pertaining to plumbing materials, construction and installation of products. Comply with local utility requirements.

1.09 Approval Submittals:

A. Product Data: Submit manufacturer's technical product data for:

 Cleanouts
 Floor drains

1.10 O&M Data Submittals: Submit a copy of all approval submittals. Include these data in O&M manual.

PART 2 PRODUCTS

2.01 General: Provide piping materials and factory-fabricated piping products of sizes, types, pressure ratings, and capacities as indicated. Where not indicated, provide proper selection as determined by Installer to comply with installation requirements. Provide sizes and types matching piping and equipment connections; provide fittings of materials which match pipe materials used in soil and waste systems. Where more than one type of materials or products is indicated, selection is Installer's option.
Underground-Type Plastic Line Marker: Manufacturer's standard permanent, bright-colored, continuous-printed plastic tape, intended for direct-burial service; not less than 6" wide x 4 mils thick. Provide green tape with black printing reading "CAUTION SEWER LINE BURIED BELOW".

2.02 **Acceptable Manufacturers:** Subject to compliance with requirements, provide products of one of the following listed for each item.

2.03 **Pipes and Fittings:** Provide pipes and pipe fittings complying with Division-23 Basic Mechanical Materials and Methods section "Pipes and Pipe Fittings", in accordance with the following listing:

A. **Above Ground Soil, Waste, and Vent Piping:**
 1. Polyvinyl chloride plastic pipe (PVC); Type DWV; PVC plastic type DWV socket-type fitting, solvent cement joints. Do not use in fire-rated assemblies or return air plenums.

B. **Underground Building Drain Piping (within 5 feet of the building):**
 1. Pipe Size 6" and Smaller: Polyvinyl chloride sewer pipe (PVC); Type DWV; PVC plastic type DWV socket-type.

2.04 **Pipe Specialties:** Provide piping specialties complying with Division-22 Basic Materials and Methods section "Piping Specialties".

2.05 **Supports and Anchors:** Provide supports and anchors complying with Division-23 Basic Mechanical Materials and Methods section "Supports and Anchors".

2.06 **Cleanouts:** Provide factory-fabricated drainage piping products of size and type indicated. Where not indicated, provide proper selection as determined by Installer to comply with installation requirements and governing regulations. Josam, Jay R. Smith, Wade, Zurn.

A. **Cleanout Plugs:** Cast-bronze or brass, threads complying with ANSI B2.1 countersunk head.

B. **Cleanout for PVC Systems:**
 1. **Floor Cleanouts:** Cast-iron body with adjustable head, brass plug, and scoriated nick-brass cover. Furnish with carpet flange for carpeted floors. Furnish with recessed cover for tile floors. Furnish with clamping ring for floors with membrane. Wade W-6030 hub outlet for push-on.
 2. **Cleanouts in Piping:** PVC cleanout adaptor with threaded PVC plug.
 3. **Wall Cleanouts:** PVC cleanout adaptor with tapped, countersunk, threaded brass plug. Square 8.75"x8.75" hinged wall access cover, with scoriated nickel bronze finish.
 4. **Grade Cleanouts:** PVC cleanout adaptor with countersunk, threaded brass plug. Wade W-8590-D plug. In sidewalks and other finished concrete, provide access cover frames with a non-tilting tractor cover. Wade W-7035-Z or equal.
 5. **Cleanouts in Paved Areas:** Cast iron body, adjustable housing, ferrule with plug and round loose scoriated tractor cover. Wade W-8300-MF. Coordinate concrete depth at site with adjustable flange.
2.07 **Floor Drains:** Provide floor drains of size as indicated on drawings; and type, including features, as specified herein. Josam, Jay R. Smith, Wade, Zurn.

A. **Floor Drains:** Provide inside caulk bottom outlet or TY-Seal hub outlet with adaptor for cast iron trap installation and a 4” deep trap seal. Provide clamping rings for floors with membrane.

B. **Strainer:** Provide 5” satin-nickel bronze strainer.

C. **Trap Primer Connection:** Provide ½” trap primer tapping.

D. **Funnel:** Provide funnel where shown on the drawings.

E. **Basis of Design:** Wade Series 1100.

PART 3 EXECUTION

3.01 **Examining substrates and conditions under which soil and waste systems are to be installed.** Do not proceed with work until unsatisfactory conditions have been corrected.

3.02 **Piping Installation:**

A. **Install** above grade soil and waste piping in accordance with Division-23 Basic Mechanical Materials and Methods section "Pipes and Pipe Fittings", and with Florida Building Code-Plumbing.

B. **Install** underground soil and waste pipes as indicated and in accordance with Florida Building Code-Plumbing. Lay underground piping beginning at low point of systems, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install required gaskets in accordance with manufacturer's recommendations for use of lubricants, cements, and other special installation requirements. Clean interior of piping of dirt and other superfluous material as work progresses. Maintain swab or drag in line and pull past each joint as it is completed. Place plugs in ends of uncompleted piping at end of day or whenever work stops.

C. **Install** building soil and vent piping pitched to drain at minimum slope of ¼” per foot (2%) for piping smaller than 3”, and 1/8” per foot (1%) for piping 3” and larger.

3.03 **Install piping specialties** in accordance with Division-23 Basic Mechanical Materials and Methods section "Piping Specialties".

3.04 **Install supports and anchors** in accordance with Division-23 Basic Mechanical Materials and Methods section "Supports and Anchors".

3.05 **Installation of Cleanouts:** Install in above ground piping and building drain piping as indicated, as required by Florida Building Code-Plumbing; and at each change in direction of piping greater than 45°; at minimum intervals of 50' for piping 4" and smaller and 100' for larger piping; and at base of each vertical soil or waste stack. Install floor and wall cleanout covers for concealed piping, select type to match adjacent building finish.

A. **Size:** Cleanouts shall be full size up to 4”. Piping over 4” shall have a reducing fitting to accommodate a 4” cleanout unless indicated otherwise on drawings.

B. **Install** cleanouts to allow adequate clearance for rodding.
C. Protect all finished surfaces of cleanouts with a suitable adhesive covering until construction is completed.

D. **Cleanouts to Grade:** Provide an 18" x 18" x 8" thick concrete pad around the cleanout. Set the cleanout ferrule, adapter, or access cover frame in the concrete as required. The cleanout shall be extended to the finished grade. The concrete pad shall slope away from the cleanout in all directions approximately one inch. Cover pad with fill to finished grade.

E. **Cleanouts in Paved Areas:** Provide concrete pad similar to cleanout to grade and coordinate concrete depth at site with adjustable flange. Access cover frames are required.

3.06 **Flashing Flanges:** Install flashing flange and clamping device with each stack and cleanout passing through waterproof membranes.

3.07 **Vent Flashing Sleeves:** Install on stack passing through roof, secure to stack flashing in accordance with manufacturer's instructions. For metal roofs, sleeves and flashing are by Division-7.

3.08 **Installation of Floor Drains:** Install floor drains in accordance with manufacturer's written instructions and in locations indicated.

 A. Coordinate flashing work with work of waterproofing and adjoining substrate work.

 B. Install floor drains at low points of surface areas to be drained, or as indicated. Set tops of drains flush with finished floor.

 C. Install drain flashing collar or flange so that no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes, where penetrated.

D. Position drains so that they are accessible and easy to maintain.

3.09 **Connection of Trap Primers:** Connect trap primers as indicated, and in accordance with manufacturer's installation instructions. Pitch piping towards drain trap, minimum of 1/8" per foot (1%). Adjust trap primer for proper flow.

3.10 **Piping Runouts to Fixtures:** Provide soil and waste piping runouts to plumbing fixtures and drains, with approved trap, of sizes indicated, but in no case smaller than required by Florida Building Code-Plumbing.

3.11 **Test, clean, flush, and inspect** soil and waste piping in accordance with requirements of Division-23 Basic Mechanical Materials and Methods section "Testing, Cleaning and Sterilization of Piping Systems".

END OF SECTION 22 13 16
SECTION 22 16 00 – GAS SYSTEM

1 GENERAL

1.1 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specifications sections, apply to work of this section.

1.2 Division-22 Basic Plumbing Requirements and Basic Mechanical Materials and Methods sections apply to work of this section.

1.3 Division-23 Basic Mechanical Materials and Methods Sections apply to work of this section.

1.4 Extent of fuel gas systems work, is indicated on drawings and schedules, and by requirements of this section.

1.5 Excavation and backfill required in conjunction with gas service piping is specified in Division-23 sections, and is included as work of this section.

1.6 Codes and Standards

1.6.1 NFPA Compliance: Fabricate and install gas systems in accordance with NFPA 54 "National Fuel Gas Code".

1.6.2 Utility Compliance: Fabricate and install gas systems in accordance with local gas utility company requirements and standards.

1.7 Approval Submittals:

1.7.1 Product Data: Submit manufacturer's technical product data and installation instructions as follows:

- Gas cocks and/or ball valves
- Gas vents
- Gas regulators
- Access doors

1.8 O&M Data Submittals: Submit a copy of approval submittals. Submit maintenance data and parts lists for gas cocks, ball valves, gas vents, regulators. Include these data in O&M manual.

2 PRODUCTS

2.1 General: Provide piping materials and factory-fabricated piping products of sizes, types, pressure ratings, and capacities as indicated. Where not indicated, provide proper selection as determined by Installer to comply with installation requirements. Provide materials and products complying with NFPA 54 where applicable. Base pressure rating on gas piping system maximum design pressures. Provide sizes and types matching piping and equipment connections; provide fittings of materials which match pipe materials used in gas systems. Where more than one type of materials or products are indicated, selection is Installer's option.

2.2 Identification: Provide identification complying with Division-23 Basic Mechanical Materials and Methods section "Mechanical Identification".

2.3 Pipes and Fittings: Provide pipes and pipe fittings complying with Division-23 Basic Mechanical Materials and Methods section "Pipes and Pipe Fittings", in accordance with the following listing:
2.3.1 Gas Service Piping: Refer to civil site utility plans.

2.3.2 Building Distribution Piping:

2.3.2.1 Pipe Size 2" and Smaller: Black steel pipe; Schedule 40; malleable-iron threaded fittings.

2.3.2.2 Pipe Size 2½" and Larger: Black steel pipe; Schedule 40; wrought-steel buttwelding fittings.

2.4 Piping Specialties: Provide piping specialties complying with Division-23 Basic Mechanical Materials and Methods section "Piping Specialties".

2.5 Sealants: Provide UL-listed or AGA approved sealants for gas piping.

2.6 Supports and Anchors: Provide supports and anchors complying with Division-23 Basic Mechanical Materials and Methods section "Supports and Anchors".

2.7 Valves:

2.7.1 Gas Cocks 2" and Smaller: UL-listed, AGA approved, 150 psi non-shock WOG, full port, bronze straightway cock, flat or square head, threaded ends.

2.7.2 Gas Cocks 2½" and Larger: UL-listed, CGA approved, MSS SP-78; 175 psi, lubricated plug type, full port, semi-steel body, single gland, wrench operated, flanged ends.

2.7.3 Wrenches: Provide operating wrenches for all gas cocks serving boilers.

2.7.4 Acceptable Manufacturers for gas cocks: Subject to compliance with requirements, provide products of one of the following: Resun R1430 and R1431, Milliken 200M and 201M or approved equal.

2.8 Kitchen Gas Appliance Connectors: Furnished with the kitchen equipment.

2.9 Gas Appliance Tube Connectors: Provide commercial grade appliance connectors with a 2 year manufacturer’s warranty. Tubing shall be Type 304 stainless steel tubing with type 304 stainless steel braiding to protect tubing from elongation. Tubing shall be complete with factory installed end connectors. Provide products that are AGA or CGA approved. Indicate maximum BTU input for each length and size used on submittal.

2.10 Gas Meter and Regulator: Provided by local utility company.

2.11 Access Doors: Provide access doors to service all valves and other devices as required in accordance with Division-23 Basic Materials and Methods Section “Access Doors”.

EXECUTION

3.1 Examine areas and conditions under which gas systems materials and products are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer. Coordinate with gas supplier prior to starting work.

3.2 Install mechanical identification in accordance with Division-23 Basic Mechanical Materials and Methods section "Mechanical Identification".

3.3 Install gas piping in accordance with Division-23 Basic Mechanical Materials and Methods section "Pipes and Pipe Fittings".

3.3.1 Use sealants on metal gas piping threads which are chemically resistant to gas. Use sealants
sparingly, and apply to only male threads of metal joints.

3.3.2 Remove cutting and threading burrs before assembling piping.

3.3.3 Do not install defective piping or fittings. Do not use pipe with threads which are chipped, stripped or damaged. Do not use bushings in the gas system.

3.3.4 Plug each gas outlet, including valves, with threaded plug or cap immediately after installation and retain until continuing piping, or equipment connections are completed.

3.3.5 Ground gas piping electrically and continuously within project, and bond tightly to grounding connection.

3.3.6 Install drip-legs in gas piping where indicated, and where required by code or gas company requirements.

3.3.7 Install "Tee" fitting with bottom outlet plugged or capped, at bottom of pipe risers.

3.3.8 Use dielectric unions where dissimilar metals are joined together.

3.3.9 Install piping with 1/64" per foot (1/8%) downward slope in direction of flow.

3.4 Gas Service: Arrange with utility company to provide gas service to indicated location with meter, pressure regulator and shutoff at terminus. Consult with utility as to extent of its work, costs, fees, and permits involved. The Contractor shall pay such costs and fees and obtain permits.

3.5 Install piping specialties in accordance with Division-23 Basic Mechanical Materials and Methods section "Piping Specialties".

3.6 Install supports and anchors in accordance with Division-23 Basic Mechanical Materials and Methods section "Supports and Anchors".

3.7 Installation of Valves:

3.7.1 Gas Cocks: Provide at connection to gas train for each gas-fired equipment item; and on risers and branches where indicated.

3.7.2 Locate gas cocks where easily accessible, and where they will be protected from possible injury.

3.8 Equipment Connections: Connect gas piping to each gas-fired equipment item, with drip leg and shutoff gas cock. Comply with equipment manufacturer's instructions.

3.9 Appliance Connectors: Install tubing, valves, connectors, fittings in accordance with their listing and as furnished with the kitchen equipment. Hose, fittings and valves shall not restrict gas flow and shall be rated for the capacity of the appliance they serve. Hoses shall not be crimped. Hoses behind movable appliances shall not be crimped when appliance is extended from wall or when appliance is set in working position. Appliance restraining device shall set to engage just prior to the connector being fully extended. Check all tubing, piping, fittings & valves for leakage at less than 50 part per million.

3.10 Locate and coordinate installation of access doors for all valves and devices in accordance with Division-23 Basic Mechanical Materials and Methods section "Access Doors".

3.11 Piping Tests: Inspect, test, and purge gas systems in accordance with NFPA 54, local utility
requirements, and Division-23 Basic Mechanical Materials and Methods section "Testing, Cleaning and Sterilization of Piping Systems". DO NOT INTRODUCT AIR INTO THE SYSTEM, VENT OR PURGE WITH NITROGEN. DISCHARGE VENT OR PURGE GASES TO THE EXTERIOR OF THE BUILDING.

END OF SECTION 22 16 00
SECTION 22 30 00 PLUMBING FIXTURES, EQUIPMENT, TRIM & SCHEDULE

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-22 Basic Plumbing Requirements and Basic Plumbing Materials and Methods sections apply to work of this section.

1.03 Extent of plumbing fixtures work required by this section is indicated on drawings and schedules, and by requirements of this section.

1.04 Refer to Division-26 sections for field-installed electrical wiring required for plumbing fixtures; not work of this section.

1.05 Codes and Standards:

A. Plumbing Fixture Standards: Comply with applicable portions of Florida Building Code- Plumbing pertaining to materials and installation of plumbing fixtures.

B. ANSI Standards: Comply with applicable ANSI standards pertaining to plumbing fixtures and systems.

C. PDI Compliance: Comply with standards established by PDI pertaining to plumbing fixture supports.

D. UL Listing: Construct plumbing fixtures requiring electrical power in accordance with UL standards and provide UL-listing and label.

E. ARI Compliance: Construct and install water coolers in accordance with ARI Standard 1010 "Drinking-Fountains and Self-Contained Mechanically-Refrigerated Drinking-Water Coolers", and provide Certification Symbol.

F. ANSI Compliance: Construct and install barrier-free plumbing fixtures in accordance with ANSI Standard A117.1 "Specifications for Making Buildings and Facilities Accessible To and Usable By Physically Handicapped People".

1.06 Approval Submittals:

A. Product Data: Submit manufacturer's technical product data, including rated capacities of selected model clearly indicated, furnished specialties and accessories; and installation instructions. Submit manufacturer's assembly-type drawings indicating dimensions, roughing-in requirements, required clearances, and methods of assembly of components and anchorages. The submittal shall be organized by "fixture number" and each fixture package shall be so identified. Each fixture package shall include all of the required fitting and trim, even if such devices are used for more than one fixture.

1.07 O&M Data Submittals: Submit a copy of approval submittals. Submit maintenance data and parts lists for each type of plumbing fixture and accessory; including "trouble-shooting" maintenance guide. Include these data in O&M manual.

1.08 Handle plumbing fixtures carefully to prevent breakage, chipping and scoring fixture finish. Do not install damaged plumbing fixtures; replace and return damaged units to equipment manufacturer.
PART 2 PRODUCTS

2.01 General: Provide factory-fabricated fixtures of type, style and material indicated. For each type fixture, provide trim, carrier, seats, and valves as specified. Where not specified, provide products as recommended by manufacturer, and as required for complete installation. Where more than one type is indicated, selection is Installer's option; but, all fixtures of same type must be furnished by single manufacturer. Where type is not otherwise indicated, provide fixtures complying with governing regulations.

2.02 Model Numbers: Basis of design model numbers of a particular manufacturer are listed in the fixture schedule as an aid to contractors. Where conflicts between the model number and the written description occur, the written description shall govern. Where acceptable manufacturers are listed, products are subject to compliance with requirements.

2.03 Materials:

A. Provide materials which have been selected for their surface flatness and smoothness. Exposed surfaces which exhibit pitting seam marks, roller marks, foundry sand holes, stains, decoloration, or other surface imperfections on finished units are not acceptable.

B. All fixtures shall be white vitreous china unless otherwise specifically noted. Where enameled iron fixtures are specified, they shall be furnished with acid resisting enamel.

C. Where fittings, trim and accessories are exposed or semi-exposed provide bright chrome-plated or polished stainless steel units. Provide copper or brass where not exposed.

D. Stainless Steel Sheets: ASTM A 167, Type 302/304, hardest workable temper. Finish shall be No. 4, bright, directional polish on exposed surfaces.

E. Vitreous China: High quality, free from fire cracks, spots, blisters, pinholes and specks; glaze exposed surfaces, and test for crazing resistance in accordance with ASTM C 554.

F. Synthetic Stone: High quality, free from defects, glaze on exposed surfaces, stain resistant.

2.04 Plumbing Fittings, Trim and Accessories:

A. Faucets: At locations where water is supplied (by manual, automatic or remote control), provide commercial quality chrome-plated, cast-brass faucets, valves, or other dispensing devices, of type and size indicated, and as required to operate as indicated.

1. Aerators: Provide aerators of types approved by Health Department having jurisdiction.

2. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following for each item. American Standard, Chicago Faucet Co., Kohler Co., Speakman Co., T & S Brass and Bronze Works, Water Saver Faucet Co.

B. Stops: Provide chrome-plated brass, angle type, manual shutoff valves and d" chrome-plated flexible supply pipes to permit fixture servicing without shutdown of water supply piping systems for all fixtures. Coordinate with fixture requirements.

1. Provide standard stops.

2. Acceptable Manufacturers: Subject to compliance with requirements, provide
products of one of the following for each item. Zurn or approved equal.

C. **Waste Outlets:** Provide removable P-traps, drains, waste arms, tailpieces and wastes-to-wall where drains are indicated for direct connection to drainage system for all fixtures unless otherwise noted. Provide drains, tailpieces and waste arms where indirect drains are indicated. Waste outlets shall be full size of fixture drain connection.

1. Provide chrome-plated cast-brass P-traps and drains with cleanout.

2. P-traps, wastes and drains of all types shall be 17-gauge.

3. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products of one of the following for each item. Zurn, or approved equal.

D. **Carriers:** Provide cast-iron supports for fixtures of either graphitic gray iron, ductile iron, or malleable iron or steel as indicated. Coordinate with specific fixture requirements and conditions of the project.

1. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products of one of the following for each item. Josam, Wade, Zurn, J.R. Smith.

E. **Fixture Bolt Caps:** Provide manufacturer’s standard exposed fixture bolt caps finished to match fixture finish.

F. **Escutcheons:** Where fixture supplies and drains penetrate walls in exposed locations, provide chrome-plated brass escutcheons with friction clips.

G. **Comply** with additional fixture requirements listed for each fixture and as required for a complete and functional system.

2.05 Water Closets:

A. **General:** Provide white china siphon jet type unless otherwise noted.

1. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products of one of the following for each item. American Standard, Crane, Kohler, or Zurn.

B. **Fixture Seats:** Provide white, heavy molded plastic fixture seats with stainless steel self-sustaining check hinges.

1. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products of one of the following for each item. Bemis Mfg. Co., Beneke Corp., Church or Comfort Seats.

C. **Water Closet Schedule:**

WC-1 WATER CLOSET, FLOOR-MOUNT (STANDARD, MANUAL VALVE):

Vitreous china, 1.28 gallons per flush, elongated, high efficiency siphon jet, white, water saver bowl with 1-1/2" top spud. Exposed chrome plate flush valve, with screwdriver stop, vacuum breaker, quiet flush feature, with sweat solder kit and cast wall flange. Heavy molded plastic, white, elongated, open front seat less cover, with stainless steel, self-sustaining check hinges.

Water closet Zurn Z5655-BWL
Valve Zurn Z6000PL-HET
WC-2 WATER CLOSET, FLOOR-MOUNT (HANDICAP, MANUAL VALVE):

Vitreous china, 1.28 gallons per flush, elongated, high efficiency siphon jet, white, water saver bowl with 1-1/2" top spud, 17" high for handicapped. Exposed chrome plate flush valve, with screwdriver stop, vacuum breaker, quiet flush feature, with sweat solder kit and cast wall flange. Heavy molded plastic, white, elongated, open front seat less cover, with stainless steel, self-sustaining check hinges. Hold centerline flush valve assembly off finish wall for grab bar clearances, coordinate with Architectural drawings.

<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat</td>
<td>Z5955SS-EL-STS</td>
</tr>
<tr>
<td>Closet Bolt/Wax Ring Kit</td>
<td>Z5972-COMB</td>
</tr>
<tr>
<td>Water closet</td>
<td>Zurn Z5665BWL</td>
</tr>
<tr>
<td>Valve</td>
<td>Zurn Z6000PL-HET</td>
</tr>
<tr>
<td>Seat</td>
<td>Zurn Z5955SS-EL-STS</td>
</tr>
<tr>
<td>Closet Bolt/Wax Ring Kit</td>
<td>Z5972-COMB</td>
</tr>
</tbody>
</table>

2.06 Lavatories:

A. General: Provide white china lavatories.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following for each item. American Standard, Crane, Kohler, or Zurn.

C. Lavatory Schedule: - Refer to Fixture Schedule on Drawing

L-1 LAVATORY, COUNTERTOP:

Vitreous china 20" x 17", oval, color “white”, 4" centers, front overflow. Provide chrome plated angle stop to wall with chrome plated 3/8" flexible supply and loose key operator, integral perforated cast brass strainer with 1-1/4" tailpiece, chrome plated 17 gauge cast brass P-trap with cleanout and tube waste to wall. Polished chrome plated metal faucet with ceramic disc valve with cover plate, and straight handle. Under sink mixing valve with soldered connection, bronze body, limits hot water between 80ºF & 120ºF, double throttling, integral inlet filter washers & check valves, tamper resistant locking cap. Meets ASSE 1070 standards.

<table>
<thead>
<tr>
<th>Item</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavatory</td>
<td>Zurn Z5114</td>
</tr>
<tr>
<td>Faucet</td>
<td>Kohler K-45100-4</td>
</tr>
<tr>
<td>Supply w/stop</td>
<td>Zurn 8800LRLK-PC</td>
</tr>
<tr>
<td>P-Trap</td>
<td>Zurn Z8700-PC</td>
</tr>
<tr>
<td>Drain</td>
<td>Zurn Z8743-PC</td>
</tr>
<tr>
<td>Mixing Valve</td>
<td>Watts MMV-US-M1</td>
</tr>
</tbody>
</table>

L-2 LAVATORY, WALL-MOUNT (HANDICAP):

Vitreous china 20" x 18", color “white”, 4" centers, front overflow, for concealed arm support. Furnish floor-mounted single carrier with concealed arms, leveling and securing screws, structural uprights and block bases, secure base to floor for rigid connection with 1/2" x 3-3/4" threaded zinc plated steel heavy duty wedge anchors, complete with stainless steel clip, washer and threaded nut, conforming to federal spec. FF-S-325. Provide chrome plated angle stop to wall with chrome plated 3/8" flexible supply and loose key operator, integral perforated cast brass strainer with elbow and 1-1/4" offset tailpiece, chrome plated 17 gauge cast brass P-trap with cleanout and tube waste to wall. Polished chrome plated metal faucet with ceramic disc valve with cover plate, and straight handle. Lavatory P-trap and angle valve assemblies shall be insulated with fully molded insulation kit, and light gray color with 3-piece interlocking rap assembly and 2-piece interlocking angle valve assembly. Fasteners shall be nylon-type
supplied with kit. Lavatory shall be mounted with a clearance of at least 28" from floor to bottom of the apron. Knee and toe clearances shall be as follows: 27" clear height shall be provided from finished floor to a point on underside of bowl 8" in from front apron. Toe clearance shall be a minimum height of 9" under P-trap and supplies or stops. See Architectural drawings for final mounting height. Under sink mixing valve with soldered connection, bronze body, adjustable hot water limit between 80°F & 120°F, double throttling, integral inlet filter washers & check valves, tamper resistant locking cap. Meets ASSE 1070 standards.

Lavatory Zurn Z5344
Faucet Kohler K-45100-4
Supply w/stop Zurn Z8800LRLK-PC
P-Trap Zurn Z8700-PC
Strainer/tailpiece Zurn Z8746
Insulation kit Zurn Z8946-3-NT
Carrier Zurn Z-1231
Base Anchorage B-Line Anchors AWA-50-375
Mixing Valve Watts MMV-US-M1

2.07 Mop Receptors:
A. General: Provide one piece mop receptors with 3" integral stainless steel grid drain. Provide wall-mounted faucet with arm handles, vacuum breaker, stops, hose connection and hose bracket. Provide 30" hose.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following for each item. Stern-Williams Co., or Acorn.

C. Mop Receptor Schedule:

MR-1 SERVICE SINK (FLOOR TYPE):
24" x 24" x 12" deep, floor mount, terrazzo with 20 gauge stainless steel integral cast cap, 3" cast brass outlet drain with stainless steel strainer, 36" hose with wall hanger, and mop hanger with 3 grips on a stainless steel bracket. Rough chrome plated 8" faucet with top brace, straight lever handles, swivel inlets, bucket hook, vacuum breaker, stops and hose end.

Sink Acorn TSH24-KH36-KMH
Faucet Zurn Z843 M1 RC

2.08 Stainless Steel Sinks:
A. General: Provide Type 304, 18 gauge self-rimming stainless steel back ledge with No. 4 finish. Provide sound deadening material on the sides and bottom of the sink. Provide grid drain or strainer with removable crumb cup and stopper as indicated.

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following for each item. Elkay, Just

C. Stainless Steel Sink Schedule:

SK-1 DOUBLE COMPARTMENT STAINLESS STEEL SINK:
33" x 22" x 10" deep (bowl is 13-1/2x16x10-1/8), type 304, 18 gauge, 8" centers, self rimming single compartment, (18-8) nickel bearing stainless steel, back ledge sink with satin finish and sound deadening materials on side and bottom of sink. Provide polished chrome plated top
mount swing gooseneck spout and vacuum breaker, straight lever handles, hose and spray nozzle, pressure compensating aerator, strainer with removable crumb cup and stopper, 1-1/2 tailpiece, chrome plated brass 1-1/2” continuous waste with end outlet and 1-1/2” tailpiece, chrome plated 17 gauge cast brass P-trap with cleanout and tube waste to wall. Chrome plated loose key angle stop to wall with 3/8” chrome plated flexible hot and cold water supplies. Coordinate with cabinet shop drawings, base cabinet must be a true minimum 24" deep back to front in order for sink to drop into countertop opening. Sink drillings shall accommodate fitting installation, only, no other capped openings will be allowed.

Sink Elkay DLR-3322-10
Faucet Zurn Z-871B1-HS
Strainer Elkay LK-35
Waste Elkay LK-53
Supplies Zurn Z-8800-LR-LK
P-trap Zurn Z-8702-PC

2.09 Showers:

A. General:

B. Acceptable Manufacturers: Subject to compliance with requirements, provide products of one of the following for each item. Leonard Valve Co., MCC Powers Process Controls, Symmons, Speakman Co.

C. Shower Schedule:

SH-1 SHOWER (HANDICAP):

Single handle pressure-balancing mixing valve. Ceramic control cartridge with stainless steel balancing piston. Must hold shower temperature steady with pressure fluctuations up to 85%. Packing with Brass adjustable limit stop screw to prohibit valve handle from being turned to excessive hot discharge temperatures. All trim to be copper nickel chrome plated. Service stops to be brass and cast integral with valve body. Two way chrome diverter valve. Brass shower head with arm and flange. Wall/hand shower with flexible metal hose, in-line vacuum breaker, wall connection and flange, 30” slide bar for hand shower mounting.

Shower Zurn Z-7301-SS-MT-DV-2P-HW
Drain Zurn ZN-415 2” with 5” B

SH-2 SHOWER (STANDARD):

Single handle pressure-balancing mixing valve. Ceramic control cartridge with stainless steel balancing piston must hold shower temperature steady with pressure fluctuations up to 85%. Double seal packing with adjustable brass packing nut. Brass adjustable limit stop screw to prohibit valve handle from being turned to excessive hot discharge temperatures. All trim to be copper nickel chrome plated. Service stops to be brass and cast integral with valve body. Large brass head with arm and flange.

Shower Zurn Z-7301-SS-MT
Drain Zurn ZN-415 2” NL 5” B

2.10 Water Heaters:

A. Gas Water Heaters:

B. Accessories: VB, relief, pan, stand, etc.
C. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products of one of the following for each item. Ruud, Rheem, Mor-Flo, State, A.O. Smith.

D. **Water Heater Schedule:**

GWH-1 GAS FIRED WATER HEATER:

Packaged atmospheric gas vertical packaged water heater with glass lined storage tank, minimal thermal efficiency @97%. Storage capacity @ 100 gallons, rated for 199,900 btu/hr input, recovery @336 gph, 70 degree F temp. rise, 150 P.S.I. working pressure, ASME constructed, minimum three year warranty. Furnish 115 volt, single phase electrical characteristics, for controlled electric ignition sequence. Provide galvanized steel safety drip pan and vertical direct vent. Provide inlet and outlet shut-off valves, vacuum relief valve on inlet water supply. Provide precharged expansion tank, outer steel shell (flexible diaphragm type), on cold water inlet side of water heater for thermal expansion control, tank volume in gallons shall be of sufficient size to accommodate water heater size in gallons.

- Water heater: A.O. Smith BTH 120
- Vacuum relief: Watts 36A
- Expansion tank: Amtrol “Therm-X-Trol”
- Manifold kit: A.O. Smith 9003426205

IWH-1 INSTANTANEOUS WATER HEATER:

Natural gas, outdoor tankless water heater with integrated recirculation pump, stainless steel condensing heat exchanger, outdoor vent. Direct electric ignition, 0.95 energy factor, 11,000 BTU/H minimum and 157,000 BTU/H maximum gas rate, 4"W.C. minimum gas supply pressure and 10.5 W.C. maximum gas supply pressor, 0.26 GPM minimum activation flow rate, 0.40 GPM minimum flow rate. 3/4"mnpt gas inlet, 3/4" npt cold water inlet, and 3/4"npt hot water outlet connections. Water flow sensor, electric water control and by-pass control, temperature set at 120°F. Built-in Rinnai Circ-Logic recirculation program, pump timer: MC-195T-US. Included isolation & pressure relief valves. Provide hot & cold drain vale and thermal expansion tank. Provide 5 year parts warranty. Provide number of heaters shown on drawing (two) with MIC-6 controller – RTG20213A, & commercial conversion kit – RTG20224A. 157000 BTU, 140.0° outlet temp. 6.5gpm.

- Water Heater: Rheem RTGH-84DVLN-2
- Expansion tank: Amtrol “Therm-X-Trol”
- Controller: Rheem RTG20213A

2.11 Thermostatic Mixing Valves:

A. **General:**

B. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products of one of the following for each item.

C. **Thermostatic Mixing Valve Schedule:**

MV-1 WATER MIXING VALVE (THERMOSTATIC MIXING):

Under sink mixing valve with soldered connection, bronze body, limits hot water between 80°F & 120°F, double throttling, integral inlet filter washers & check valves, tamper resistant locking...
cap. Meets ASSE 1070 standards.

Exposed Mixing Valve Watts MMV-US-M1

2.12 **Miscellaneous Fixtures:**

A. **General:**

B. **Acceptable Manufacturers:** Provide products of one of the manufacturer listed or equal.

UB-1 ICE MAKER HOOK-UP (REFRIGERATOR SPACE):

Recessed metal wall box constructed and suitable for fire rated partitions, complete with factory installed shank valve with 1/4" O.D. copper outlet tested @ 100 P.S.I. Provide approximately 5'-0" of 1/4" O.D. soft copper tubing with compression fitting in tight coil. Anchor box to wall structure. Verify location and mounting height with Architectural drawings or mount to manufacturers recommendations.

Wall box Guy Gray BIM 875

UB-2 RECESSED UTILITY BOX (CLOTHES WASHER SPACE):

Factory fabricated 16 gauge steel with epoxy finish washing machine wall box with hot and cold water supply and 2" drain. Verify mounting height with Architectural Elevations. Make final connections this contract.

Wall box Guy Gray B200

DT-1 TROUGH DRAIN:

12"H x 18"W x 3'L, are made of 3/8" ABS plastic, shall be sloped between 1/8" & 1/4" per foot, washer can drain into side or top, and the outlet drain can be located at either end or on bottom. Removable lint filter screen made of 1/8" PVC with 3/8" holes on ¾" spacing, & are designed with a safety overflow. End of drain pipe should be 1" below top of trench.

Trough Drain High Mark Drain Trough

TD-1 TRENCH DRAIN:

12" wide with 6-5/8" wide throat pre channel with 0.7% slope, each channel is 4'-0" in length, molded of gray structural foam polyethylene HDPE with UV inhibitors with interlocking ends, and a 4" outlet with trap. Ductile iron class D rated (H20) grate comes in 6" x 24" sections with screws. Shall have 0.7% slope with an ending slope of 7.69", and shall be a flo-thru model with a 4" bottom outlet. Length of 40'.

Trench Drain NDS Dura Slope
Trench Grate NDS DS-323

CP-1 CIRCULATOR PUMP (INLINE TYPE):

Self-adjusting high-efficiency circulator made of engineered polymer impeller, stainless steel shaft, metal impregnated carbon, and cast iron cathode coated casting. A 1/4 HP ECM permanent magnet motor and electrical characteristics are 115v/1 phase, 47-63 hz…, 2.6' head at 1 gpm with 3/4" to 1-1/2" connections, maximum operating pressure of 145 PSI, five operating modes (automatic, proportional pressure, constant pressure, programmed speed, and night setback) UL standard 778 and CSA standard 22.2 no. 108. Digital timer with
circulator programming. Temperature aquastst, maintains water temperature between 95°F and 115°F. Circuit Setter calibrated balance valve, 1/2” size, lead-free brass, with 1/4” NPT tapped drain port, memory stop feature, set at 1 gpm. Provide Circuit Solver a self-acting thermostatic recirculation valve set at 110°F.

Circulator TACO VR3452-FC1A00
Timer TACO 265-3
Aquastat TACO 563-2
Circuit setter Xylem CB-1/2S LF
Recirculation Valve Circuit Solver CS-1/2-110, CS-1/2-110,

PART 3 EXECUTION

3.01 Examine roughing-in work of potable water and waste piping systems to verify actual locations of piping connections prior to installing fixtures. Also examine floors and substrates, and conditions under which fixture work is to be accomplished. Correct any incorrect locations of piping, and other unsatisfactory conditions for installation of plumbing fixtures. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.02 Install plumbing fixtures of types indicated where shown and at indicated heights. Install in accordance with fixture manufacturer’s written instructions, roughing-in drawings, and with recognized industry practices. Install in accordance with ADA and applicable handicap code requirements. Ensure that plumbing fixtures comply with requirements and serve intended purposes. Comply with applicable requirements of Florida Building Code-Plumbing pertaining to installation of plumbing fixtures. Furnish templates for cut-outs in countertops. Coordinate exact fixture locations with countertop shop drawings.

3.03 Fasten plumbing fixtures securely to indicated supports or building structure; and ensure that fixtures are level and plumb. Secure plumbing supplies behind or within wall construction so as to be rigid, and not subject to pull or push movement. Mount at heights shown on the drawings. Fixture heights are floor-to-rim distance. Fitting heights are to centerline.

3.04 Install stop valve in water supply to each fixture.

3.05 After fixtures are set, the crack between the fixture and wall shall be caulked with DAP silicone-based caulking, or approved equal.

3.06 Protect installed fixtures from damage during remainder of construction period.

3.07 Upon completion of installation of plumbing fixtures and after units are water pressurized, test fixtures to demonstrate capability and compliance with requirements. When possible, correct malfunctioning units at site, then retest to demonstrate compliance; otherwise, remove and replace with new units and proceed with retesting.

3.08 Inspect each installed unit for damage to finish. If feasible, restore and match finish to original at site; otherwise, remove fixture and replace with new unit. Feasibility and match to be judged by Architect/Engineer. Remove cracked or dented units and replace with new units.

3.09 Clean plumbing fixtures, trim, aerators, and strainers of dirt and debris upon completion of installation.

3.10 Adjust water pressure at drinking fountains, faucets, shower valves, and flush valves to provide proper flow stream and specified gpm.

3.11 Adjust or replace washers to prevent leaks at faucets and stops.
END OF SECTION 22 30 00
SECTION 23 01 00 MECHANICAL GENERAL

PART 1 GENERAL

1.01 The work covered by this division consists of providing all labor, equipment and materials and performing all operations necessary for the installation of the mechanical work as herein called for and shown on the drawings.

1.02 Related Documents:

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification sections, apply to work of this section.

B. This is a Basic Mechanical Requirements Section. Provisions of this section apply to work of all Division 21, 22, and 23 sections.

C. Review all other contract documents to be aware of conditions affecting work herein.

D. Definitions:

1. Provide: Furnish and install, complete and ready for intended use.

2. Furnish: Supply and deliver to project site, ready for subsequent requirements.

3. Install: Operations at project site, including unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning, and similar requirements.

1.03 Permits and Fees: Contractor shall obtain all necessary permits, meters, and inspections required for his work and pay all fees and charges incidental thereto.

1.04 Verification of Owner's Data: Prior to commencing any work the Contractor shall satisfy himself as to the accuracy of all data as indicated in these plans and specifications and/or as provided by the Owner. Should the Contractor discover any inaccuracies, errors, or omissions in the data, he shall immediately notify the Architect/Engineer in order that proper adjustments can be anticipated and ordered. Commencement by the Contractor of any work shall be held as an acceptance of the data by him after which time the Contractor has no claim against the Owner resulting from alleged errors, omissions or inaccuracies of the said data.

1.05 Delivery and Storage of Materials: Materials delivered to site shall be inspected for damage, unloaded, and stored with a minimum of handling. All material shall be stored to provide protection from the weather and accidental damage.

1.06 Extent of work is indicated by the drawings, schedules, and the requirements of the specifications. Singular references shall not be constructed as requiring only one device if multiple devices are shown on the drawings or are required for proper system operation.

1.07 Field Measurements and Coordination:

A. The intent of the drawings and specifications is to obtain a complete and satisfactory installation. Separate divisional drawings and specifications shall not relieve the Contractor or subcontractors from full compliance of work of his trade indicated on any of the drawings or in any section of the specifications.
B. Verify all field dimensions and locations of equipment to insure close, neat fit with other trades' work. Make use of all contract documents and approved shop drawings to verify exact dimension and locations.

C. Coordinate work in this division with all other trades in proper sequence to insure that the total work is completed within contract time schedule and with a minimum cutting and patching.

D. Locate all apparatus symmetrical with architectural elements. Install to exact height and locations when shown on architectural drawings. When locations are shown only on mechanical drawings, be guided by architectural details and conditions existing at job and correlate this work with that of others.

E. Install work as required to fit structure, avoid obstructions, and retain clearance, headroom, openings and passageways. Cut no structural members without written approval.

F. Carefully examine any existing conditions, piping, and premises. Compare drawings with existing conditions. Report any observed discrepancies. It shall be the Contractor's responsibility to properly coordinate the work and to identify problems in a timely manner. Written instructions will be issued to resolve discrepancies.

G. Because of the small scale of the drawings, it is not possible to indicate all offsets and fittings or to locate every accessory. Drawings are essentially diagrammatic. Study carefully the sizes and locations of structural members, wall and partition locations, trusses, and room dimensions and take actual measurements on the job. Locate piping, ductwork, equipment and accessories with sufficient space for installing and servicing. Contractor is responsible for accuracy of his measurements and for coordination with all trades. Contractor shall not order materials or perform work without such verification. No extra compensation will be allowed because field measurements vary from the dimensions on the drawings. If field measurements show that equipment or piping cannot be fitted, the Architect/Engineer shall be consulted. Remove and relocate, without additional compensation, any item that is installed and is later found to encroach on space assigned to another use.

1.08 Guarantee:

A. The Contractor shall guarantee labor, materials and equipment for a period of one (1) year from Final Completion, or from Owner's occupancy, whichever is earlier. Contractor shall make good any defects and shall include all necessary adjustments to and replacement of defective items without expense to the Owner.

B. Owner reserves right to make emergency repairs as required to keep equipment in operation without voiding Contractor's Guarantee Bond nor relieving Contractor of his responsibilities during guarantee period.

1.09 Approval Submittals:

A. When approved, the submittal control log and submittals shall be an addition to the specifications herewith, and shall be of equal force in that no deviation will be permitted except with the approval of the Architect/Engineer.

1. Shop drawings, product literature, and other approval submittals will only be reviewed if they are submitted in full accordance with the General and Supplementary Conditions and Division 1 Specification sections and the following.
2. Submittals shall be properly organized in accordance with the approved submittal control log.

3. Submittals shall not include items from more than one specification section in the same submittal package unless approved in the submittal control log.

4. Submittals shall be properly identified by a cover sheet showing the project name, Architect and Engineer names, submittal control number, specification section, a list of products or item names with model numbers in the order they appear in the package, and spaces for approval stamps. A sample cover sheet is included at the end of this section.

5. Submittals shall have been reviewed and approved by the General Contractor (or Prime Contractor). Evidence of this review and approval shall be an "Approved" stamp with a signature and date on the cover sheet.

6. Submittals that include a series of fixtures or devices (such as plumbing fixtures or valves) shall be organized by the fixture number or valve type and be marked accordingly. Each fixture must include all items associated with that fixture regardless of whether or not those items are used on other fixtures.

7. The electrical design shown on the drawings supports the mechanical equipment basis of design specifications at the time of design. If mechanical equipment is submitted with different electrical requirements, it is the responsibility of the mechanical contractor to resolve all required electrical design changes (wire and conduit size, type of disconnect or overload protection, point(s) of connection, etc.) and clearly show the new electrical design on the mechanical submittal with a written statement that this change will be provided at no additional cost. Mechanical submittals made with no written reference to the electrical design will be presumed to work with the electrical design. Any corrections required will be at no additional cost.

B. If the shop drawings show variation from the requirements of contract because of standard shop practice or other reasons, the Contractor shall make specific mention of such variation in writing in his letter of transmittal and on the submittal cover sheet in order that, if acceptable, Contractor will not be relieved of the responsibility for executing the work in accordance with the contract.

C. Review of shop drawings, product literature, catalog data, or schedules shall not relieve the Contractor from responsibility for deviations from contract drawings or specifications, unless he has in writing called to the attention of the Architect/Engineer each such deviation in writing at the time of submission, nor shall it relieve him from responsibility for errors of any sort in shop drawings, product literature, catalog data, or schedules. Any feature or function specified but not mentioned in the submittal shall be assumed to be included per the specification.

D. Submit shop drawings as called for in other sections after award of the contract and before any material is ordered or fabricated. Shop drawings shall consist of plans, sections, elevations and details to scale (not smaller than 1/4" per foot), with dimensions clearly showing the installation. Direct copies of small scale project drawings issued to the Contractor are not acceptable. Drawings shall take into account equipment furnished under other sections and shall show space allotted for it. Include construction details and materials.

1.10 **Test Reports and Verification Submittals:** Submit test reports, certifications and verification letters as called for in other sections. Contractor shall coordinate the required testing and
documentation of system performance such that sufficient time exists to prepare the reports, submit the reports, review the reports and take corrective action within the scheduled contract time.

1.11 O&M Data Submittals: Submit Operation and Maintenance data as called for in other sections. When a copy of approval submittals is included in the O&M Manual, only the final “Approved” or “Approved as Noted” copy shall be used. Contractor shall organize these data in the O&M Manuals tabbed by specification number. Prepare O&M Manuals as required by Division 1 and as described herein.. Submit manuals at the Substantial Completion inspection.

PART 2 PRODUCTS

2.01 All materials shall be new or Owner-supplied reused as shown on the drawings, the best of their respective kinds, suitable for the conditions and duties imposed on them at the building and shall be of reputable manufacturers. The description, characteristics, and requirements of materials to be used shall be in accordance with qualifying conditions established in the following sections.

2.02 Equipment and Materials:

A. Shall be new and the most suitable grade for the purpose intended. Equipment furnished under this division shall be the product of a manufacturer regularly engaged in the manufacture of such items for a period of three years. Where practical, all of the components shall be products of a single manufacturer in order to provide proper coordination and responsibility. Where required, Contractor shall furnish proof of installation of similar units or equipment.

B. Each item of equipment shall bear a name plate showing the manufacturer's name, trade name, model number, serial number, ratings and other information necessary to fully identify it. This plate shall be permanently mounted in a prominent location and shall not be concealed, insulated or painted.

C. The label of the approving agency, such as UL, IBR, ASME, ARI, AMCA, by which a standard has been established for the particular item shall be in full view.

D. The equipment shall be essentially the standard product of a manufacturer regularly engaged in the production of such equipment and shall be a product of the manufacturer's latest design.

E. A service organization with personnel and spare parts shall be available within two hours for each type of equipment furnished.

F. Install in accordance with manufacturer's recommendations. Place in service by a factory trained representative where required.

G. Materials and equipment are specified herein by a single or by multiple manufacturers to indicate quality, material and type of construction desired. Manufacturer's products shown on the drawings have been used as basis for design; it shall be the Contractor's responsibility to ascertain that alternate manufacturer's products, or the particular products of named manufacturers, meet the detailed specifications and that size and arrangement of equipment are suitable for installation.

H. Model Numbers: Catalog numbers and model numbers indicated in the drawings and specifications are used as a guide in the selection of the equipment and are only listed for the contractor's convenience. The contractor shall determine the actual model numbers
for ordering materials in accordance with the written description of each item and with the intent of the drawings and specifications.

2.03 Requests for Substitution:

A. Where a particular system, product or material is specified by name, consider it as standard basis for bidding, and base proposal on the particular system, product or material specified.

B. Requests by Contractor for substitution will be considered only when reasonable, timely, fully documented, and qualifying under one or more of the following circumstances.

1. Required product cannot be supplied in time for compliance with Contract time requirements.

2. Required product is not acceptable to governing authority, or determined to be non-compatible, or cannot be properly coordinated, warranted or insured, or has other recognized disability as certified by Contractor.

3. Substantial cost advantage is offered Owner after deducting offsetting disadvantages including delays, additional compensation for redesign, investigation, evaluation and other necessary services and similar considerations.

C. All requests for substitution shall contain a "Comparison Schedule" and clearly and specifically indicate any and all differences or omissions between the product specified as the basis of design and the product proposed for substitution. Differences shall include but shall not be limited to data as follows for both the specified and substituted products:

 Principal of operation.
 Materials of construction or finishes.
 Thickness of gauge of materials.
 Weight of item.
 Deleted features or items.
 Added features or items.
 Changes in other work caused by the substitution.
 Performance curves.

If the approved substitution contains differences or omissions not specifically called to the attention of the Architect/Engineer, the Owner reserves the right to require equal or similar features to be added to the substituted products (or to have the substituted products replaced) at the Contractor's expense.

PART 3 EXECUTION

3.01 Workmanship: All materials and equipment shall be installed and completed in a first-class workmanlike manner and in accordance with the best modern methods and practice. Any materials installed which do not present an orderly and reasonably neat and/or workmanlike appearance, or do not allow adequate space for maintenance, shall be removed and replaced when so directed by the Architect/Engineer.

3.02 Coordination:

A. The Contractor shall be responsible for full coordination of the mechanical systems with shop drawings of the building construction so the proper openings and sleeves or
supports are provided for piping, ductwork, or other equipment passing through slabs or walls.

B. Any additional steel supports required for the installation of any mechanical equipment, piping, or ductwork shall be furnished and installed under the section of the specifications requiring the additional supports.

C. It shall be the Contractor's responsibility to see that all equipment such as valves, dampers, filters and such other apparatus or equipment that may require maintenance and operation are made easily accessible, regardless of the diagrammatic location shown on the drawings.

D. All connections to fixtures and equipment shown on the drawings shall be considered diagrammatic unless otherwise indicated by detail. The actual connections shall be made to fully suit the requirements of each case and adequately provide for expansion and servicing.

E. The contractor shall protect equipment, material, and fixtures at all times. He shall replace all equipment, material, and fixtures which are damaged as a result of inadequate protection.

F. Prior to starting and during progress of work, examine work and materials installed by others as they apply to work in this division. Report conditions which will prevent satisfactory installation.

G. Start of work will be construed as acceptance of suitability of work of others.

3.03 Interruption of Service: Before any equipment is shut down for disconnecting or tie-ins, arrangements shall be made with the Architect/Engineer and this work shall be done at the time best suited to the Owner. This will typically be on weekends and/or holidays and/or after normal working hours. Services shall be restored the same day unless prior arrangements are made. All overtime or premium costs associated with this work shall be included in the base bid.

3.04 Phasing: Provide all required temporary valves, piping, ductwork, equipment and devices as required. Maintain temporary services to areas as required. Remove all temporary material and equipment on completion of work unless Engineer concurs that such material and equipment would be beneficial to the Owner on a permanent basis.

3.05 Cutting and Patching: Notify General Contractor to do all cutting and patching of all holes, chases, sleeves, and other openings required for installation of equipment furnished and installed under this section. Utilize experienced trades for cutting and patching. Obtain permission from Architect/Engineer before cutting any structural items.

3.06 Equipment Setting: Bolt equipment directly to concrete pads or vibration isolators as required, using hot-dipped galvanized anchor bolts, nuts and washers. Level equipment.

3.07 Painting: Touch-up factory finishes on equipment located inside and outside shall be done under Division 23. Obtain matched color coatings from the manufacturer and apply as directed. If corrosion is found during inspection on the surface of any equipment, clean, prime, and paint, as required.

3.08 Clean-up: Thoroughly clean all exposed parts of apparatus and equipment of cement, plaster, and other materials and remove all oil and grease spots. Repaint or touch up as required to look like new. During progress of work, contractor is to carefully clean up and leave premises and all portions of building free from debris and in a clean and safe condition.
3.09 **Start-up and Operational Test:** Start each item of equipment in strict accordance with the manufacturer's instructions; or where noted under equipment specification, start-up shall be done by a qualified representative of the manufacturer. Alignment, lubrication, safety, and operating control shall be included in start-up check.

3.10 **Climate Control:** Operate heating and cooling systems as required after initial startup to maintain temperature and humidity conditions to avoid freeze damage and warping or sagging of ceilings and carpet.

3.11 **Record Drawings:**

A. During the progress of the work the Contractor shall record on their field set of drawings the exact location, as installed, of all piping, ductwork, equipment, and other systems which are not installed exactly as shown on the contract drawings.

B. Upon completion of the work, record drawings shall be prepared as described in the General Conditions, Supplementary Conditions, and Division 1 sections.

3.12 **Acceptance:**

A. **Punch List:** Submit written confirmation that all punch lists have been checked and the required work completed.

B. **Instructions:** At completion of the work, provide a competent and experienced person who is thoroughly familiar with project, for one day to instruct permanent operating personnel in operation of equipment and control systems. This is in addition to any specific equipment operation and maintenance training.

C. **Operation and Maintenance Manuals:** Furnish four complete manuals bound in ring binders with Table of Contents, organized, and tabbed by specification section. Manuals shall contain:

- Detailed operating instructions and instructions for making minor adjustments.
- Complete wiring and control diagrams.
- Routine maintenance operations.
- Manufacturer's catalog data, service instructions, and parts lists for each piece of operating equipment.
- Copies of approved submittals.
- Copies of all manufacturer's warranties.
- Copies of test reports and verification submittals.

D. **Record Drawings:** Submit record drawings.

E. **Test and Balance Report:** Submit four certified copies. The Report shall be submitted for review prior to the Substantial Completion Inspection unless otherwise required by Division 1.

F. Acceptance will be made on the basis of tests and inspections of job. A representative of firm that performed test and balance work shall be in attendance to assist. Contractor shall furnish necessary mechanics to operate system, make any necessary adjustments and assist with final inspection.

G. **Control Diagrams:** Frame under glass and mount on equipment room wall.
END OF SECTION 23 01 00
SECTION 23 05 20 PIPES AND PIPE FITTINGS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 This section is a Division-23 Basic Mechanical Materials and Methods section, and is part of each Division-23 section making reference to pipes and pipe fittings specified herein.

1.03 Extent of pipes and pipe fittings required by this section is indicated on drawings and/or specified in other Division-23 sections.

1.04 Codes and Standards:
 A. Welding: Qualify welding procedures, welders and operators in accordance with ASME B31.1, or ASME B31.9, as applicable, for shop and project site welding of piping work.
 B. Brazing: Certify brazing procedures, brazers, and operators in accordance with ASME Boiler and Pressure Vessel Code, Section IX, for shop and job-site brazing of piping work.

1.05 Test Report and Verification Submittals:
 A. Submit welding certification for all welding installers.
 B. Submit brazing certification for all brazing installers.

PART 2 PRODUCTS

2.01 Piping Materials: Provide pipe and tube of type, joint type, grade, size and weight (wall thickness or Class) indicated for each service. Where type, grade or class is not indicated, provide proper selection as determined by Installer for installation requirements, and comply with governing regulations and industry standards.

2.02 Pipe/Tube Fittings: Provide factory-fabricated fittings of type, materials, grade, class and pressure rating indicated for each service and pipe size. Provide sizes and types matching pipe, tube, valve or equipment connection in each case. Where not otherwise indicated, comply with governing regulations and industry standards for selections, and with pipe manufacturer’s recommendations where applicable.

2.03 Piping Materials/Products:
 A. Soldering Materials:
 1. Tin-Antimony (95-5) Solder: ASTM B-32, Grade 95TA.
 2. Silver-Phosphorus Solder: ASTM B-32, Grade 96TS.
 B. Pipe Thread Tape: Teflon tape.
 C. Protective Coating: Koppers Bitumastic No. 505 or equal.
 D. Gaskets for Flanged Joints: ANSI B16.21; full-faced for cast iron flanges; raised-face for steel flanges, unless otherwise noted.
E. **Welding Materials**: Comply with Section II, Part C, ASME Boiler and Pressure Vessel Code for welding materials. Materials shall be determined by installer to comply with installation requirements.

F. **Brazing Materials**: Silver content of not less than 15%. Materials shall be determined by installer to comply with installation requirements.

2.04 Copper Tube and Fittings:

A. **Copper Tube**:

1. **Copper Tube**: ASTM B88; Type K or L as indicated for each service; hard-drawn temper unless specifically noted as annealed.

2. **ACR Copper Tube**: ASTM B280.

3. **DWV Copper Tube**: ASTM B306.

B. **Fittings**:

1. **Wrought-Copper Solder-Joint Fittings**: ANSI B16.22.

2. **Copper Tube Unions**: Provide standard products recommended by manufacturer for use in service indicated.

3. **Wrought-Copper Solder-Joint Drainage Fittings**: ANSI B16.29.

2.05 Steel Pipes and Pipe Fittings

A. **Pipes**:

1. **Black Steel Pipe**: ASTM A-53 or A-120, seamless.

2. **Galvanized Steel Pipe**: ASTM A-53 or A-120, seamless.

B. **Pipe Fittings**:

3. **Threaded Malleable Iron**: ANSI B16.3; plain or galvanized as indicated.

4. **Malleable Iron Threaded Unions**: ANSI B16.39; selected by installer for proper piping fabrication and service requirements including style, end connections, and metal-to-metal seats (iron, bronze or brass); plain or galvanized as indicated.

6. **Flanged Cast Iron**: ANSI B16.1, including bolting.

7. **Steel Flanges/Fittings**: ANSI B16.5, including bolting and gasketing.

8. **Wrought-Steel Buttwelding Fittings**: ANSI B16.9, except ANSI B16.28 for short radius elbows and returns, rated to match connected pipe.
9. **Pipe Nipples**: Fabricated from same pipe as used for connected pipe; except do not use less than schedule 80 pipe where length remaining unthreaded is less than 1 ½ inches, and where pipe size is less than 1 ½ inches, and do not thread nipples full length (no close-nipples).

2.06 Plastic Pipes and Fittings:

A. **Pipes**:
 1. **PVC DWV Pipe**: ASTM D-2665, Schedule 40.
 2. **PVC Sewer Pipe**: ASTM D-3034.

B. **Fittings**:
 1. **PVC Solvent Cement**: ASTM D-2564.
 2. **PVC DWV Socket**: ASTM D-2665.
 3. **PVC Sewer Socket**: ASTM D-3034.

PART 3 EXECUTION

3.01 **Installation**

A. **General**: Install pipes and pipe fittings in accordance with recognized industry practices which will achieve permanently-leak proof piping systems, capable of performing each indicated service without piping failure. Install each run with minimum joints and couplings, but with adequate and accessible unions for disassembly and maintenance or replacement of valves and equipment. Reduce sizes (where indicated) by use of reducing fittings, not bushings. Align piping accurately at connections, within 1/16" misalignment tolerance.

B. Comply with ANSI B31 Code for Pressure Piping.

C. **Locate piping runs**, except as otherwise indicated, vertically and horizontally (pitched to drain) and avoid diagonal runs wherever possible. Orient horizontal runs parallel with walls and column lines. Locate runs as shown or described by diagrams, details and notations or, if not otherwise indicated, run piping in shortest route which does not obstruct usable space or block access for servicing building and its equipment. Hold piping close to walls, overhead construction, columns and other structural and permanent-enclosure elements of building; limit clearance to ½" where furring is shown for enclosure or concealment of piping, but allow for insulation thickness, if any. Where possible, locate insulated piping for 1" clearance outside insulation.

D. **Concealed Piping**: Unless specifically noted as “Exposed” on the drawings, conceal piping from view in finished and occupied spaces, by locating in column enclosures, chases, in hollow wall construction or above suspended ceilings; do not encase horizontal runs in solid partitions, except as indicated.

E. **Electrical Equipment Spaces**: Do not run piping through transformer vaults and other electrical, communications, or data equipment spaces and enclosures unless shown. Install drip pan under piping that must run through electrical spaces.

 1. Cut pipe from measurements taken at the site, not from drawings. Keep pipes free of contact with building construction and installed work.
3.02 **Piping System Joints:** Provide joints of the type indicated in each piping system.

A. **Solder copper** tube-and-fitting joints where indicated, in accordance with recognized industry practice. Cut tube ends squarely, ream to full inside diameter, and clean outside of tube ends and inside of fittings. Apply non-acid type solder flux to joint areas of both tubes and fittings. Insert tube full depth into fitting, and solder in manner which will draw solder full depth and circumference of joint. Wipe excess solder from joint before it hardens.

B. **Thread pipe** in accordance with ANSI B2.1; cut threads full and clean using sharp dies. Ream threaded ends to remove burrs and restore full inside diameter. Apply pipe joint compound, or pipe joint tape (Teflon) where recommended by pipe/fitting manufacturer, on male threads at each joint and tighten joint to leave not more than 3 threads exposed. Paint exposed threads to retard rusting.

C. **Flanged Joints:** Match flanges within piping system, and at connection with valves and equipment. Clean flange faces and install gaskets. Tighten bolts to provide uniform compression of gaskets. Bolts shall project 1/8" to 3/8" beyond nut face when tight.

D. **Weld** pipe joints in accordance with recognized industry practice and as follows. Be guided by ANSI B.31.

 1. Weld pipe joints only when ambient temperature is above 0°F.
 2. Bevel pipe ends at a 37.5° angle where possible, smooth rough cuts, and clean to remove slag, metal particles and dirt.
 3. Use pipe clamps or tack-weld joints; 4 welds for pipe sizes to 10". All welds shall be open-butt.
 4. Build up welds with root pass, followed by filler pass and then a cover pass. Eliminate valleys at center and edges of each weld. Weld by procedures which will ensure elimination of unsound or unfused metal, cracks, oxidation, blow-holes and non-metallic inclusions.
 5. Do not weld-out piping system imperfections by tack-welding procedures; refabricate to comply with requirements.
 6. At Installer's option, install forged branch-connection fittings wherever branch pipe is less than 3" and at least two pipe sizes smaller than main pipe indicated; or install regular "T" fitting. Weld-O-Let or equal.

E. **Plastic Pipe Joints:** Comply with manufacturer's instructions and recommendations, and with applicable industry standards.

 1. Solvent-cemented joints shall be made in accordance with ASTM D-2235 and ASTM F-402.
 2. PVC sewer pipe bell/gasket joints shall be installed in accordance with ASTM D-2321.

F. **Braze copper** tube-and-fitting joints where indicated, in accordance with ANSI B.31.

3.03 **Piping Installation**
A. Install piping to allow for expansion and contraction.

B. Isolate all copper tubing from steel and concrete by wrapping the pipe at the contact point, and for one inch on each side, with a continuous plastic sleeve. Isolate all copper tubing installed in block walls with a continuous plastic sleeve.

C. Underground Piping:

1. Provide plastic tape markers over all underground piping. Provide copper wire over all underground plastic piping. Locate markers 18" above piping.

2. Coat the following underground (uninsulated) pipes with a heavy coat of bitumastic or provide an 8 mil polyvinyl sleeve: black steel pipe, galvanized steel pipe, copper tubing.

END OF SECTION 23 05 20
SECTION 23 05 21 PIPING SPECIALTIES

PART 1 GENERAL

1.01 Drawings and general provisions of contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 This section is a Division-23 Basic Mechanical Materials and Methods section, and is part of each Division-23 section making reference to or requiring piping specialties specified herein.

PART 2 PRODUCTS

2.01 General: Provide factory-fabricated piping specialties recommended by manufacturer for use in service indicated. Provide piping specialties of types and pressure ratings indicated for each service, or if not indicated, provide proper selection as determined by Installer to comply with installation requirements. Provide sizes as indicated, and connections, which properly mate with pipe, tube, and equipment connections. Where more than one type is indicated, selection is Installer's option.

2.02 Escutcheons:
 A. General: Provide pipe escutcheons as specified herein with inside diameter closely fitting pipe outside diameter, or outside of pipe insulation where pipe is insulated. Select outside diameter of escutcheon to completely cover pipe penetration hole in floors, walls, or ceilings; and pipe sleeve extension, if any. Furnish pipe escutcheons with nickel or chrome finish for occupied areas, prime paint finish for unoccupied areas.
 B. Pipe Escutcheons: Provide cast brass or sheet brass escutcheons, solid or split hinged.

2.03 Dielectric Unions: Provide standard products recommended by manufacturer for use in service indicated, which effectively isolate ferrous from non-ferrous piping (electrical conductance), prevent galvanic action and stop corrosion.

2.04 Fire Barrier Penetration Seals:
 A. Provide seals for any opening through fire-rated walls, floors, or ceilings used as passage for mechanical components such as piping or ductwork in accordance with the requirements of Division 7.

2.05 Fabricated Piping Specialties:
 A. Drip Pans: Provide drip pans fabricated from corrosion-resistant sheet metal with watertight joints, and with edges turned up 2-1/2”. Reinforce top, either by structural angles or by rolling top over ¼” steel rod. Provide hole, gasket, and flange at low point for watertight joint and 1” drain line connection.
 B. Pipe Sleeves: Provide pipe sleeves of one of the following:
 1. Sheet-Metal: Fabricate from galvanized sheet metal; round tube closed with snaplock joint, welded spiral seams, or welded longitudinal joint. Fabricate from the following gages: 3” and smaller, 20 gage; 4” to 6” 16 gage; over 6”, 14 gage.
 2. Steel-Pipe: Fabricate from Schedule 40 galvanized steel pipe; remove burrs.
 3. Iron-Pipe: Fabricate from cast-iron or ductile-iron pipe; remove burrs.
C. **Sleeve Seals**: Provide sleeve seals for sleeves located in foundation walls below grade, or in exterior walls, of one of the following:

1. **Caulking and Sealant**: Provide foam or caulking and sealant compatible with piping materials used.

PART 3 EXECUTION

3.01 **Pipe Escutcheons**: Install pipe escutcheons on each pipe penetration through floors, walls, partitions, and ceilings where penetration is exposed to view; and on exterior of building. Secure escutcheon to pipe or insulation so escutcheon covers penetration hole, and is flush with adjoining surface.

3.02 **Dielectric Unions**: Install at each piping joint between ferrous and non-ferrous piping. Comply with manufacturer's installation instructions.

3.03 **Fire Barrier Penetration Seals**: Provide pipe sleeve as required. Fill entire opening with sealing compound. Adhere to manufacturer's installation instructions. Refer to Division 7.

3.04 **Drip Pans**: Locate drip pans under piping passing over or within 3’ horizontally of electrical equipment, and elsewhere as indicated. Hang from structure with rods and building attachments, weld rods to sides of drip pan. Brace to prevent sagging or swaying. Connect 1” drain line to drain connection, and run to nearest plumbing drain or elsewhere as indicated.

3.05 **Pipe Sleeves**: Install pipe sleeves of types indicated where piping passes through walls, floors, ceilings, and roofs. Do not install sleeves through structural members of work, except as detailed on drawings, or as reviewed by Architect/Engineer. Install sleeves accurately centered on pipe runs. Size sleeves so that piping and insulation (if any) will have free movement in sleeve, including allowance for thermal expansion; but not less than 2 pipe sizes larger than piping run. Where insulation includes vapor-barrier jacket, provide sleeve with sufficient clearance for installation. Install length of sleeve equal to thickness of construction penetrated, and finish flush to surface; except floor sleeves. Extend floor sleeves ¼” above level floor finish, and ¾” above floor finish sloped to drain. Provide temporary support of sleeves during placement of concrete and other work around sleeves, and provide temporary closure to prevent concrete and other materials from entering sleeves.

A. Install sleeves in fire-rated assemblies in accordance with the listing of the assembly and the fire barrier sealant.

B. Install sheet-metal sleeves at interior partitions and ceilings other than suspended ceilings. Fill annular space with caulking or fire barrier sealant as required.

C. Install steel-pipe sleeves at floor penetrations. Fill annular space with caulking or fire barrier sealant as required.

D. Install iron-pipe sleeves at all foundation wall penetrations and at exterior penetrations; both above and below grade. Fill annular space with caulking or mechanical sleeve seals.

END OF SECTION 23 05 21
SECTION 23 05 23 VALVES

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to the work of this section.

1.02 This section is a Division-23 Basic Materials and Methods section, and is part of each Division-23 section making reference to or requiring valves specified herein.

1.03 Extent of valves required by this section is indicated on drawings and/or specified in other Division-23 sections.

1.04 Quality Assurance:

 A. Valve Dimensions: For face-to-face and end-to-end dimensions of flanged or welding-end valve bodies, comply with ANSI B16.10.

 B. Valve Types: Provide valves of same type by same manufacturer.

 C. Valve Listing: For valves on fire protection piping, provide UL listing.

1.05 Approval Submittals: When required by other Division-23 sections, submit product data, catalog cuts, specifications, and dimensioned drawings for each type of valve. Include pressure drop curve or chart for each type and size of valve. Submit valves with Division-23 section using the valves, not as a separate submittal.

 A. Gate Valves. Type GA.

 B. Check Valves. Type CK.

 C. Ball Valves. Type BA.

1.06 O&M Data Submittals: Submit a copy of approval submittals. Submit installation instructions, maintenance data and spare parts lists for each type of valve. Include this data in the O&M Manual.

PART 2 PRODUCTS

2.01 General: Provide factory-fabricated valves recommended by manufacturer for use in service indicated. Provide valves of types and pressure ratings indicated; provide proper selection as determined by Installer to comply with specifications and installation requirements. Provide sizes as indicated, and connections which properly mate with pipe, tube, and equipment connections.

2.02 Acceptable Manufacturers: Subject to compliance with requirements, provide valves of one of the producers listed for each valve type. The model numbers are listed for contractor’s convenience only. In the case of a model number discrepancy, the written description shall govern.

2.03 Gate Valves:

 A. Packing: Select valves designed for repacking under pressure when fully opened, equipped with non-asbestos packing suitable for intended service. Select valves
designed so back seating protects packing and stem threads from fluid when valve is fully opened, and equipped with gland follower.

B. **Comply** with the following standards:

- **Cast Iron Valves**: MSS SP-70. Cast Iron Gate Valves, Flanged and Threaded Ends.
- **Bronze Valves**: MSS SP-80. Bronze Gate, Globe, Angle and Check Valves.
- **Steel Valves**: ANSI B16.34. Steel Standard Class Valve Ratings.

C. **Types** of gate (GA) valves:

5. **Soldered Ends 2" and Smaller (GA5)**: Class 150, bronze body, screwed bonnet, rising stem, solid wedge. Stockham B-124. Nibco S-134. Milwaukee 1169.

6. **Threaded Ends 2" and Smaller (GA6)**: 175 WWP, bronze body, screwed bonnet, rising stem, OS&Y, solid wedge, UL-listed. Stockham B-133. Nibco T-104-0.

7. **Flanged Ends 2½" and Larger (GA7)**: 175 WWP, iron body, bolted bonnet, rising stem, OS&Y, solid wedge, UL listed. Stockham G-634. Nibco F-607-0TS

11. **Flanged Ends 2½" and Larger (GA11)**: Class 300, cast steel body, bolted bonnet, rising stem, solid wedge, seal-welded seat rings. Provide trim to match use. Stockham 30-0F. Crane 33.

12. **Flanged Ends 2½" and Larger (GA12)**: 300 WWP, iron body, bolted bonnet, bronze mounted, rising stem, OS&Y, solid wedge, UL-listed. Stockham F-670. Nibco F-697-0.
2.04 **Ball Valves:**

A. General: Select with port area equal to or greater than connecting pipe area, include seat ring designed to hold sealing material.

B. Construction: Ball valves shall be rated for 150 psi saturated steam and 600 psi non-shock cold water. Pressure containing parts shall be constructed of ASTM B-584 alloy 844, or ASTM B-124 alloy 377. Valves shall be furnished with blow-out proof bottom loaded stem constructed of ASTM B-371 alloy 694 or other approved low zinc material. Provide TFE packing, TFE thrust washer, chrome-plated ball and reinforced teflon seats. Valves 1” and smaller shall be full port design. Valves 1¼” and larger shall be conventional port design. Stem extensions shall be furnished for use in insulated piping where insulation exceeds ½” thickness.

C. Comply with the following standards:

MSS SP-72. Ball Valves with Flanged or Butt Welding Ends for General Service.
MSS SP-110. Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends.

D. Types of ball (BA) valves:

3. **Threaded Ends 1” and Smaller (BA3):** Bronze two-piece full port body, UL listed (UL 842) for use with flammable liquids and LP gas. Nibco T-585-70-UL.

4. **Threaded Ends 2” and Smaller (BA4):** 175 WWP, bronze two-piece body, UL listed for fire protection service. Nibco KT-585-70-UL and KT-580-70-UL.

5. **Threaded Ends 2” and Smaller (BA5):** 400 WWP, bronze two-piece body, for fire protection service. Nibco KT-580.

6. **Threaded Ends 2½” and Smaller (BA6):** 300 WWP, bronze three-piece body, gear operator with handwheel, indicator flag, accepts tamper switch, for fire protection, UL listed. Nibco T-505-4 and G-505-4.

7. **Flanged Ends 2½” and Larger (BA7):** Class 150, carbon steel full bore two-piece body with adjustable stem packing. Nibco F515-CS series. Apollo 88-240.

2.05 **Valve Features:**

A. General: Provide valves with features indicated and, where not otherwise indicated, provide proper valve features as determined by Installer for installation requirements. Comply with ANSI B31.1

B. Valve features specified or required shall comply with the following:

1. **Bypass:** Comply with MSS SP-45, and except as otherwise indicated, provide manufacturer's standard bypass piping and valving. Provide for gate valves 8" and larger.
2. **Drain**: Comply with MSS SP-45, and provide threaded pipe plugs complying with applicable Division-23 pipe or tube section. Provide for gate valves 8" and larger.

3. **Flanged**: Provide valve flanges complying with ANSI B16.1 (cast iron), ANSI B16.5 (steel), or ANSI B16.24 (bronze).

5. **Solder-Joint**: Provide valve ends complying with ANSI B16.18.

6. **Trim**: Fabricate pressure-containing components of valve, including stems (shafts) and seats from brass or bronze materials, of standard alloy recognized in valve manufacturing industry unless otherwise specified.

7. **Non-Metallic Disc**: Provide non-metallic material selected for service indicated in accordance with manufacturer's published literature.

8. **Renewable Seat**: Design seat of valve with removable disc, and assemble valve so disc can be replaced when worn.

9. **Extended Stem**: Increase stem length by 2" minimum, to accommodate insulation applied over valve.

10. **Mechanical Actuator**: Provide factory-fabricated gears, gear enclosure, external chain attachment and chain designed to provide mechanical advantage in operating valve for all valves 4" and larger that are mounted more than 7'-0" above the floor, or are otherwise difficult to operate regardless of height.

PART 3 EXECUTION

3.01 Installation:

A. **General**: Install valves where required for proper operation of piping and equipment, including valves in branch lines to isolate sections of piping. Locate valves so as to be accessible and so that separate support can be provided when necessary. Install valves with stems pointed up, in vertical position where possible, but in no case with stems pointed downward below horizontal plane.

B. **Insulation**: Where insulation is indicated, install extended-stem valves, arranged in proper manner to receive insulation.

C. **Applications Subject to Corrosion**: Do not install bronze valves and valve components in direct contact with steel, unless bronze and steel are separated by dielectric insulator.

D. **Mechanical Actuators**: Install mechanical actuators as recommended by valve manufacturer.

3.02 Selection of Valve Ends (Pipe Connections): Except as otherwise indicated, select and install valves with the following ends or types of pipe/tube connections:

A. **Tube Size 2" and Smaller**: Threaded valves.

B. **Pipe Size 2" and Smaller**: Threaded valves.

C. **Pipe Size 2½" and Larger**: Flanged valves.
3.03 **Non-Metallic Disc:** Limit selection and installation of valves with non-metallic disc to locations indicated and where foreign material in piping system can be expected to prevent tight shutoff of metal seated valves.

3.04 **Renewable Seats:** Select and install valves with renewable seats, except where otherwise indicated.

END OF SECTION 23 05 23
SECTION 23 05 29 SUPPORTS, ANCHORS, AND SEALS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 This section is a Division-23 Basic Materials and Methods section, and is a part of each Division-23 section making reference to or requiring supports, anchors, and seals specified herein.

1.03 Extent of supports, anchors, and seals required by this section is indicated on drawings and/or specified in other Division-23 sections.

1.04 Code Compliance: Comply with applicable codes pertaining to product materials and installation of supports, anchors, and seals.

1.05 MSS Standard Compliance:
 A. Provide pipe hangers and supports of which materials, design, and manufacture comply with ANSI/MSS SP-58.
 B. Select and apply pipe hangers and supports, complying with MSS SP-69.
 C. Fabricate and install pipe hangers and supports, complying with MSS SP-89.
 D. Terminology used in this section is defined in MSS SP-90.

PART 2 PRODUCTS

2.01 Acceptable Manufacturers: Subject to compliance with requirements, provide supports and hangers by Grinnel, Michigan Hanger Company, B-Line Systems, or approved equal.

2.02 Horizontal-Piping Hangers and Supports: Except as otherwise indicated, provide factory-fabricated horizontal-piping hangers and supports complying with ANSI/MSS SP-58, of one of the following MSS types listed, selected by Installer to suit horizontal-piping systems, in accordance with MSS SP-69 and manufacturer's published product information. Use only one type by one manufacturer for each piping service. Select size of hangers and supports to exactly fit pipe size for bare piping, and to exactly fit around piping insulation with saddle or shield for insulated piping. Provide copper-plated hangers and supports for copper-piping systems.

 A. Adjustable Steel Clevises: MSS Type 1.
 B. Steel Double Bolt Pipe Clamps: MSS Type 3.
 C. Adjustable Steel Band Hangers: MSS Type 7.
 D. Steel Pipe Clamps: MSS Type 4.
 E. Pipe Stanchion Saddles: MSS Type 37, including steel pipe base support and cast-iron floor flange.
 F. Single Pipe Rolls: MSS Type 41.
 G. Adjustable Roller Hanger: MSS Type 43.
H. **Pipe Roll Stands**: MSS Type 44 or Type 47.

2.03 **Vertical-Piping Clamps**: Except as otherwise indicated, provide factory-fabricated vertical-piping clamps complying with ANSI/MSS SP-58, of one of the following MSS types listed, selected by Installer to suit vertical piping systems, in accordance with MSS SP-69 and manufacturer's published product information. Select size of vertical piping clamps to exactly fit pipe size of bare pipe. Provide copper-plated clamps for copper-piping systems.

A. **Two-Bolt Riser Clamps**: MSS Type 8.

B. **Four-Bolt Riser Clamps**: MSS Type 42.

2.04 **Hanger-Rod Attachments**: Except as otherwise indicated, provide factory-fabricated hanger-rod attachments complying with ANSI/MSS SP-58, of one of the following MSS types listed, selected by Installer to suit horizontal-piping hangers and building attachments, in accordance with MSS SP-69 and manufacturer's published product information. Use only one type by one manufacturer for each piping service. Select size of hanger-rod attachments to suit hanger rods. Provide copper-plated hanger-rod attachments for copper-piping systems.

A. **Steel Turnbuckles**: MSS Type 13.

B. **Malleable Iron Sockets**: MSS Type 16.

2.05 **Building Attachments**: Except as otherwise indicated, provide factory-fabricated building attachments complying with ANSI/MSS SP-58, of one of the following MSS types listed, selected by Installer to suit building substrate conditions, in accordance with MSS SP-69 and manufacturer's published product information. Select size of building attachments to suit hanger rods.

A. **Center Beam Clamps**: MSS Type 21.

B. **C-Clamps**: MSS Type 23.

C. **Malleable Beam Clamps**: MSS Type 30.

D. **Side Beam Brackets**: MSS Type 34.

E. **Concrete Inserts**: MSS Type 18.

2.06 **Saddles and Shields**: Except as otherwise indicated, provide saddles or shields under piping hangers and supports, factory-fabricated, for all insulated piping. Size saddles and shields for exact fit to mate with pipe insulation.

A. **Protection Shields**: MSS Type 40; of length recommended by manufacturer to prevent crushing of insulation.

B. **Protection Saddles**: MSS Type 39; use with rollers, fill interior voids with segments of insulation matching adjoining insulation.

2.07 **Miscellaneous Materials**:

A. **Metal Framing**: Provide products complying with NEMA STD ML 1.

B. **Steel Plates, Shapes and Bars**: Provide products complying with ANSI/ASTM A 36.
C. **Cement Grout**: Portland cement (ANSI/ASTM C 150, Type I or Type III) and clean uniformly graded, natural sand (ANSI/ASTM C 404, Size No. 2). Mix at a ratio of 1.0 part cement to 3.0 parts sand, by volume, with minimum amount of water required for placement and hydration.

D. **Heavy-Duty Steel Trapezes**: Fabricate from steel shapes or continuous channel struts selected for loads required; weld steel in accordance with AWS standards.

PART 3 EXECUTION

3.01 **Preparation**

A. **Proceed with installation** of hangers, supports and anchors only after required building structural work has been completed in areas where the work is to be installed. Correct inadequacies including (but not limited to) proper placement of inserts, anchors and other building structural attachments.

B. **Prior to installation** of hangers, supports, anchors and associated work, Installer shall meet at project site with Contractor, installer of each component of associated work, and installers of other work requiring coordination with work of this section for purpose of reviewing material selections and procedures to be followed in performing the work in compliance with requirements specified.

3.02 **Installation of Building Attachments**:

A. **Install building attachments** at required locations within concrete or on structural steel for proper piping support. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional building attachments where support is required for additional concentrated loads, including valves, flanges, guides, strainers, expansion joints, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten insert securely to forms. Where concrete with compressive strength less than 2500 psi is indicated, install reinforcing bars through openings at top of inserts.

B. In areas of work requiring attachments to existing concrete, use self drilling rod inserts, Phillips Drill Co., "Red-Head" or equal.

3.03 **Installation of Hangers and Supports**:

A. **General**: Install hangers, supports, clamps and attachments to support piping properly from building structure; comply with MSS SP-69. Arrange for grouping of parallel runs of horizontal piping to be supported together on trapeze type hangers where possible. Install supports with maximum spacings complying with MSS SP-69 or as listed herein, whichever is most limiting. Where piping of various sizes is to be supported together by trapeze hangers, space hangers for smallest pipe size or install intermediate supports for smaller diameter pipe. Do not use wire or perforated metal to support piping, and do not support piping from other piping.

1. **Horizontal steel pipe and copper tube 1-1/4" diameter and smaller**: support on 6 foot centers.

2. **Horizontal steel pipe and copper tube 1-1/2" diameter and larger**: support on 10 foot centers.

3. **Vertical steel pipe and copper tube**: support at each floor.

4. **Plastic pipe**: support in accordance with manufacturer's recommendations.
5. Fire protection piping: support in accordance with NFPA 13.

B. **Install hangers and supports** complete with necessary inserts, bolts, rods, nuts, washers and other accessories.

C. **Paint** all black steel hangers with black enamel. Galvanized steel and copper clad hangers do not require paint.

D. **Prevent electrolysis** in support of copper tubing by use of hangers and supports which are copper plated, or by other recognized industry methods.

E. **Provision for Movement:**
 1. **Install hangers and supports** to allow controlled movement of piping systems and to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends and similar units.
 2. **Load Distribution:** Install hangers and supports so that piping live and dead loading and stresses from movement will not be transmitted to connected equipment.
 3. **Pipe Slopes:** Install hangers and supports to provide indicated pipe slopes, and so that maximum pipe deflections allowed by ANSI B31 are not exceeded.

F. **Insulated Piping:** Comply with the following installation requirements.
 1. **Shields:** Where low-compressive-strength insulation or vapor barriers are indicated, install coated protective shields.
 2. **Clamps:** Attach clamps, including spacers (if any), to piping with clamps projecting through insulation; do not exceed pipe stresses allowed by ANSI B31.

G. **Support fire protection** piping independently of other piping.

3.04 **Installation of Anchors:**

A. **Install anchors** at proper locations to prevent stresses from exceeding those permitted by ANSI B31, and to prevent transfer of loading and stresses to connected equipment.

B. **Fabricate and install anchors** by welding steel shapes, plates and bars to piping and to structure. Comply with ANSI B31 and with AWS standards.

C. **Anchor Spacings:** Where not otherwise indicated, install anchors at ends of principal pipe-runs, at intermediate points in pipe-runs between expansion loops and elbows. Make provisions for preset of anchors as required to accommodate both expansion and contraction of piping.

D. **Where expansion compensators** are indicated, install anchors in accordance with expansion unit manufacturer's written instructions to limit movement of piping and forces to maximums recommended by manufacturer for each unit.

3.05 **Equipment Bases:**

A. **Provide concrete housekeeping bases** where indicated for all floor mounted equipment furnished as part of the work of Division 23. Size bases to extend minimum of 4" beyond equipment base in any direction; and 4" above finished floor elevation. Construct of reinforced concrete, roughen floor slab beneath base for bond, and provide steel rod
anchors between floor and base. Locate anchor bolts using equipment manufacturer's templates. Chamfer top and edge corners.

3.06 Provide structural steel stands to support equipment not floor mounted or hung from structure. Construct of structural steel members or steel pipe and fittings. Provide factory-fabricated tank saddles for tanks mounted on steel stands. Prime and paint with black enamel.

END OF SECTION 23 05 29
SECTION 23 05 48 VIBRATION ISOLATION

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 This section is a Division-23 Basic Mechanical Materials and Methods section, and is part of each Division-23 section making reference to vibration isolation equipment.

1.03 Extent of vibration isolation required by this section is indicated on drawings and/or specified in other Division-23 sections.

1.04 Approval Submittals: When required by other Division-23 sections, submit product data sheets for each type of vibration isolation equipment including configuration and rating data. Submit with Division-23 section using vibration isolation, not as a separate submittal. Provide calculations showing supported weight, deflection, and isolator size and type for each item of supported equipment. Submit for:

A. Equipment Mountings. Type EM.
B. Hangers. Type HA.

1.05 O&M Data Submittals: Submit a copy of approval submittals for each type of vibration isolation equipment. Include this data in O&M Manual.

PART 2 PRODUCTS

2.01 General: Provide factory-fabricated products recommended by manufacturer for use in service indicated. Provide products of types and deflections indicated; provide proper selection as determined by Installer to comply with specifications and installation requirements. Provide sizes which properly fit with equipment. All metal parts installed outside shall be hot dipped galvanized after fabrication.

2.02 Acceptable Manufacturers: Subject to compliance with requirements, provide vibration isolation equipment of: Mason Industries, Keflex, Consolidated Kinetics, Vibration Mountings & Controls, Wheatley or approved equal. All vibration isolators shall be supplied by a single approved manufacturer.

2.03 Equipment Mountings:

A. Select mountings with the required deflection and fastening means. Provide steel rails or bases as required to compensate for equipment rigidity and overhang.

B. Types of equipment mountings (EM):

1. Spring Mountings (EM1): Spring isolators shall be free-standing and laterally stable without any housing. All mounts shall have leveling bolts. Spring diameter shall be not less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50% of the rated deflection. Springs shall be so designed that the ratio of horizontal stiffness to vertical stiffness is approximately one. Provide a nominal static deflection of at least 1.0”. Basis of Design: Mason Industries SLFH.

2. Spring Mountings with Housings (EM2): Spring isolators shall consist of open, stable steel springs and include vertical travel limit stops to control extension when weight is removed. The housing of the spring unit shall serve as blocking during
erection of equipment. Provide a nominal static deflection of at least 1.0". All mountings used outside shall be hot dipped galvanized. Basis of Design: Mason Industries SLR.

3. **Spring Mountings with Housings (EM3):** Spring isolators shall consist of open, stable steel springs with neoprene inserts to limit movement between upper and lower housing on start and stop. Provide a nominal static deflection of at least 1.0". Mountings shall be specifically designed for critical areas on light-weight floors. Basis of Design: Mason Industries C.

4. **Neoprene Mountings (EM4):** Double deflection neoprene-in-shear mountings shall have a minimum static deflection of 0.35". All metal surfaces shall be neoprene covered. The top and bottom surfaces shall be neoprene ribbed and bolt holes shall be provided in the base. Basis of design: Mason Industries ND.

5. **Pads (EM5):** Waffle or ribbed pattern neoprene pads shall be fabricated from 40-50 durometer neoprene. Provide rigid steel plate and mounting angles as required. Basis of design: Mason Industries Super W.

2.04 **Hangers:**

A. **Select** hangers with the required deflection. Provide all required hanger rods and fasteners.

B. **Types** of hangers (HA):

1. **Hangers (HA1):** Vibration hangers shall contain a steel spring set in a neoprene cup manufactured with a grommet to prevent short-circuiting of the hanger rod. The cup shall contain a steel washer designed to properly distribute the load on the neoprene and prevent its extrusion. Spring diameters and hanger box lower-hole sizes shall be large enough to permit the hanger rod to swing through a 30-degree arc before contacting the hole and short circuiting the spring. Springs shall have a minimum additional travel to solid equal to 50% of the rated deflection. Basis of Design: Mason Industries 30.

2. **Hangers (HA2):** Vibration hangers shall contain a laterally stable steel spring and 0.3" deflection neoprene or fiberglass element in series. A neoprene neck shall be provided where the hanger rod passes through the steel box supporting the isolator mount to prevent metal to metal contact. Spring diameters and hanger box lower hole sizes shall be large enough to permit the hanger rod to swing through a 30 degree arc before contacting the hole and short circuiting the spring. Springs shall have a minimum additional travel to solid equal to 50% of the rated deflection. Basis of Design: Mason Industries 30N.

3. **Hangers (HA3):** Double deflection neoprene-in-shear or EPDM hangers. Units shall be complete with projected neoprene bushing to prevent steel-to-steel contact between hanger box and hanger rod. Average static deflection shall be not less than 0.4 inches. Basis of Design: Mason Industries HD.

PART 3 EXECUTION

3.01 Install vibration isolation devices for the duty indicated and for ease of inspection, adjustment, and proper operation. Install in accordance with the manufacturer's written instructions and coordinate with shop drawings of supported equipment.

3.02 All connections to fixtures and equipment shown on the drawings shall be considered
diagrammatic unless otherwise indicated by detail. The actual connections shall be made to fully suit the requirements of each case and adequately provide for expansion and servicing.

3.03 Piping, ductwork and conduit shall not be suspended from one another or physically contact one another. Vibrating systems shall be kept free from non-vibrating systems.

3.04 Equipment Mountings:

A. Unless otherwise shown or specified, all floor-mounted equipment shall be set on housekeeping equipment bases. Refer to Division-23 section “Supports, Anchors, and Seals”.

B. No equipment unit shall bear directly on vibration isolators unless its own frame is suitably rigid to span between isolators, and such direct support is approved by the equipment manufacturer. All support frames shall be sufficiently stiff and rigid so as to prevent distortion and misalignment of components installed thereon.

C. Align equipment mountings for a free, plumb installation. Isolators that are binding, offset or fully compressed will not be accepted.

3.05 Hangers:

A. Position vibration isolation hangers so that hanger housing may rotate a full 360 degrees without contacting any object.

B. Install steel angles, channels, rods and fasteners to level equipment, piping or ductwork and to evenly distribute the supported weight.

3.06 Connections of Ducts: Ducts shall be connected to fan intakes and discharges by means of flexible connectors in accordance with Division-23 section "Ductwork Accessories" so that all vibrating equipment is fully isolated.

END OF SECTION 23 05 48
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 23 05 53 MECHANICAL IDENTIFICATION

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 This section is a Division-23 Basic Mechanical Materials and Methods section, and is part of each Division-23 section making reference to or requiring identification devices specified herein.

1.03 Extent of mechanical identification work required by this section is indicated on drawings and/or specified in other Division-23 sections.

1.04 Refer to Division-26 sections for identification requirements of electrical work; not work of this section. Refer to other Division-23 sections for identification requirements for controls; not work of this section.

1.05 Codes and Standards: Comply with ANSI A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

PART 2 PRODUCTS

2.01 General: Provide manufacturer's standard products of categories and types required for each application as referenced in other Division-23 sections. Where more than single type is specified for application, selection is Installer's option, but provide single selection for each product category.

2.02 Painted Identification Materials

A. **Stencils**: Standard fiberboard stencils, prepared for required applications with letter sizes generally complying with recommendations of ANSI A13.1 for piping and similar applications, but not less than 1-¼" high letters for ductwork and not less than ¾" high letters for access door signs and similar operational instructions.

B. **Stencil Paint**: Standard exterior type stenciling enamel; black, except as otherwise indicated; either brushing grade or pressurized spray-can form and grade.

C. **Identification Paint**: Standard identification enamel.

2.03 Plastic Pipe Markers

A. **Pressure-Sensitive Type**: Provide manufacturer's standard pre-printed, permanent adhesive, color-coded, pressure-sensitive vinyl pipe markers.

1. **Lettering**: Manufacturer's standard pre-printed nomenclature which best describes piping system in each instance, as selected by Architect/Engineer in cases of variance with name as shown or specified.

2. **Arrows**: Print each pipe marker with arrows indicating direction of flow, either integrally with piping system service lettering (to accommodate both directions), or as separate unit of plastic.

2.04 Valve Tags:
A. **Brass Valve Tags**: Provide 19-gage polished brass valve tags with stamp-engraved piping system abbreviation in ¼" high letters and sequenced valve numbers ½" high, and with 5/32" hole for fastener. Provide 1-½" diameter tags, except as otherwise indicated.

B. **Plastic Laminate Valve Tags**: Provide manufacturer's standard 3/32" thick engraved plastic laminate valve tags, with piping system abbreviation in ¼" high letters and sequenced valve numbers ½" high, and with 5/32" hole for fastener. Provide 1-½" square black tags with white lettering, except as otherwise indicated.

2.05 **Engraved Plastic-Laminate Signs**:

A. **General**: Provide engraving stock melamine plastic laminate, in the sizes and thicknesses indicated, engraved with engraver's standard letter style a minimum of 3/4" tall and wording indicated, punched for mechanical fastening except where adhesive mounting is necessary because of substrate.

B. **Thickness**: 1/16" for units up to 20 sq. in. or 8" length; 1/8" for larger units.

C. **Fasteners**: Self-tapping stainless steel screws, except contact-type permanent adhesive where screws cannot or should not penetrate the substrate.

2.06 **Stamped Nameplates**: Provide equipment manufacturer's standard stamped nameplates for motors, AHUs, pumps, etc.

PART 3 EXECUTION

3.01 **Coordination**: Where identification is to be applied to surfaces which require insulation, painting or other covering or finish, including valve tags in finished mechanical spaces, install identification after completion of covering and painting. Install identification prior to installation of acoustical ceilings and similar removable concealment.

3.02 **Ductwork Identification**:

A. **General**: Identify air supply, return, exhaust, intake and relief ductwork with stenciled signs and arrows, showing ductwork service and direction of flow, in black or white.

B. **Location**: In each space where ductwork is exposed, or concealed only by removable ceiling system, locate signs near points where ductwork originates or continues into concealed enclosures, and at 50’ spacings along exposed runs.

C. **Access Doors**: Provide stenciled signs on each access door in ductwork and housings, indicating purpose of access (to what equipment) and other maintenance and operating instructions, and appropriate and procedural information.

3.03 **Piping System Identification**:

A. **General**: Install pipe markers of one of the following types on each system indicated to receive identification, and include arrows to show normal direction of flow:

1. **Plastic pipe markers**.

2. **Stenciled markers**, black or white for best contrast.

B. **Locate pipe markers** as follows wherever piping is exposed to view in occupied spaces, machine rooms, accessible maintenance spaces and exterior non-concealed locations.
1. Near each valve and control device.
2. Near each branch, excluding short take-offs for fixtures and terminal units; mark each pipe at branch, where there could be question of flow pattern.
3. Near locations where pipes pass through walls, floors, ceilings, or enter non-accessible enclosures.
4. At access doors, manholes and similar access points which permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced intermittently at maximum spacing of 50’ along each piping run, except reduce spacing to 25’ in congested areas of piping and equipment.
7. On piping above removable acoustical ceilings, except omit intermittently spaced markers.

C. The following piping shall be color-coded where exposed in mechanical and electrical rooms by completely painting the piping with the indicated color. Use standard colors where exposed in finished spaces. Use standard identification methods in concealed areas.

- Gas piping - Yellow

3.04 Valve Identification: Provide coded valve tag on every valve, cock and control device in each piping system; exclude check valves, valves within factory-fabricated equipment units, plumbing fixture faucets, convenience and lawn-watering hose bibs, and shut-off valves at plumbing fixtures, HVAC terminal devices and similar rough-in connections of end-use fixtures and units. Coordinate code with operating instructions.

3.05 Valve Charts: Provide framed, glass covered valve charts in each mechanical room. Identify coded valve number, valve function, and valve location for each valve.

3.06 Mechanical Equipment Identification: Install engraved plastic laminate sign on a vertical surface on or near each major item of mechanical equipment and each operational device. Label shall indicate type of system and area served. Provide signs for the following general categories of equipment and operational devices:

- A. Main control and operating valves, including safety devices.
- B. Meters, gauges, thermometers and similar units.
- C. Water Heaters, Furnaces, and Heaters.
- D. Pumps.
- E. Fans.
- F. HVAC air handlers and fan coil units.
- G. Air conditioning indoor and outdoor units.

3.07 Stamped Nameplates: Equipment manufacturers to provide standard stamped nameplates on all major equipment items such as motors, pumps, AHUs, etc. Where motors are hidden from
view (within equipment casing, or otherwise not easily accessible, etc.), the equipment supplier shall furnish a duplicate motor data nameplate to be affixed to the equipment casing in an easily visible location, unless data is already included on the equipment nameplate.

3.08 Adjusting and Cleaning:

A. Adjusting: Relocate any mechanical identification device which has become visually blocked by work of this division or other divisions.

B. Cleaning: Clean face of identification devices, and glass frames of valve charts.

END OF SECTION 23 05 53
SECTION 23 05 56 ACCESS DOORS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 This section is a Division-23 Basic Mechanical Materials and Methods section, and is part of each Division-23 section making reference to or requiring access panels specified herein.

1.03 Approval Submittals:

A. Product Data: When required by other Division-23 sections, submit product data for access doors. Submit with Division-23 section using access doors, not as a separate submittal. Include rating data.

1.04 O&M Data Submittals: Submit a copy of approval submittal. Include this data in O&M Manuals.

PART 2 PRODUCTS

2.01 Acceptable Manufacturers: Subject to compliance with requirements, provide access doors by Acudor, Milcor, Jay R. Smith, Zurn, BOICO, Elmdor, or approved equal.

2.02 General: Where floors, walls and ceilings must be penetrated for access to mechanical work, provide types of access doors indicated. Furnish sizes indicated or, where not otherwise indicated, furnish adequate size for intended and necessary access. Furnish manufacturer's complete units, of type recommended for application in indicated substrate construction, in each case, complete with anchorages and hardware.

2.03 Access Door Construction: Except as otherwise indicated, fabricate wall/ceiling door units of welded steel construction with welds ground smooth; 16-gauge frames and 14-gauge flush panel doors; 175° swing with concealed spring hinges; flush screw-driver-operated cam locks; factory-applied rust-inhibitive prime-coat paint finish.

PART 3 EXECUTION

3.01 Access doors shall be installed to operate and service all mechanical equipment including valves, dampers, duct access panels, and other items requiring maintenance that are concealed above or behind finished construction. Access doors shall be installed in walls, chase and floors as necessary, but are not required in accessible suspended ceiling systems. Access doors shall have factory applied protective phosphate coating and baked enamel primer suitable for field painting.

3.02 Access doors shall be installed by the Division installing the substrate construction. However, responsibility for furnishing and determining location of access doors is part of this Division's work. The style of access door shall be suitable for construction into which installed.

3.03 Access doors shall be sized and located as required to provide proper maintenance and service access in accordance with the manufacturer's recommendations and code authority requirements for all devices and equipment.
END OF SECTION 23 05 56
SECTION 23 05 73 EXCAVATION & BACKFILL

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 This section is a Division-23 Basic Mechanical Materials and Methods section, and is part of each Division-23 and Division-22 section making reference to or requiring excavation and backfill specified herein.

1.03 Refer to other Division-22 and 23 sections and/or drawings for specific requirements of the particular piping system being installed. Where another Division-22 or 23 section or the drawings conflict with requirements of this section, the other Division-22 or 23 section or the drawings shall take precedence over the general requirements herein.

1.04 OSHA: Contractor employee worker protection for all trenching and excavation operations shall comply with 29 CFR 1926.650 Subpart P and all current OSHA requirements.

1.05 Trench Safety Act: Contractor shall comply with all requirements of Florida Statutes Chapter 553, including the requirement to provide a separate line item to identify the cost to comply on a per lineal foot of trench and per square foot of shoring.

PART 2 PRODUCTS

2.01 Sand: Clean, hard, uncoated grains free from organic matter or other deleterious substances. Sand for backfill shall be of a grade equal to mortar sand.

2.02 Gravel: Clean, well graded hard stone or gravel, free from organic material. Size range to be from No. 4 screen retentions to 1".

2.03 Earth: Fill free of clay, muck, stones, wood, roots or rubbish.

2.04 Identification Tape: Polyethylene 6 inches wide, 0.004 inches thick, continuously printed with "CAUTION" in large letters and type of pipe below.

2.05 Copper Identification Wire: 14-gauge.

PART 3 EXECUTION

3.01 Ditching and Excavation: Shall be performed by hand wherever there is a possibility of encountering obstacles or any existing utility lines of any nature whatsoever. Where clear and unobstructed areas are to be excavated, appropriate machine excavation methods may be employed. Avoid use of machine excavators within the limits of the building lines.

3.02 Bedding: Excavate to bottom grade of pipe to be installed, and shape bed of undisturbed earth to contour of pipe for a width of at least 50% of pipe diameter. If earth conditions necessitate excavation below grade of the pipe, such as due to the presence of clay, muck, or roots, subcut and bring bed up to proper elevation with clean, new sand (as described in paragraph 2.1), deposited in 6" layers and tamped. Notify Architect/Engineer if subcut exceeds 12", or if bed is of an unstable nature. In this case a 6" minimum layer of gravel will be required before sand bedding begins. Submit cost proposal if the earth conditions require subcut in excess of 12" or if gravel is required to achieve proper bedding.

3.03 Placing: Pipe shall be carefully handled into place. Avoid knocking loose soil from the banks of the trench into the pipe bed. Rig heavier sections with nylon slings in lieu of wire rope to
avoid crushing or chipping. Pipe which is handled with insulation in place, coated pipe, and jacketed pipe shall have special handling slings as required to prevent damage to the material.

3.04 Backfilling: Deposit clean new sand (as described in paragraph 2.1) to 6" above the pipe and tamp. Then deposit sand or earth carefully in 6" layers, maintaining adequate side support, especially on nonferrous piping materials. Compact fill in 6" layers, using mechanical means, up to the top elevation of the pipe, and in 12" layers to rough or finish grade as required. Fine grade and restore surface to original condition.

3.05 Special: Excavations shall be installed and maintained in satisfactory condition during the progress of the work. Subsurface structures are to be constructed in adequately sized excavations. De-watering equipment shall be installed and properly maintained where required. Shoring shall be employed in the event of unstable soil condition, and in all cases where required by OSHA regulations and necessary to protect materials and personnel from injury.

3.06 Identification: Install identification tape directly above all underground piping, one tape for each pipe where multiple pipes are installed. Depth of tape shall be at least 6 inches below finished grade and 24" above buried pipe. Install copper wire above non-metallic pipes.

3.07 Depth of Cover: Minimum cover for underground piping is two feet unless indicated otherwise.

END OF SECTION 23 05 73
SECTION 23 05 90 START-UP REQUIREMENTS FOR HEATING, VENTILATING, & AIR CONDITIONING (HVAC) SYSTEMS

PART 1 GENERAL

1.01 Intent: It is the intent of this section to require that the startup requirements and report noted herein be performed prior to starting TAB work on each system. Work can be phased with permission of the Engineer.

1.02 Coordination:

A. The Contractor shall furnish to the TAB Contractor a complete set of plans, specifications, addenda, shop drawings, equipment performance data sheets, change orders, etc. as requested by the TAB Contractor.

B. The Contractor shall participate in a TAB coordination meeting to discuss interface requirements with the TAB Contractor and to establish a schedule for TAB work prior to start of TAB work.

1.03 Test Reports and Verification Submittals:

A. Submit Startup Report as described herein for each system. Attach Factory Startup Report for equipment as required by other Division-23 sections.

PART 2 PRODUCTS: None

PART 3 EXECUTION:

3.01 The TAB work shall not commence until the Engineer has received written notice from the Contractor that HVAC systems are 100% complete and are fully operational. Submit Startup Report as described herein.

3.02 The Contractor shall place all HVAC systems and equipment into complete operation during each working day of TAB work.

3.03 The Contractor shall provide access to HVAC systems and equipment by supplying ladders and/or scaffolding, and opening access panels and equipment room doors.

3.04 The TAB Contractor will provide to the Contractor TAB punch lists of non-complying HVAC work as they are discovered. The Contractor shall replace or repair non-complying work as soon as possible in order not to delay completion of TAB work.

3.05 Airside Systems: The Contractor shall provide the following information to the Engineer to substantiate proper start-up and preliminary adjustments of air handler units, belt driven fans, and duct systems.

A. Verify that air grilles (supply, return, exhaust, transfer, outdoor, etc.) are installed and connected to the duct system.

B. Verify that duct systems are clean of debris.

C. Verify that ducts attached with flexible connectors are aligned within ½” and have a uniform gap between ducts of 1”-1.5”. Flexible connectors shall not leak and shall be insulated.
D. Verify that filters are clean and filter spacers are installed.

E. Verify that balancing dampers at grilles and branch ducts are operational and are fully opened.

F. Verify that fan discharges are appropriate for the outlet ductwork with regards to the "system effect" per AMCA Publication 201. Inappropriate fan discharges will not be accepted.

G. Verify proper fan rotation.

H. Verify proper belt drive alignment.

I. Verify fan motor overload elements are correctly sized.

J. Adjust fan sheave until CFM is at or above design CFM. Provide additional sheaves and belts as required. Verify that motor is not overloaded.

K. Verify that HVAC control systems are fully operational.

3.06 **Startup Report:** The Contractor shall submit the startup information required by this section to the Engineer in a typed report organized as outlined herein. The Startup Report is required to meet the written notice described herein prior to starting TAB work. TAB work will not start until the Startup Report has been submitted and approved.

END OF SECTION 23 05 90
SECTION 23 05 91 TESTING, CLEANING, AND STERILIZATION OF PIPING SYSTEMS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 This section is a Division-23 Basic Mechanical Materials and Methods section, and is part of each Division-23 section making reference to or requiring the testing and other procedures specified herein.

1.03 Notify the Architect/Engineer when system tests are ready to be witnessed at least 24 hours prior to the test.

1.04 All materials, test equipment, and devices required for cleaning, testing, sterilizing or purging shall be provided by the Contractor.

PART 2 PRESSURE TESTS

2.01 General: Provide temporary equipment for testing, including pump and gauges. Test piping systems before insulation is installed wherever feasible, and remove control devices before testing. Test each natural section of each piping system independently but do not use piping system valves to isolate sections where test pressure exceeds valve pressure rating. Fill each section with indicated medium and pressurize for indicated pressure and time.

2.02 Required test period is four hours.

2.03 No piping, fixtures, or equipment shall be concealed or covered until they have been tested. The contractor shall apply each test and ensure that it is satisfactory for the period specified before calling the Architect/Engineer to observe the test. Test shall be repeated upon request to the satisfaction of those making the inspection.

2.04 Observe each test section for leakage at the end of the test period. Test fails if leakage is observed or if pressure drop exceeds 5% of the test pressure.

2.05 Check of systems during application of test pressures should include visual check for water leakage and soap bubble or similar check for air and nitrogen leakage.

2.06 During heating and cooling cycles, linear expansion shall be checked at all elbows and expansion joints for proper clearance.

2.07 Repair piping systems sections which fail required piping test. Disassemble and re-install using new materials to extent required to overcome leakage. Do not use chemicals, stop-leak compounds, mastics, or other temporary repair methods.

2.08 Pressure Test Requirements:

A. Soil, Waste, and Vent Test all piping within the building with a 10 foot head of water. Test piping in sections so that all joints are tested. Provide test tees as required.

B. Gas: Test with air or nitrogen at 150% of normal working pressure, but not less than 25 psig. The test and check for leaks shall be in accordance with NFPA-54.
C. Domestic Water: Perform hydrostatic test on all piping within the building at twice the normal static pressure at service point, but not less than 100 psig. Once tested, flush out piping and leave under pressure of the supply main or 40 psig for the balance of the construction period.

PART 3 CLEANING AND STERILIZATION

3.01 General: Clean exterior surfaces of installed piping systems of superfluous materials, and prepare for application of specified coatings (if any). Flush out piping systems with clean water or blowdown with air before proceeding with required tests. Inspect each run of each system for completion of joints, supports and accessory items.

3.02 Flush and drain all water systems at least three times. Reverse flush systems from smallest piping to largest piping. Replace startup strainers with operating strainers.

3.03 Blowdown all systems with air or nitrogen (at a rate of flow exceeding design) at least three times or until no residue shows at each outlet. Reverse blowdown systems from smallest piping to largest piping.

3.04 Sterilization of Domestic Water Systems:

A. Prerequisites: All new hot and cold water piping installed (complete), all fixtures connected, system flushed out, and system filled with water.

B. The shut off valve at the point of connection shall be closed, all fixture outlets opened slightly, and a sterilizing solution shall be introduced at a manifold connection installed by the Contractor at the point of connection.

C. The solution shall contain 50 parts per million of available chlorine. The chlorinating material shall be either liquid chlorine or calcium hypochlorite. The solution shall be allowed to stand in the system for at least eight hours after which the entire system shall be flushed.

D. After final flushing, all aerators shall be removed, cleaned, and reinstalled. After final flush the residual chlorine shall not exceed 0.2 parts per million.

E. The Architect/Engineer shall be notified 24 hours prior to the procedure so that it can be witnessed.

F. Provide sampling and certified report by an independent testing lab. Provide written Health Department approval of disinfection samples.

3.05 Fuel Gas: Purge all fuel gas systems in accordance with NFPA 54.

END OF SECTION 23 05 91
SECTION 23 05 93 TESTING AND BALANCING OF MECHANICAL SYSTEMS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section. Division-23 Basic Mechanical Materials Sections apply to work of this section.

1.02 Description of Work:

A. Extent of testing, adjusting, and balancing work (TAB) is indicated by requirements of this section, and also by drawings and schedules, and is defined to include, but is not necessarily limited to, air distribution systems, hydronic distribution systems and associated equipment and apparatus of mechanical work. The work consists of setting speed and volume (flow) adjusting facilities provided for systems, recording data, conducting tests, preparing and submitting reports, and recommending modifications to work as required.

B. Coordination: Coordinate with the General Contractor and Mechanical Contractor responsible for the HVAC system installation as required to complete the TAB work.

1.03 The intent of this specification is to balance HVAC systems within the tolerances listed, maintaining the pressure relationships indicated, with a minimum of noise.

A. Airflow Tolerances:

1. Air Handling: The supply air, return air and outdoor air quantities shall be balanced within ±5% of design values.

2. Exhaust Fans: The exhaust fan quantities shall be set as required to maintain the design exhaust terminal flows within ±5% of design values. If no exhaust terminals exist, exhaust fan air quantities shall be balanced within ±10% of design values.

3. Ceiling Diffusers, Supply Registers, Return and Exhaust Inlets: Balance to an air quantity within ±10% of the design values.

B. Temperature Tolerances:

1. Air Handling Temperatures: The controlled temperatures at AHUs shall be verified to be under control within ±1ºF of design values.

2. Room Temperatures: Balance systems and controls within ±2ºF of indicated settings.

C. Pressure Relationships: Where code or design indicates a specific pressure relationship, the pressure relationship shall take precedence over airflow tolerances. Airflow tolerances may need to be held tighter than allowed tolerances to meet pressure relationships.

1.04 Quality Assurance: The TAB Contractor’s main office shall be located within 125 miles of the project site and certified as one of the following:

A. Tester: A firm certified by National Environmental Balancing Bureau (NEBB) in those testing and balancing disciplines required for this project, who is not the Installer of the systems to be tested and is otherwise independent of the project. Comply with NEBB’s “Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems"
as applicable to this work.

B. **Tester:** A firm certified by Associated Air Balance Council (AABC) in those testing and balancing disciplines required for this project. AABC-certified firms are independent by definition. Comply with AABC’s Manual MN-1 "AABC National Standards", as applicable to this work.

C. **Industry Standards:** Comply with American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) recommendations pertaining to measurements, instruments and testing, adjusting and balancing, except as otherwise indicated.

1.05 Job Conditions:

A. **Do not proceed** with testing, adjusting, and balancing work until HVAC work (including Controls) has been completed and is operable. Ensure that there is no residual work still to be completed.

B. **Do not proceed** until work scheduled for testing, adjusting, and balancing is clean and free from debris, dirt and discarded building materials.

C. **Do not proceed** until architectural work that would affect balancing (walls, ceiling, windows, doors) have been installed.

D. Testing may proceed system by system, but each HVAC system must be complete as describe herein.

E. The mechanical contractor shall make any changes in pulleys, belts, and dampers, and/or add dampers as required for correct balancing.

1.06 Approval Submittals

A. Submit the name of the proposed test and balance company for the Engineer's approval within thirty (30) days after awarding of contract.

1.07 Test Reports and Verification Submittals:

A. Submit four (4) copies of the dated test and balance report upon completion of TAB work. The report shall include a list of instruments used for the work. The report shall be signed by the supervisor who performed the TAB work.

PART 2 PRODUCTS

2.01 Patching Materials:

Except as otherwise indicated, use same products as used by original Installer for patching holes in insulation, ductwork and housings which have been cut or drilled for test purposes, including access for test instruments, attaching jigs, and similar purposes.

2.02 Test Instruments:

Utilize test instruments and equipment of the type, precision, and capacity as recommended in the referenced standard. All instruments shall be in good condition and shall have been calibrated within the previous six (6) months (or more recently if required by standard).

PART 3 EXECUTION

3.01 General:

A. **Examine** installed work and conditions under which testing is to be done to ensure that
work has been completed, cleaned and is operable. Do not proceed with TAB work until unsatisfactory conditions have been corrected in manner acceptable to Tester.

B. **Test, adjust and balance** environmental systems and components, as indicated, in accordance with procedures outlined in applicable standards, and as modified or detailed herein.

C. **Test, adjust and balance** systems during summer season for air conditioning systems and during winter season for heating systems, including at least a period of operation at outside conditions within 5°F wet bulb temperature of maximum summer design condition, and within 10°F dry bulb temperature of minimum winter design condition. When seasonal operation does not permit measuring final temperatures, then take final temperature readings when seasonal operation does permit. The Contractor shall return for a change of seasons test at no additional cost to the Owner and submit the revised TAB report.

D. **Punch List**: Prepare a deficiency (punch) list for the Contractor with a copy of the Engineer that lists all items that are incorrectly installed or are functioning improperly. Provide a retest after all items are corrected.

E. **Prepare TAB report of test results**, including instrumentation calibration reports, in format recommended by applicable standards, modified as required to include all data listed herein.

F. **Patch holes** in insulation, ductwork and housings, which have been cut or drilled for test purposes, in manner recommended by original Installer.

G. **Mark equipment settings**, including damper control positions, valve indicators, fan speed control levers, and similar controls and devices, to show final settings at completion of TAB work. Provide markings with paint or other suitable permanent identification materials.

H. Include in the TAB report recommendations for correcting unsatisfactory mechanical performances when system cannot be successfully balanced.

I. Include an extended warranty of ninety (90) days after completion of test and balance work, during which time the Engineer, at his discretion, may request a recheck, or resetting of any component as listed in test report. The TAB company shall provide technicians and instruments and make any tests required by the Engineer during this time period.

3.02 **Controls**

A. Check all HVAC controls for proper location, calibration and sequence of operation.

B. Check operation of all controllers and controlled devices to verify proper action and direction. Check the operation of all interlocks.

3.03 **Air Balancing**

A. Leakage tests on ductwork must have been completed before air balancing.

B. Set dampers, volume controls and fan speeds to obtain specified air delivery with minimum noise level. Rebalance as required to accomplish this. Simulate fully loaded filters during test.
C. Set grille deflections as noted on plans. Modify deflections if required to eliminate drafts or objectionable air movement.

D. Record air terminal velocity after completion of balance work.

E. Record final grille and register deflection settings if different from that specified on contract drawings.

F. Record all fan speeds.

3.04 Data Collection:

A. In addition to the data required for any specified performance tests, measure and record the temperatures, pressures, flow rates, and nameplate data for all components listed herein.

B. It is the intent of this section to record data on balanced systems, under normal operating or design conditions.

C. Temperatures:
 1. Outside dry and wet bulb temperatures.
 2. Dry bulb temperature in each room and at least one wet bulb temperature in each zone.
 3. Refrigerant liquid and suction temperatures.
 4. Inlet and outlet temperature of each heat exchange device - both fluids.

D. Pressures:
 1. Suction and discharge static pressure of each fan.
 2. Each refrigerant suction and discharge pressure.

E. Flow rates:
 1. Flow rate through each fan.

F. Nameplate Data:
 1. Complete nameplate data for all equipment.
 2. Motor data to include horsepower, phase, voltage, RPM, full load nameplate current, fuse rating in disconnect switch, number or manufacturer's size designation, and ampere rating of overcurrent and low voltage protection devices in starters.

3.05 All test openings in ductwork shall be resealed in an approved manner.

END OF SECTION 23 05 93
SECTION 23 07 13 EXTERIOR INSULATION FOR DUCTWORK

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.03 Approval Submittals:

A. Product Data: Submit producer’s data sheets and installation instructions on each insulation system including insulation, coverings, adhesives, sealers, protective finishes, and other material recommended by the manufacturer for applications indicated. Submit for:

1. Flexible duct insulation

1.04 O&M Data Submittals: Submit a copy of all approval submittals. Include in O&M Manual.

PART 2 PRODUCTS

2.01 Acceptable Manufacturers: Subject to compliance with requirements, provide insulation products by Knauf, Owens-Corning, Johns Manville, Certainteed.

2.02 Flame/Smoke Ratings: Provide composite mechanical insulation (insulation, coverings, sealers, mastic, and adhesive) with a flame spread rating of 25 or less, and a smoke-developed rating of 50 or less as tested by ANSI/ASTM 84.

2.03 Flexible Fiberglass Insulation: ASTM C553, Type I, Class B-3 (temperature less than 350ºF). Duct wrap shall be 1 pcf density with UL rated aluminum foil vapor barrier (FSK).

2.04 General Purpose Mastic: Benjamin Foster 35-00 Series, Insulcoastic VIAC Mastic, Childers CP-10, or approved equal. The final selection of this product for the specific application indicated is the responsibility of the insulation supplier. The insulation system must meet the specified application.

2.05 Vapor Barrier Sealant: Benjamin Foster 30-35, Insulcoastic IC-501, 3M EC-1378, Childers CP-30, or approved equal. Provide "Low Odor" type. The final selection of this product for the specific application indicated is the responsibility of the insulation supplier. The insulation system must meet the specified application.

2.06 Adhesive: Benjamin Foster 85-20, Insulcoastic IC-205, 3M EC-35, Childers CP-82, Childers CP-89, or approved equal. The final selection of this product for the specific application indicated is the responsibility of the insulation supplier. The insulation system must meet the specified application.

2.07 Fiber-Glas Mesh: 10x10 Mesh. Foster Mastafab or equal.

PART 3 EXECUTION

3.01 Insulate all supply, return and outdoor air ductwork and the backs of all ceiling supply outlets with 2" thick fiberglass blanket insulation with vapor barrier.

3.02 Installation of Flexible Insulation:
A. Insulate round elbows and fittings with wrap such that thickness is equal to adjoining duct covering. Clean and dry ductwork prior to insulating.

B. Adhere insulation to duct with 50 percent coverage using approved insulation adhesive applied in 6-inch wide swaths with 6-inch spaces between swaths. Additionally secure insulation with perforated pins and Tuff-Bond or by self-sticking pins with a 3/8" self-tapping screw. Space on 12-inch centers and 3 inches from all edges. Ducts up through 24" wide only require one row of pins. Ducts over 24" wide shall have pins spaced as described herein.

C. Lap all joints 2 inches and seal joints with 4-inch wide strips of open mesh glass fabric embedded in two coats of general purpose mastic.

D. Seal all punctures and breaks in aluminum vapor barrier with open mesh glass fabric and vapor barrier sealant.

END OF SECTION 23 07 13
SECTION 23 07 16 INSULATION FOR HVAC EQUIPMENT AND PIPING

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods Sections apply to work of this section.

1.03 Approval Submittals:

A. Product Data: Submit producer's data sheets and installation instructions on each insulation system including insulation, coverings, adhesives, sealers, protective finishes, and other material recommended by the manufacturer for applications indicated. Submit for:

1. Flexible unicellular piping insulation

1.04 O&M Data Submittals: Submit a copy of all approval submittals. Include in O&M Manual.

PART 2 PRODUCTS

2.01 Acceptable Manufacturers: Subject to compliance with requirements, provide insulation products by Armstrong, Johns Manville, Knauf, Owens Corning, Pittsburgh Corning, U.S. Rubber, or approved equal. All products shall be asbestos-free.

2.02 Flame/Smoke Ratings: Provide composite mechanical insulation (insulation, jackets, coverings, sealers, mastics, and adhesive) with a flame-spread rating of 25 or less, and a smoke-developed rating of 50 or less, as tested by ANSI/ASTM E84.

2.03 Pipe Insulation Materials:

A. Flexible Unicellular Pipe Insulation: ASTM C534, Type I. (Tubular, suitable for use to 200°F.)

B. Staples, Bands, Wires, and Cement: As recommended by the insulation manufacturer for applications indicated.

C. Adhesives, Sealers, Protective Finishes: Products recommended by the insulation manufacturer for the application indicated.

D. Jackets: ASTM C921, Type I (vapor barrier) for piping below ambient temperature, Type II (vapor permeable) for piping above ambient temperature. Type I may be used for all piping at Installer's option.

PART 3 EXECUTION

3.01 General:

A. Install thermal insulation products in accordance with manufacturer's written instructions, and in compliance with recognized industry practices to ensure that insulation serves intended purpose.

B. Install insulation materials with smooth and even surfaces and on clean and dry surfaces. Redo poorly fitted joints. Do not use mastic or joint sealer as filler for gapping joints and excessive voids resulting from poor workmanship.
C. Maintain integrity of vapor-barrier on insulation and protect it to prevent puncture and other damage. Label all insulation "ASBESTOS FREE".

D. Do not apply insulation to surfaces while they are hot or wet.

E. Do not install insulation until systems have been checked and found free of leaks. Surfaces shall be clean and dry before attempting to apply insulation. A professional insulator with adequate experience and ability shall install insulation.

F. Do not install insulation on pipe systems until acceptance tests have been completed except for flexible unicellular insulation. Do not install insulation until the building is "dried-in".

3.02 Flexible Unicellular Pipe Insulation:

A. Insulate the following piping systems:

1. Condensate drains from air conditioning units - ¼" thick.

2. Refrigerant piping - ¾" thick.

B. Apply insulation in accordance with the manufacturer's recommendations and instructions. Mitre cut insulation to fit pipe fittings. Use approved cement to seal all joints and ends in the insulation.

C. Insulation outside the building shall be protected by a smooth 0.016" thickness aluminum jacket secured with aluminum bands on 12" centers.

END OF SECTION 23 07 16
SECTION 23 31 13 HVAC METAL DUCTWORK

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods Sections apply to work of this section.

1.03 Extent of HVAC metal ductwork is indicated on drawings and in schedules, and by requirements of this section.

1.04 Refer to other Division-23 sections for exterior insulation of metal ductwork.

1.05 Refer to other Division-23 sections for ductwork accessories.

1.06 Codes and Standards:

A. SMACNA Standards: Comply with SMACNA's "HVAC Duct Construction Standards, Metal and Flexible" 1985 Edition for fabrication and installation of metal ductwork, unless otherwise noted.

B. NFPA 90A Compliance: Comply with NFPA 90A "Standard for the Installation of Air Conditioning and Ventilating Systems".

C. NFPA 96 Compliance: Comply with NFPA 96 "Standard for Installation of Equipment for Removal of Smoke and Grease-Laden Vapors from Commercial Cooking Equipment".

1.07 Approval Submittals:

A. Product Data: Submit manufacturer's technical product data and installation instructions for the following.
 1. Factory-fabricated ductwork
 2. Sealants
 3. Flexible duct
 4. Spin-in fittings
 5. Side take-off fittings

B. Shop Drawings: Submit scaled layout drawings of HVAC metal ductwork and fittings including, but not limited to, duct sizes, locations, elevations, and slopes of horizontal runs, wall and floor penetrations, and connections. Show interface and spatial relationship between ductwork and proximate equipment. Show modifications of indicated requirements, made to conform to local shop practice, and how those modifications ensure that free area, materials, and rigidity are not reduced.

PART 2 PRODUCTS

2.01 Ductwork Materials:
A. **Exposed Ductwork Materials**: Where ductwork is indicated to be exposed to view in occupied spaces, provide materials which are free from visual imperfections including pitting, seam marks, roller marks, stains and discolorations, and other imperfections, including those which would impair painting.

B. **Galvanized Sheet Metal**: Except as otherwise indicated, fabricate ductwork from galvanized sheet steel complying with ASTM A 527, lockforming quality; with G 90 zinc coating in accordance with ASTM A 525; and mill phosphatized for exposed locations. Stamp gauge and manufacturer's identification on each sheet. Break sheets so that identification is exposed.

C. **Stainless Steel Sheet**: Where indicated, provide 18-gauge stainless steel complying with ASTM A 167; Type 304 with No. 4 finish where exposed to view in occupied spaces. Provide No. 1 finish elsewhere. Protect finished surfaces with mill-applied adhesive protective paper, maintained through fabrication and installation.

2.02 **Miscellaneous Ductwork Materials**:

A. **General**: Provide miscellaneous materials and products of types and sizes indicated and, where not otherwise indicated, provide type and size required to comply with ductwork system requirements including proper connection of ductwork and equipment.

B. **Duct Sealant**: Provide non-hardening, non-migrating mastic or liquid elastic sealant, type applicable for fabrication/installation detail, as compounded and recommended by manufacturer specifically for sealing joints and seams in ductwork.

C. **Ductwork Support Materials**: Except as otherwise indicated, provide hot-dipped galvanized steel fasteners, anchors, rods, straps, trim and angles for support of ductwork. For exposed stainless steel ductwork, provide matching stainless steel support materials.

D. **Flexible Ducts**: Provide flexible ductwork with an R-value of R-6 unless the ductwork is in a ceiling return plenum. The use of flexible ductwork for connection of supply air and return air devices is acceptable only where shown on the drawings.

1. **Construction**: Provide reinforced metalized polyester jacket that is tear and puncture resistant, air tight inner core with no fiberglass erosion in the air stream and an encapsulated wire helix. Flexible ductwork shall have a recommended operating pressure of 6" w.g. for sizes 4" through 12" diameter and 4" w.g. for sizes 14" through 20" diameter. All diameters shall be suitable for a negative operating pressure of 0.75" w.g. Flexible ductwork shall meet the requirements of UL-181, the Florida Energy Code, SBCC, NFPA 90A and NFPA 90B.

2. **Acceptable Manufacturers**: Subject to compliance with requirements, provide R-6 flexible ductwork by: Atco 36, Flexmaster 8M-R6 or Thermaflex M-KE R6.

E. **Spin-in and Side Take-off Fittings**: Provide round branch run-outs as follows.

1. Where duct height does not permit the use of conical spin-in fittings, use low profile side take-off fittings equal to Crown 3300-DS or Flexmaster STOD-BO.

F. **Fittings**: Provide radius type fittings fabricated of multiple sections with maximum 15°
change of direction per section. Unless specifically detailed otherwise, use 45° laterals and 45° elbows for branch takeoff connections. Where 90° branches are indicated, provide conical type tees.

2.03 Fabrication:

A. **Shop fabricate ductwork** in 4, 8, 10 or 12-ft lengths, unless otherwise indicated or required to complete runs. Preassemble work in shop to greatest extent possible, so as to minimize field assembly of systems. Disassemble systems only to extent necessary for shipping and handling. Match-mark sections for reassembly and coordinated installation.

B. Shop fabricate ductwork of gauges and reinforcement complying with SMACNA "HVAC Duct Construction Standards", except provide sealant at all joints. Supply duct from air conditioning units and all return and exhaust duct shall be minimum 2" pressure class unless otherwise noted.

C. **Fabricate duct fittings** to match adjoining ducts, and to comply with duct requirements as applicable to fittings. Except as otherwise indicated, fabricate elbows with center-line radius equal to 1½ times associated duct width; and fabricate to include turning vanes in elbows where shorter radius is necessary. Limit angular tapers to 30° for contracting tapers and 20° for expanding tapers.

D. **Fabricate ductwork** with accessories installed during fabrication to the greatest extent possible. Refer to Division-23 section "Ductwork Accessories" for accessory requirements.

2.04 Factory-Fabricated Low Pressure Ductwork (Maximum 2” W.G.):

A. **Material**: Galvanized sheet steel complying with ASTM A 527, lockforming quality, with ASTM A 525, G90 zinc coating, mill phosphatized.

B. **Gauge**: 28-gauge minimum for round ducts and fittings, 4" through 8" diameter. 26-gauge minimum 9" through 14", 24-gauge minimum 15" through 26".

C. **Elbows**: One piece construction for 90° and 45° elbows 14" and smaller. Provide multiple gore construction for larger diameters with standing seam circumferential joint.

D. **Divided Flow Fittings**: 90° tees, constructed with saddle tap spot welded and bonded to duct fitting body.

E. **Acceptable Manufacturers**: Subject to compliance with requirements, provide factory-fabricated ductwork by Semco Mfg., Inc. or United Sheet Metal Div., United McGill Corp, or approved equal.

2.05 **Kitchen Exhaust Ducts**: Fabricate kitchen exhaust ducts and supports used for smoke and vapor removal from cooking equipment of 16-gauge minimum galvanized steel where concealed, and of 18-gauge minimum stainless steel where exposed. For duct construction, comply with SMACNA "HVAC Duct Construction Standards", and NFPA 96 "Removal of Smoke and Grease-Laden Vapors from Commercial Cooking Equipment". Continuously weld all seams and joints to be grease tight. Provide high temperature fiber blanket thermal
The fiber blanket shall have a continuous use limit of 1000°C and a Smoke Developed Index and Flame Spread Index of 0/0. 3M “Fire Barrier Duct Wrap 615” or equal.

PART 3 EXECUTION

3.01 General: Examine areas and conditions under which HVAC metal ductwork is to be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.02 Installation Of Metal Ductwork:

A. General: Assemble and install ductwork in accordance with recognized industry practices which will achieve air-tight (5% leakage for systems rated 3” and under; 1% for systems rated over 3”) and noiseless (no objectionable noise) systems, capable of performing each indicated service. Install each run with minimum number of joints. Align ductwork accurately at connections, within 1/8” misalignment tolerance and with internal surfaces smooth. Support ducts rigidly with suitable ties, braces, hangers and anchors of type which will hold ducts true-to-shape and to prevent buckling. Support vertical ducts at every floor.

B. Supports: Install concrete inserts for support of ductwork in coordination with formwork, as required to avoid delays in work. Install self-drilling screw anchors in prestressed concrete or existing work.

C. Field Fabrication: Complete fabrication of work at project as necessary to match shop-fabricated work and accommodate installation requirements. Seal joints in round or oval ductwork with hard cast or shrink bands, and sheet metal screws, or by welding. High velocity rectangular ducts shall have approved joints and be made airtight with sealer or welding.

D. Routing: Locate ductwork runs, except as otherwise indicated, vertically and horizontally. Avoid diagonal runs wherever possible. Locate runs as indicated by diagrams, details and notations or, if not otherwise indicated, run ductwork in shortest route which does not obstruct useable space or block access for servicing building and its equipment. Hold ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building. Limit clearance to ½” where furring is shown for enclosure or concealment of ducts, but allow for insulation thickness, if any. Where possible, locate insulated ductwork for 1” clearance outside of insulation. In finished and occupied spaces, conceal ductwork from view by locating in mechanical shafts, hollow wall construction or above suspended ceilings, unless specifically noted as “Exposed”. Do not encase horizontal runs in solid partitions, except as specifically shown. Coordinate layout with suspended ceiling and lighting layouts and similar finished work.

E. Electrical Equipment Spaces: Do not route ductwork through transformer vaults or other electrical equipment spaces and enclosures.

F. Penetrations: Where ducts pass through interior partitions and exterior walls, and are exposed to view, conceal space between construction opening and duct or duct insulation with sheet metal flanges of same gauge as duct. Overlap opening on 4 sides by at least 1½”. Fasten to duct and substrate. Where ducts pass through fire-rated
floors, walls, or partitions, provide firestopping between duct and substrate.

G. **Coordination:** Coordinate duct installations with installation of accessories, dampers, coil frames, equipment, controls and other associated work of ductwork system.

H. **Installation:** Install metal ductwork in accordance with SMACNA HVAC Duct Construction Standards. Fan discharge outlet ducts shall be installed correctly with regard to "system effect" per AMCA Publication 201.

3.03 Installation of Flexible Ducts:

A. **Maximum Length:** For any duct run using flexible ductwork, do not exceed 5'-0" extended length. Flexible duct shall only be allowed as detailed on the drawings.

B. **Installation:** Install in accordance with Section III of SMACNA's "HVAC Duct Construction Standards, Metal and Flexible". Support flexible ducts to eliminate pinching and kinking which would restrict flow.

C. **Low Pressure:** Peel back insulation and slide the inner core over the spin-in or diffuser neck, seal with duct sealant and install Panduit strap tightly. Slide insulation back over the inner core and install another Panduit strap over the insulation outer jacket. Tape is not acceptable.

D. **Seal** all exposed edges of fiberglass insulation with glassfab and mastic.

3.04 Installation of Kitchen Exhaust Ducts:

Fabricate joints and seams with continuous welds for watertight construction. Provide for thermal expansion of ductwork through 2000° F temperature range. Install without dips or traps which may collect residues, except where traps have continuous or automatic residue removal. Provide access openings at each change in direction, located on the sides of the duct 1½" minimum from bottom. Provide access openings with grease-tight covers of same material as duct. Slope horizontal ducts at 1" per foot.

3.05 Leakage Tests:

After each duct system is completed, test for duct leakage in accordance with Sections 3 and 5 of the SMACNA HVAC Air Duct Leakage Test Manual. Test pressure shall be equal to pressure class of duct, less 0.5" static pressure. Repair leaks and repeat tests until total leakage is less than 5% of system design air flow for low pressure systems and less than 1% for systems rated over 3".

3.06 Equipment Connections:

Connect metal ductwork to equipment as indicated, provide flexible connection for each ductwork connection to equipment mounted on vibration isolators, and/or equipment containing rotating machinery. Provide access doors as indicated.

3.07 Clean ductwork internally free of dust and debris. Clean external surfaces of foreign substances which might cause corrosive deterioration of metal or, where ductwork is to be painted, might interfere with painting or cause paint deterioration. Keep ducts closed with poly during construction to prevent contamination by construction dust and debris.

3.08 Balancing:

Refer to Division-23 section "Testing, Adjusting, and Balancing" for air distribution balancing of metal ductwork; not work of this section. Seal any leaks in ductwork that become apparent in balancing process.
3.09 **System Adjustment:** Adjust the system to provide functional operation to the extent possible, and leave ready for Testing and Balancing work. It is not the intent of this section to provide final testing and balancing, but to leave the system operational with a minimum of noise.

END OF SECTION 23 31 13
SECTION 23 33 00 DUCTWORK ACCESSORIES

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.03 Extent of ductwork accessories work is indicated on drawings and in schedules, and by requirements of this section.

1.04 Refer to other Division-23 sections for testing, adjusting, and balancing of ductwork accessories; not work of this section.

1.05 Codes and Standards:

A. SMACNA Compliance: Comply with applicable portions of both SMACNA "HVAC Duct Construction Standards, Metal and Flexible".

B. NFPA Compliance: Comply with applicable provisions of NFPA 90A "Air Conditioning and Ventilating Systems" pertaining to installation of ductwork accessories.

1.06 Approval Submittals:

A. Product Data: Submit manufacturer's technical product data for each type of ductwork accessory, including dimensions, capacities, and materials of construction; and installation instructions as follows:

1. Low pressure manual dampers
2. Control dampers
3. Counterbalanced relief dampers
4. Duct access doors
5. Flexible connections

B. O&M Data Submittals: Submit manufacturer's maintenance data including parts lists. Include this data, product data, and a copy of approval submittals in O&M manual.

PART 2 PRODUCTS

2.01 Dampers:

A. Low Pressure Manual Dampers: Provide 16 gauge dampers of single-blade type (12" maximum blade width) or multiblade type. Damper blades to be gang-operated from a single shaft with nylon or ball bearings on each end. Provide indexed locking quadrant. Parallel or opposed blade style is acceptable. Provide 2" standoff on locking quadrant for externally insulated duct.

B. Control Dampers: Extruded aluminum (6063-T5) damper frame shall not be less than 0.080" in thickness. Damper frame shall be 4" deep x 1", with duct mounting flanges on both sides of frame. Damper frame shall have a 2" mounting flange on the rear of the damper when installed as Extended Rear Flange install type. Aluminum frame shall be clear anodized to a minimum thickness of 0.7 mil deep. Frame shall be assembled using stainless steel screws. Welded frames shall not be acceptable. Actuators (motors) are provided by control contractor.
1. Blades shall be maximum 6.4" deep extruded aluminum (6063-T5) air-foil profiles with a minimum wall thickness of 0.06", clear anodized to a minimum thickness of 0.7 mil deep.

2. Blade seals shall be extruded silicone, secured in an integral slot within the aluminum blade extrusions and shall be mechanically fastened to prevent shrinkage and movement over the life of the damper. Adhesive or clip-on type blade seals will not be approved.

3. Hexagonal control shaft shall be \(\frac{7}{16}'' \). It shall have an adjustable length and shall be an integral part of the blade axle. A field-applied control shaft shall not be acceptable. All parts shall be stainless steel.

4. Linkage hardware shall be aluminum and stainless steel, installed in the frame side, out of the airstream, and accessible after installation. Linkage hardware shall be complete with stainless steel cup-point trunnion screws to prevent linkage slippage. Linkage that consists of metal rubbing metal will not be approved.

5. Dampers shall be designed for operation in temperatures ranging from -40°F to 212°F.

6. Dampers shall be AMCA rated for Leakage Class 1A at 1 in w.g. static pressure differential. Standard air leakage data to be certified under the AMCA Certified Ratings Program.

7. Dampers shall be custom made to required size, with blade stops not exceeding 1¼" in height.

8. Dampers shall be opposed blade for modulating dampers or parallel blade action for open/shut dampers.

9. Dampers shall be installed in the following manner: Installed in Duct

10. Installation of dampers must be in accordance with manufacturer’s current installation guidelines, provided with each damper shipment.

11. Field supplied intermediate structural support is required to resist applied pressure loads for dampers that consist of two or more sections in both height and width.

12. **Acceptable Manufacturers:** Subject to compliance with requirements, provide access doors by TAMCO (T.A. Morrison & Co, Inc), Pottorff, Ruskin, or approved equal.

2.02 Turning Vanes: Provide manufactured or fabricated single wall turning vanes and vane runners, constructed in accordance with SMACNA "HVAC Duct Construction Standards".

2.03 Duct Access Doors:

A. **General:** Provide duct access doors of size indicated, or as required for duty indicated.

B. **Construction:** Construct of same or greater gauge as ductwork served. Provide insulated doors for insulated ductwork. Provide flush frames for uninsulated ductwork, extended frames for externally insulated duct. Provide one side hinged, other side with one handle-type latch for doors 12" high and smaller, 2 handle-type latches for larger doors.
C. **Acceptable Manufacturers:** Subject to compliance with requirements, provide access doors by Air Balance, Inc., Duro Dyne Corp., Ruskin Mfg. Co., or Ventfabrics, Inc.

2.04 **Flexible Connections:**

A. **General:** Provide flexible duct connections wherever ductwork connects to vibration isolated equipment. Construct flexible connections of neoprene-coated flameproof fabric crimped into duct flanges for attachment to duct and equipment. Make airtight joint. Provide adequate joint flexibility to allow for thermal, axial, transverse, and torsional movement, and also capable of absorbing vibrations of connected equipment.

B. **Acceptable Manufacturers:** Subject to compliance with requirements, provide products by one of the following: Duro Dyne Corp., Flexaust (The) Co., or Ventfabrics, Inc.

PART 3 EXECUTION

3.01 **Examine areas and conditions** under which ductwork accessories will be installed. Do not proceed with work until unsatisfactory conditions have been corrected in manner acceptable to Installer.

3.02 **Installation of Ductwork Accessories:**

A. Install ductwork accessories in accordance with manufacturer's installation instructions, with applicable portions of details of construction as shown in SMACNA standards, and in accordance with recognized industry practices to ensure that products serve intended function.

B. Install balancing dampers at all main ducts adjacent to units in return air, outside air and where indicated.

C. Install control dampers in the outside air duct for each outside air unit and otherwise as shown.

D. Install turning vanes in square or rectangular 90° elbows in supply, return, and exhaust air systems, and elsewhere as indicated.

E. Install access doors to open against system air pressure, with latches operable from either side, except outside only where duct is too small for person to enter.

F. Install flexible connections in ductwork such that the clear length of the connector is approximately two inches. Provide thrust restraints as required. Flexible material shall not be so slack as to take a definite concave or convex shape during fan operation.

G. Coordinate with other work, including ductwork, as necessary to interface installation of ductwork accessories properly with other work.

3.03 Operate installed ductwork accessories to demonstrate compliance with requirements. Test for air leakage while system is operating. Repair or replace faulty accessories as required to obtain proper operation and leakproof performance.

3.04 **Adjusting And Cleaning:**

A. **Adjusting:** Adjust ductwork accessories for proper settings.

B. **Final positioning of manual dampers** is specified in Division-23 section "Testing, Adjusting, and Balancing". However, the system shall be left functional with all dampers
open or throttled.

C. Cleaning: Clean factory-finished surfaces. Repair any marred or scratched surfaces with manufacturer's touch-up paint.

END OF SECTION 23 33 00
SECTION 23 34 00 FANS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.03 Extent of fan work required by this section as indicated on drawings and schedules, and by requirements of this section.

1.04 Coordination:
 A. Refer to Division-7 sections for installation of prefabricated roof curbs; not work of this section. Furnishing prefabricated roof curbs is part of this section’s work.
 B. Refer to Division-23 section "Testing, Adjusting, and Balancing" for balancing of fans.
 C. Refer to Division-23 HVAC control systems sections for control work required in conjunction with fans.
 D. Refer to Division-26 sections for power supply wiring from power source to power connection on fans. Division-26 work will include starters, disconnects, and required electrical devices, except where specified as furnished, or factory-installed, by manufacturer.

1.05 Codes and Standards:
 A. AMCA Compliance: Provide fans which have been tested and rated in accordance with AMCA standards, and bear AMCA Certified Ratings Seal.
 B. UL Compliance: Provide fans which are listed by UL and have UL label affixed.

1.06 Approval Submittals:
 A. Product Data: Submit manufacturer’s technical data for fans, including specifications, capacity ratings, dimensions, weights, materials, accessories furnished, and installation instructions. Submit assembly-type drawings showing unit dimensions, construction details, methods of assembly of components, and field connection details. Include statement that resin selection is suitable for chemical resistance to the specific application at 170°F.
 1. Fans
 2. Vibration Control

1.02 O&M Data Submittals: Submit maintenance data and parts list for each type of fan, accessory, and control. Include these data, a copy of approved submittals, and wiring diagrams in O&M Manual.

PART 2 PRODUCTS

2.01 General: Except as otherwise indicated, provide standard prefabricated fans of type and size indicated, modified as necessary to comply with requirements, and as required for complete installation. Provide accessories as listed in the schedule on the drawings and as described herein. Motors shall be high efficiency per Division-23 section "Motors".
2.02 **Acceptable Manufacturers:** Subject to compliance with requirements provide fans manufactured by Acme, Greenheck, Loren Cook, Penn or approved equal unless otherwise noted herein.

2.03 **Centrifugal Ceiling Exhausters:**

A **Fan Assembly:** Provide steel housing, plastic or aluminum grille, backdraft damper, statically and dynamically balanced fan wheel, permanently lubricated motor with internal thermal overloads, vibration isolation and all required mounting hardware and brackets. Provide acoustically treated housing for all fans larger than 60 cfm. Mounting type shall be as indicated on the drawings or on the schedule.

B **Connectors:** Provide adaptors, connectors, and eave elbows as required to connect fan discharges to outlets.

C **Outlets:** Provide where shown on the drawings (or required by the installation) wall caps, vent caps, or roof jacks, each with birdscreen, to match fans and surrounding construction.

2.04 **In-Line Centrifugal Fans:**

A **Housing:** Provide round aluminum or square weather tight housing constructed of steel and painted inside and out with an epoxy finish. Provide venturi type inlet.

B **Fan Wheels:** Provide aluminum air foil type, backward curved, statically and dynamically balanced.

C **Drive:** Provide direct or belt drive as scheduled with pre-lubricated, ball bearing, continuous duty type motors. Provide vibration isolation equipment for the entire drive.

D **Isolation and Support:** Provide spring type vibration isolators and fan support brackets.

2.05 **Cooking Hood Fan Package:** Except as otherwise indicated, provide packaged, factory-built, roof-mounted, fan package assemblies of type and size indicated, modified as necessary to comply with requirements, and as required for complete installation. The entire unit shall be accessible from the roof through hinged access doors for steam cleaning all ducts and fans from the roof. The unit shall include the following components.

A. **Exhaust Fan:** Provide heavy gauge aluminum upblast centrifugal exhaust fan with integral grease drain trough and drain fitting. Provide aluminum fan wheel, statically and dynamically balanced. Motor and drive shall be isolated from the air stream and shall be cooled by clean, outside air only. Provide high efficiency motors per Division-23 section "Motors". Provide fully adjustable belt drive and prelubricated ball bearing motor mounted on vibration isolation equipment. Provide birdscreen and thermal barrier. Provide hinged access. The fan shall be AMCA approved and UL-listed for grease removal.

B. **Supply Fan:** Provide in-line, centrifugal, horizontal supply fan with painted, weatherproof finish. Provide aluminum fan wheel statically and dynamically balanced. Motor and drive shall be mounted on vibration isolation equipment. Provide high efficiency motors per Division-23 section "Motors". Provide fully adjustable belt drive and prelubricated ball bearing motor. Provide 18-gauge painted galvanized steel housing and angle iron support legs. Provide service access to all components.

C. **Intake:** Provide supply fan intake with birdscreen and 1-inch washable aluminum filters.
Maximum face velocity shall be 500 fpm. Provide motorized backdraft damper that opens and closes with supply fan operation. Intake shall be at least 10’ from exhaust fan.

D. **Curb:** Furnish 12” high, roofed-over type, prefabricated, aluminum curb with integral pressure treated wood nailer and 1-inch thick rigid insulation. Provide curb extensions and sections as required to meet NFPA requirements for exhaust discharge height and supply-exhaust fan separation.

E. **Controls:** Provide prewired control center complete with: remote control station at hood, master fused disconnect switch, magnetic motor starters with thermal overloads and manual reset, fused 24 volt control transformer, relays, and wiring. The system shall be UL-listed and require single point connection for fan power. The system shall provide fully automatic operation.

2.06 Propeller Wall Fans:

- **F. Housing:** Provide heavy duty all-welded steel housing and supports with epoxy finish. Panels shall have streamlined orifices.

- **G. Fan:** Provide air foil type steel or aluminum propellers.

- **H. Drive:** Provide direct or belt drive as scheduled with pre-lubricated, ball bearing, continuous duty type motors. Provide vibration isolation equipment for the entire drive.

- **I. Wall Collar or Housing:** Provide galvanized steel fan wall collar or housing as required.

- **J. Fan Guard:** Provide OSHA approved galvanized steel mesh fan guard.

2.07 Vibration Isolation:
Mount fans on vibration isolators in accordance with the requirements of Division-23 section "Vibration Isolation" and the following list.

- **A. Equipment Mountings:** Type EM4.

- **B. Hangers:** Type HA3.

PART 3 EXECUTION

- **3.01 General:** Except as otherwise indicated or specified, install fans in accordance with manufacturer’s installation instructions and recognized industry practices to insure that fans serve their intended function.

- **3.02 Coordinate fan work** with work of roofing, walls, and ceilings as necessary for proper interfacing. Framing of openings, caulking, and curb installation is not work of this section.

- **3.03 Ductwork:** Refer to Division-23 section "Ductwork". Connect ducts to fans in accordance with manufacturer's installation instructions. Provide flexible connections in ductwork at fans.

- **3.04 Install fans on vibration isolation equipment as required. Set level and plumb.**

- **3.05 Roof Curbs:** Furnish roof curbs to roofing Installer for Installation.

- **3.06 Electrical Wiring:** Install electrical devices furnished by manufacturer but not specified to be factory-mounted. Furnish copy of manufacturer's wiring diagram submittal to electrical
Installer. Verify that electrical wiring installation is in accordance with manufacturer's submittal and installation requirements of Division-26 sections. Verify proper rotation direction of fan wheels. Do not proceed with equipment start-up until wiring installation is acceptable to equipment installer.

3.07 Remove shipping bolts and temporary supports within fans. Adjust dampers for free operation.

3.08 Testing: After installation of fans has been completed, test each fan to demonstrate proper operation of units at performance requirements specified. When possible, field correct malfunctioning units, then retest to demonstrate compliance. Replace units which cannot be satisfactorily corrected.

3.09 Cleaning: Clean factory-finished surfaces. Remove all tar and soil. Repair any marred or scratched surfaces with manufacturer's touch-up paint.

END OF SECTION 23 34 00
SECTION 23 34 43 – HIGH VOLUME LOW SPEED FANS

PART 1 GENERAL

1.1 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.2 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.3 Extent of fan work required by this section as indicated on drawings and schedules, and by requirements of this section.

1.4 SUBMITTALS

A. Submit under provisions of Section 01300.

B. Product Data: Manufacturer’s data sheets on each product to be used shall include:
 1. Preparation instructions and recommendations.
 2. Storage and handling requirements and recommendations.
 3. Power and mounting requirements.

C. Application Drawings: Submit plan, section, elevation and isometric views as necessary to convey the information required to detail all installation conditions for each unit specified.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: The manufacturer shall be the sole source for design, engineering, manufacturing and warranty claims handling.

B. Installer Qualifications: Any and all work outside the scope of the installation guide shall be outsourced. Factory trained installers are recommended and available upon request.

1.6 PROJECT CONDITIONS

A. Maintain environmental conditions (temperature, humidity and ventilation) within limits recommended by manufacturer for optimal results. Do not install products in environmental conditions outside the manufacturer's absolute limits.

1.7 COORDINATION

A. The fan shall be capable of receiving a stop command from the fire panel, an ASD (Aspirating Smoke Detection) device, or any number of smoke, flame or heat detectors.

B. The fans shall be as follows:
 1. The fan shall meet the air velocity requirements of FM Global’s 2.0 data sheet for ESFR sprinklers.
 2. If required by the local fire prevention authority or desired by the purchaser, the fan shall be wired into the building’s fire suppression system so that the fan will automatically shut off within a maximum of 90 seconds after sprinklers are activated. To facilitate this automatic shut-down, the fan shall include a Variable Frequency Drive (VFD) within the control panel. The low voltage wire and relay needed to accomplish this must be supplied by the Fire Alarm installer.
 3. Upon fire detection as described above, the fans shall coast to stop as required by NFPA guidelines.

1.8 WARRANTY
A. The manufacturer shall repair or replace warranted defective parts as follows:
 1. Lifetime warranty on airfoils, hub, frame and mounting.
 2. Twelve-year service life prorated limited warranty on all other components, which include but are not limited to:
 a. Motor
 b. Gear reducer
 c. VFD

B. At project closeout, provide to Owner or Owner's Representative an executed copy of The manufacturer's standard limited warranty against manufacturing defect, outlining its terms, conditions, and exclusions from coverage.

PART 2 PRODUCTS

2.1 APPROVED MANUFACTURERS

A. Acceptable Manufacturer: MacroAir Technologies, Inc., Big Ass Fans, or approved equal.

B. Requests for substitutions will be considered in accordance with provisions of Section 01600.

2.2 COMMERCIAL / INDUSTRIAL HVLS FANS

A. Performance

<table>
<thead>
<tr>
<th>Fan Model</th>
<th>Diameter</th>
<th>FWD CFM</th>
<th>REV CFM</th>
<th>RPM</th>
<th>Power Usage (kW)</th>
<th>CFM per Watt</th>
<th>Max. Effective Area (Sq. Ft.)</th>
<th>Typical Spacing</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA08XL0506</td>
<td>8ft</td>
<td>48,200</td>
<td>35,240</td>
<td>179</td>
<td>0.3</td>
<td>160.67</td>
<td>3,600</td>
<td>50ft</td>
<td>50</td>
</tr>
<tr>
<td>MA10XL0506</td>
<td>10ft</td>
<td>62,300</td>
<td>44,050</td>
<td>129</td>
<td>0.2</td>
<td>311.50</td>
<td>4,500</td>
<td>55ft</td>
<td>50</td>
</tr>
<tr>
<td>MA12XL0506</td>
<td>12ft</td>
<td>79,300</td>
<td>61,990</td>
<td>95</td>
<td>0.2</td>
<td>396.50</td>
<td>6,500</td>
<td>60ft</td>
<td>50</td>
</tr>
<tr>
<td>MA14XL0506</td>
<td>14ft</td>
<td>111,180</td>
<td>84,450</td>
<td>90</td>
<td>0.3</td>
<td>370.60</td>
<td>8,400</td>
<td>65ft</td>
<td>50</td>
</tr>
<tr>
<td>MA16XL0506</td>
<td>16ft</td>
<td>124,600</td>
<td>102,750</td>
<td>72</td>
<td>0.3</td>
<td>415.33</td>
<td>9,500</td>
<td>75ft</td>
<td>50</td>
</tr>
<tr>
<td>MA18XL0506</td>
<td>18ft</td>
<td>158,590</td>
<td>122,750</td>
<td>66</td>
<td>0.3</td>
<td>528.63</td>
<td>12,000</td>
<td>80ft</td>
<td>50</td>
</tr>
<tr>
<td>MA20XL0506</td>
<td>20ft</td>
<td>173,436</td>
<td>128,435</td>
<td>53</td>
<td>0.35</td>
<td>495.53</td>
<td>14,000</td>
<td>85ft</td>
<td>50</td>
</tr>
</tbody>
</table>

B. Airfoils

The fan shall be equipped with six (6) NASA developed XL airfoils. The airfoils shall consist of anodized 6061 T4 precision extruded aluminum and be of the MacroAir XL design, with 8 through 20 foot fan diameters available. The airfoils shall be connected to six (6) individual aluminum 6005 T6 struts by means of two (2) 5/16-24 x 2-inch grade 5 hex bolts, two (2) 5/16-inch flat washers and two (2) 5/16-inch nylon lock nuts per airfoil.

1. Number of Airfoils: 6.
4. Optional Airfoil Finish: Custom powder coated colors per Drylac RAL color chart.

C. Motor
The fan shall be equipped with a Nord 0.5 Hp, 3-phase motor. The motor shall be ventilated, capable of continuous operation up to 104°F (40°C) ambient conditions.

1. HP: 0.5.
2. 3-Phase.
3. RPM: 1720.
5. Full Load Amp draw: 0.95.
6. Insulation Class: F.
8. Enclosure: TEFC.

D. Onboard Variable Frequency Drive (VFD)

VFD shall operate on carrier frequency of no less than 16 kHz in order to minimize sound. The VFD shall have a UL, CE and RoHS rating. The fan shall include a NEMA 4X Remote Switchbox for wall mounting and 100 feet of remote cable (up to 600 feet in length optional). Remote Switchbox shall include a forward, off, reverse and a low-medium-high control knob.

1. Electrical Requirements
 a. 120VAC single (1) phase 50/60 Hz.
 b. 208-240VAC single (1) phase 50/60 Hz.
 c. 208-240VAC three (3) phase 50/60 Hz.
2. Pre-programmed VFD with dynamic acceleration and deceleration.
3. MODBUS option available.
4. Fire panel integration contacts.

E. Gear Reducer

The fan shall be equipped with a Nord sealed gear reducer. The gear reducer shall be an inline 2-stage helical gear reducer, precision finished for low noise and high performance.

1. Reducer Type: 2-Stage Helical.
2. Lubrication: Mobil SHC 636.
7. Output Shaft: Stainless steel 1-1/8” diameter.
8. Service Factor: 1.15.
9. Maximum Output Torque: 243 IN-LB.

F. Mounting and Frame

The fan mounting system shall be equipped with hardware, no less than SAE grade 5 for safe installation. The fan shall be equipped with an adjustable mount. The fan shall be properly equipped for multiple mounting options for I-beam, Purlin and Glulam applications (specified upon order).

2. Optional Mounting Hardware: Glulam Mounting Brackets.
4. Mounting Drops: Extensions available in one (1) to ten (10) foot lengths in one (1) foot increments and available in custom sizes.
7. Optional Frame Finish: Custom powder coated colors per Drylac RAL color chart.
9. Optional Mount Finish: Custom powder coated colors per Drylac RAL color chart.

G. Hybrid Hub

The fan shall be equipped with a patent-pending, aluminum hybrid hub. The hybrid hub shall have six (6) removable, black anodized, 6005 T6 aluminum H-beam struts. The struts shall be designed with airfoil guides to ensure precision alignment and enable airfoils to be inverted for full CFM output in either reverse or forward operation.

4. Hardware: Twelve (12) 3/8-24 x 1 ¾-inch Grade 8 Hex Bolts.
5. Hardware: Twelve (12) 3/8-inch flat washers (SAE).

H. Safety System

The fan shall include a patented two-part interlocking hybrid hub safety system. The hybrid hub safety system shall prevent hub separation from gear reducer. The fan shall include a lowest point safety cable attached to the frame. If using more than two feet of extension, the fan shall include four (4) guy wires attached to the building structure at recommended 45° angles to level and secure frame position. The fan shall include one-piece airfoil retainer links to prevent airfoil separation from the hybrid hub. Each fan shall be E-stop compatible for fire and building automated systems (BAS).

1. Safety Cable Material: 1/4” x 7 x 19 Aircraft Grade Braided Steel.
3. Guy Wire Material: 1/8” x 7 x 10 Aircraft Grade Braided Steel.
8. Safety Retainer Plate Finish: Black powder coated.
10. Airfoil Retainer Link Finish: Clear Zinc.

PART 3 EXECUTION

3.1 PREPARATION

A. Check accuracy of dimensions indicated for openings to receive fans.
B. Check location and availability of utility services to ensure proper voltage and installation preparation.
C. Coordinate location and installation of the HVLS Fans.
D. Ensure building structural members are sufficient to support the weight and operation of the fan. Consult professional engineer or registered architect as required.
3.2 INSTALLATION

A. Install units per manufacturer's written instructions.

B. Fan airfoil height to be a minimum of 10 feet from the floor in accordance with OSHA guidelines.

C. All safety and support features must be installed. These include any guy wires and safety cables as well as airfoil retainer locking features.

D. Adjust unit as required for proper operation in accordance with manufacturer's installation instructions.

E. Securely anchor units.

F. Ensure that operating parts turn freely prior to initial startup.

G. Repair or replace damaged parts, dents, buckles, abrasions or other damage affecting appearance or serviceability, as acceptable to Architect.

3.3 PROTECTION

A. Protect finished Work until date of Substantial Completion.

B. Touch-up, repair or replace damaged products before Substantial Completion.

3.4 CLEANING

A. Clean Work per Section 01 74 00.

B. Clean and inspect fans per manufacturer's instructions.

C. Remove temporary protective cover at date of Substantial Completion.

END OF SECTION 23 34 43
SECTION 23 37 13 GRILLES, REGISTERS AND CEILING DIFFUSERS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.03 Extent of air outlets and inlets work is indicated by drawings and schedules, and by requirements of this section.

1.04 Refer to other Division-23 sections for ductwork and duct accessories required in conjunction with air outlets and inlets and for balancing of air outlets and inlets; not work of this section.

1.05 Codes and Standards:

A. ADC Compliance: Test and rate air outlets and inlets in certified laboratories under requirements of ADC 1062 "Certification, Rating and Test Manual". Provide air outlets and inlets bearing ADC Certified Rating Seal.

B. NFPA Compliance: Install air outlets and inlets in accordance with NFPA 90A "Standard for the Installation of Air Conditioning and Ventilating Systems".

1.06 Approval Submittals:

A. Product Data: Submit manufacturer's technical product data for air outlets and inlets indicating construction, finish, and mounting details.

B. Performance Data: For each type of air outlet and inlet furnished, provide aspiration ability, temperature and velocity traverses, throw and drop, and noise criteria ratings. Indicate selections and data as required.

1.07 O&M Data Submittals: Submit cleaning instructions for finishes and spare parts lists. Include this data and a copy of approval submittals in O&M manual.

PART 2 PRODUCTS

2.01 General:

A. Except as otherwise indicated, provide manufacturer's standard grilles, registers, and ceiling diffusers where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation.

B. Manufacturers not listed in the following specification will not be considered for approval unless accepted by addendum prior to bid.

C. Performance: Provide grilles, registers and ceiling diffusers that have, as minimum, temperature and velocity traverses, throw and drop, and noise criteria ratings for each size device equal to the basis of design.

D. Ceiling and Wall Compatibility: Provide grilles, registers and diffusers with border styles that are compatible with adjacent wall and ceiling systems, and that are specifically manufactured to fit into ceiling module or wall with accurate fit and adequate support. Refer to general construction drawings and specifications for types of ceiling systems and walls which will contain each type of ceiling diffuser, grille, or register.
E. **Appearance**: All grilles and registers shall be aluminum construction and all diffusers shall be aluminum construction, unless otherwise noted, with uniform matching appearance for each type of outlet. Ceiling mounted grilles and registers shall be set to be sight tight from the predominant exposure.

F. **Finish**: All ceiling mounted grilles, registers, and diffusers shall be finished with baked white enamel. Wall and door mounted grilles and registers shall be finished with clear anodized finish.

2.02 **Acceptable Manufacturers**: Subject to compliance with requirements, provide products by Titus or Metal Aire.

2.03 **Rectangular Ceiling Diffusers (CD)**: Provide rectangular face with removable inner core, no corner joints. If square or rectangular neck is provided, provide square to round adaptor as required. Provide lay-in panel as required. Provide trim ring for diffusers in hard ceilings to allow opening to be used for access.

2.04 **Return, Transfer, and Exhaust Grilles**: Provide grilles with one set of 45 degree fixed louvers, parallel to the long dimension. Provide mounting frame for all wall and plaster ceiling installations.

PART 3 EXECUTION

3.01 Coordinate installation with ceiling and light fixture installation. Locate ceiling outlets as indicated on architectural Reflected Ceiling Plans. Unless otherwise indicated, locate ceiling outlets in the center of acoustical ceiling modules with sides parallel to the grid.

3.02 Install air outlets and inlets in accordance with manufacturer’s written instructions and in accordance with recognized industry practices to insure that products serve intended functions.

3.03 Coordinate with other work, including ductwork and duct accessories, as necessary to interface installation of air outlets and inlets with other work.

3.04 Set air volumes to values shown on the drawings so that the system is functional. Leave ready for test and balance contractor.

3.05 **Furnish to Owner** three operating keys for each type of outlet and inlet that require them; obtain receipt.

END OF SECTION 23 37 13
SECTION 23 37 26 WALL LOUVERS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.03 **Extent** of wall louver work is indicated by drawings and schedules, and by the requirements of this section.

1.04 Refer to other Division-23 sections for ductwork, duct accessories and controls work.

1.05 **AMCA Compliance:** Test and rate louvers in accordance with AMCA Standard 500. Provide AMCA certified rating seal. Ratings based on tests and procedures performed in accordance with AMCA 500-L and complying with the AMCA 511 Certified Ratings Program. AMCA Certified Ratings Seal applies to air performance, water penetration and wind driven rain ratings.

 A. **Product Qualifications:**

 1. Miami-Dade County, Florida Notice of Acceptance (NOA).
 3. Louver shall be certified to Florida Building Code Testing Application Standards TAS 100(A) (Wind Driven Rain Resistance), TAS 201 (Large Missile Impact), TAS 202 (Uniform Static Air Pressure) and TAS 203 (Cyclic Wind Loading).
 4. AMCA Listed for compliance to AMCA 540 Level E and AMCA 550 standards.

1.06 **Approval Submittals:**

 A. **Product data:** Submit manufacturer's technical product data for louvers including: model number, accessories furnished, construction, finish, mounting details, performance data.

1.07 **O&M Data Submittals:** Submit maintenance data, including cleaning of finishes and a copy of approval submittals. Include in O&M manual.

PART 2 PRODUCTS

2.01 **Acceptable Manufacturers:** Subject to compliance with requirements, submit products by Ruskin, Greenheck, Arrow, American Warming and Ventilating, or AMCA labeled approved equal.

2.02 **General:** Except as otherwise indicated, provide manufacturer's standard louvers where shown; of size, shape, capacity and type indicated; constructed of materials and components as indicated, and as required for complete installation. Provide Kynar 500 coated, corrosion resistant finish and 5 year warranty; color to be selected by the Owner.

2.03 **Substrate Compatibility:** Provide louvers with 9 inch frame, flange and sill extension piece that are compatible with adjacent substrate, and that are specifically manufactured to fit into construction openings with accurate fit and adequate support, for weatherproof installation. Refer to general construction drawings and specifications for types of substrate which will
contain each type of louver.

2.04 **Materials:** Construct of aluminum extrusions, Alloy 6063-T6 0.081” thick for frame and 0.081” thick for front blades and 0.060” thick for back blades. Weld units or use stainless steel fasteners.

2.05 **Sill Flashing:** Formed aluminum, 0.080” thick, upturned sides to prevent water leakage.

2.06 **Installation Angles:** Material: 1.375 x 2.25 inch x 0.125 inch thick continuous aluminum angles around louver perimeter for installation in concrete, deep CMU, steel and wood substrate wall systems.

2.07 **Installation Plates:** Material: 0.250 inch (6.4 mm) thick continuous aluminum flat or zee plates for installation in thin CMU substrate wall systems.

2.08 **Louver Screens:** On inside face of exterior louvers, provide 1/2” square mesh anodized aluminum wire bird screens mounted in removable extruded aluminum frames.

2.09 **Stationary Louvers:** Hurricane and impact rated louvers, basis of design is Greenheck EHV-901D.

A. **Performance Data:**

1. **Performance Ratings:** AMCA licensed.
 a. Based on testing 48 inches x 48 inches size unit in accordance with AMCA 500-L.

2. Free Area: 42 percent, nominal.

4. Maximum Recommended Air Flow through Free Area: 2,155 feet per minute.

5. Air Flow: 10,431 cubic feet per minute.

6. Maximum Pressure Drop (Intake): 0.60 inches w.g.

7. Water Penetration: Beginning point of water penetration of 0.01 ounce per ft² of free area shall be above 1,250 feet per minute free area velocity.

8. Wind Load Rating: Maximum wind load of ±150 PSF.

9. AMCA 500-L Wind Driven Rain Performance: 99.9 percent effective at preventing water penetration through louver when tested at 50 miles per hour wind with 8 inches per hour rainfall and 2,155 feet per minute airflow through the free area. Penetration Class ‘A’ with Discharge Class (Intake) ‘3’ in accordance with AMCA 500-L Wind Driven Rain Test.

PART 3 EXECUTION

3.01 Install where shown on the drawings in accordance with the manufacturer's printed instruction and Florida Product Approval. Exercise care to prevent scratches.

3.02 Isolate dissimilar metals per the manufacturer’s recommendations.
3.03 Verify size of louvers shown on drawings prior to fabrication. Coordinate with wall openings. Sizes may be altered subject to approval by Engineer provided free area remains approximately the same as indicated.

END OF SECTION 23 37 26
SECTION 23 43 18 - BI POLAR IONIZATION AIR CLEANING EQUIPMENT

1 GENERAL

1.1 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.2 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.3 Extent of air cleaning work required by this section is indicated on drawings and schedules, and by requirements of this section.

1.4 Refer to Division-23 air handling units section for filter boxes associated with air handling units; not work of this section.

1.5 Refer to Division-23 duct accessories section for duct access door work required in conjunction with air filters; not work of this section.

1.6 Refer to Division-26 sections for power supply wiring from power source to power connection on air filter units. Include starters, disconnects, and required electrical devices, except where specified as furnished, or factory-installed by manufacturer.

1.7 Control wiring specified as work of Division 15 for Automatic Temperature Controls is work of that section.

1.8 Codes and Standards:

1.8.1 NFPA Compliance: Comply with applicable portions of NFPA 90A pertaining to installation of air filters.

1.8.2 UL Compliance: Comply with UL Standards pertaining to safety and performance of air filter units.

1.8.3 ASHRAE Compliance: Comply with provisions of ASHRAE Standard 52 for method of testing, and for recording and calculating air flow rates.

1.9 Approval Submittals:

1.9.1 Product Data: Submit manufacturer's technical product data including dimensions, weights, required clearances and access, flow capacity including initial and final pressure drop at rated air flow, efficiency and test method, fire classification, and installation instructions.

1.9.2 Shop Drawings: Submit manufacturer's assembly-type shop drawings indicating dimensions, materials, and methods of assembly of components.

1.10 Test Reports and Verification Submittals:

1.10.1 Submit HEPA filter test reports.

1.11 O&M Data Submittals:
1.11.1 **Maintenance Data:** Submit maintenance data and spare parts lists for each type of filter and rack required. Include this data, product data and a copy of approval submittals in O&M manual.

1.11.2 **Wiring Diagrams:** Submit manufacturer's electrical requirements for power supply wiring to air filter units. Submit manufacturer's ladder-type wiring diagram for control wiring. Clearly differentiate between portions of wiring that are factory-installed and portions to be field-installed. Include in O&M manual.

2 **PRODUCTS**

2.1 **BIPOLAR IONIZATION SYSTEM**

2.1.1 The Air Purification System shall be a product of an established manufacturer within the USA.

2.1.2 A qualified representative from the manufacturer shall be available to inspect the installation of the air purification system to ensure installation in accordance with manufacturer's recommendation.

2.1.3 Technologies that do not address gas disassociation such as UV Lights, Powered Particulate Filters and/or polarized media filters shall not be considered. Uni-polar ion generators shall not be acceptable. “Plasma” particulate filters shall not be acceptable.

2.1.4 Projects designed using ASHRAE Standard 62, IAQ Procedure shall require the manufacturer to provide Indoor Air Quality calculations using the formulas within ASHRAE Standard 62.1-2007 to validate acceptable indoor air quality at the quantity of outside air scheduled with the technology submitted. The manufacturer shall provide independent test data on a previous installation performed within the last two years and in a similar application, that proves compliance to ASHRAE 62 and the accuracy of the calculations.

2.1.5 The Air Purification System have been tested by UL or Intertek/ETL to prove conformance to UL 867-2007 including the ozone chamber testing and peak ozone test for electronic devices. Manufacturers that achieved UL 867 prior to December 21, 2007 and have not been tested in accordance with the newest UL 867 standard with the ozone amendment shall not be acceptable. All manufacturers shall submit their independent UL 867 test data with ozone results to the engineer during the submittal process. All manufacturers shall submit a copy with their quotation. Contractors shall not accept any proposal without the proper ozone testing documentation.

2.1.6 The maximum allowable ozone concentration per the UL 867-2007 chamber test shall be 0.007 PPM. The maximum peak ozone concentration per the UL 867-2007 peak test as measured 2 inches away from the electronic air cleaner’s output shall be no more than 0.0042 PPM. Manufacturers with ozone output exceeding these ozone values shall not be acceptable.

2.1.7 Equipment shall be warranted by the manufacturer against defects in material and workmanship for a period of twelve months after shipment or eighteen months from owner acceptance, whichever occurs first. Labor to replace equipment under warranty shall be provided by the owner or installing contractor.

2.1.8 **General**

The air purification system(s) shall be of the size, type, arrangement and capacity indicated and required by the unit furnished and shall be of the manufacturer specified.
Basis of Design: Global Plasma Solutions

Approved equals by Airgenics, Active Air Solutions, and Plasma Air subject to specification compliance. All other Suppliers of comparable products requesting prior approval shall:

Submit for prior approval in accordance with the requirements of Mechanical General.

In addition, manufacturers submitting for prior approval for Bi-Polar Ionization must as part of the prior approval request provide their ASHRAE 62.1-2007 calculations that prove conformance to the ASHRAE Standard with the reduction of outside air to the scheduled values. A letter on the manufacturer’s letterhead requesting prior approval must accompany the request for prior approval stating their calculations are ASHRAE compliant. A third party validation study performed on a previous installation of the same application shall also be included.

Submit independent test data from ETL or UL showing ozone levels produced during the UL 867 ozone chamber test. Manufacturers without this test data shall not be acceptable.

2.1.9 Bi-Polar Ionization Design & Performance Criteria: Each piece of air handling equipment, so designated on the plans, details, equipment schedules and/or specifications shall contain a Plasma Generator with Bi-polar Ionization output as described here within.

2.1.10 The Bi-polar ionization system shall be capable of:

Effectively killing microorganisms downstream of the bi-polar ionization equipment (mold, bacteria, virus, etc.).

Controlling gas phase contaminants generated from human occupants, building structure and furnishings.

Capable of reducing static space charges.

Increasing the interior ion levels, both positive and negative, to a minimum of 800 ions/cm³ measured 5 feet from the floor.

2.1.11 The bi-polar ionization system shall operate in a manner such that equal amounts of positive and negative ions are produced. Uni-polar ion devices shall not be acceptable.

Air exchange rates may vary through the full operating range of a constant volume or VAV system. The quantity of air exchange shall not be increased due to requirements of the air purification system.

Velocity Profile: The air purification device shall not have maximum velocity profile.

2.1.12 Humidity: Plasma Generators shall not require preheat protection when the relative humidity of the entering air exceeds 85%. Relative humidity from 0 - 100%, condensing, shall not cause damage, deterioration or dangerous conditions within the air purification system. Air purification system shall be capable of wash down duty.

2.1.13 Equipment Requirements:

Electrode Specifications (Bi-polar Ionization):

Each Plasma Generator with Bi-polar Ionization output shall include the required number of electrodes and power generators sized to the air handling equipment capacity. A minimum of one
electrode pair per 2400 CFM of air flow shall be provided. Bi-polar ionization tubes manufactured of glass and steel mesh shall not be acceptable due to replacement requirements, maintenance, performance output reduction over time, ozone production and corrosion.

Electrodes shall be energized when the main unit disconnect is turned on and the fan is operating. Internal circuitry shall be provided to sense air flow across the electrode output. Ionization systems requiring the use of a mechanical air pressure switch to cycle the electrodes only when the fan is operating shall not be acceptable due to high failure rates and pressure sensitivity.

2.1.14 Air Handler Mounted Units: Plasma Generator(s) shall be supplied and installed. The mechanical contractor shall mount the Plasma Generator and wire it to the AHU control power (24VAC) as instructed by the Air Purification Manufacturer’s instructions or line voltage subject to power available. Each unit shall be designed with a stainless steel casing, integral illuminated on/off switch, two 2.5mm DC power jacks, high voltage output indication light and dry contacts to prove ion output is operating properly. The dry contacts shall close to prove the ion generator is working properly and may be daisy chained in series such that only one dry contact per AHU is required to interface to the BAS or the optional DDC controller. Dry contacts proving power has been applied in lieu of the ion output is actually operating, are not acceptable.

2.1.15 Ionization Requirements: Plasma Generators with Bi-polar ionization output shall be capable of controlling gas phase contaminants and shall be provided for all equipment listed above. The Bi-polar ionization system shall consist of Bi-Polar Plasma Generator and power supply. The Bi-polar system shall be installed where indicated on the plans or specified to be installed. The device shall be capable of being powered by DC power or 24VAC or 110VAC to 240VAC without the use of an external transformer. Ionization systems requiring isolation transformers shall not be acceptable.

Ionization Output: The ionization output shall be controlled such that an equal number of positive and negative ions are produced. Imbalanced levels shall not be acceptable.

Ionization output from each electrode shall be a minimum of 15 million ions/cc when tested at 2” from the ionization generator.

All manufacturers shall provide documentation by an independent NELEC accredited laboratory that proves the product has minimum kill rates for the following pathogens given the allotted time and in a space condition:

- MRSA - >96% in 30 minutes or less
- E.coli - > 99% in 15 minutes or less
- TB - > 69% in 60 minutes or less

Manufacturers not providing the equivalent space kill rates shall not be acceptable. All manufactures requesting prior approval shall provide to the engineer independent test data from a NELEC accredited independent lab confirming kill rates and time meeting the minimum requirements stated in section 2.2 B, points 6A, 6B and 6C. Products tested only on Petri dishes to prove kill rates shall not be acceptable.

2.1.16 Ozone Generation: The operation of the electrodes or Bi-polar ionization units shall conform to UL 867-2007 with respect to ozone generation. There shall be no ozone generation during any operating condition, with or without airflow.

2.1.17 Electrical Requirements: Wiring, conduit and junction boxes shall be installed within housing plenums in accordance with NEC NFPA 70. Plasma Generator shall accept an electrical service of 24 VAC or 100 VAC to 240VAC, 1 phase, 50/60 Hz.
2.1.18 The contractor shall coordinate electrical requirements with air purification manufacturer during submittals.

2.1.19 Control Requirements:

All Plasma Generators shall have internal short circuit protection, overload protection, and automatic fault reset.

Integral airflow sensing shall modulate the Plasma output as the air flow varies or stops.

A mechanical air flow switch shall not be acceptable as a means to activate the Plasma device due to high failure rates and possible pressure reversal.

The installing contractor shall mount and wire the Plasma device within the air handling unit specified or as shown or the plans. The contractor shall follow all manufacturer IOM instructions during installation.

3 EXECUTION

3.1 General: Comply with installation requirements as specified elsewhere in these specifications pertaining to air filters housing/casings, and associated supporting devices.

3.2 AIR PURIFICATION SYSTEM

3.2.1 General: The Contractor shall be responsible for maintaining all air systems until the owner accepts the building (Owner Acceptance).

3.2.2 Assembly & Erection: Plasma Generator With Bi-Polar Ionization

All equipment shall be assembled and installed in a workman like manner to the satisfaction of the owner, architect, and engineer.

Any material damaged by handling, water or moisture shall be replaced, by the mechanical contractor, at no cost to the owner.

All equipment shall be protected from dust and damage on a daily basis throughout construction.

3.2.3 Testing: Provide the manufacturers recommended electrical tests.

3.2.4 Commissioning & Training: A manufacturer’s authorized representative shall provide start-up supervision and training of owner’s personnel in the proper operation and maintenance of all equipment.

3.3 Install electrical devices furnished by manufacturer but not specified to be factory-mounted. Furnish copy of manufacturer’s wiring diagram submittal to electrical installer. Verify that electrical wiring installation is in accordance with manufacturer’s submittal and installation requirements of Division-21 sections. Do not proceed with equipment start-up until wiring installation is acceptable to equipment installer.

END OF SECTION 23 43 18
SECTION 23 81 03 OUTSIDE AIR PRECONDITIONING UNITS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.03 Refer to other Division-23 sections for testing, adjusting, and balancing of air conditioning units (OAUs).

1.04 Approval Submittals:

- **Product Data**: Submit manufacturer's technical product data, including dimensions, ratings, electrical characteristics, weight, capacities, materials of construction, and installation instructions.

- **Preconditioning units**
- **Vibration isolation**
- **Refrigerant Line Shop Drawings**

1.05 Test Reports and Verification Submittals:

- Submit Startup Report by factory-trained representative.

1.06 O&M Data Submittals: Submit manufacturer's maintenance data including parts lists. Include these data, a copy of approval submittals, product data, and wiring diagrams in O&M manual.

PART 2 PRODUCTS

2.01 Quality Assurance:

- Provide units tested by UL, ARL or ETL.

- Construct refrigeration system in accordance with ASHRAE 15 (ANSI B 9.1) "Safety Code for Mechanical Refrigeration".

- Provide units with an EER that meets the Florida Energy Efficiency Code and the schedules on the drawings.

- Acceptable Manufacturers: Subject to compliance with requirements provide units by Dectron, Desert-Aire, or Annexair.

2.02 General:

- Units shall be factory-assembled, wired and tested. All controls shall be factory-adjusted and preset to the design conditions.

- Casings: Construct of heavy gauge steel formed panels rigidly reinforced and braced. Each unit shall be provided with removable panels to permit the unit (including fans and compressors) to be properly maintained and serviced. Entire casing shall be painted with factory-applied finish. Casing for outdoor units shall be provided with weatherproof construction with all seams bolted. Provide stainless steel hardware. Units shall be sealed to minimize leakage.
2.03 Remote Condenser:

A. The size and capacity shall be in accordance with the unit schedule. The system shall be able to reject all the recovered heat (THR) to the outdoor condenser.

B. The unit shall be provided with a weatherproof electrical panel with factory mounted door interrupt disconnect switch.

C. The cabinet shall be constructed of heavy-gauge aluminum. The sides shall be one-piece construction. The unit shall be provided with lifting eyes located on the fan discharge panel.

D. The coil shall be constructed of copper tubing in a staggered design. Tubes shall be hydraulically expanded into full-collared, plate-type aluminum fins. Coils shall be factory lea-tested and sealed with caps.

E. The fan motors shall be heavy-duty PSC or three-phase with permanently lubricated ball bearings and built-in overload protection. All motors shall be factory-wired with leads terminating in a weatherproof junction box located on the outside of the unit cabinet.

F. The fan diameter shall not exceed 30”. All units shall have a dynamically balanced fan with aluminum blades and painted steel hubs.

G. The fans shall be cycled based on internal head pressure on multiple fan units.

H. Fan guards shall be heavy-gauge, closed-mesh steel wire with vinyl coating. Guards shall be contoured for maximum rigidity.

I. The condenser shall use a low 1140 RPM motor designed fan blade to produce 85 dbA or less noise at 10 ft.

J. Compressor: Shall be scroll design for R410a refrigerant with vibration isolation. Each compressor shall have separate refrigerant circuit. Motors shall be ball bearing, high starting torque, low starting current type for compressor service. Compressors shall not produce objectionable noise or vibration inside the building. Compressors shall have five (5) year warranty.

K. Service Valves: Provide for high and low pressure readings.

L. Equipment Coating: Provide clear inorganic reacted siloxane coating over all surfaces of the unit exposed to the outdoors, MicroGuard AD35 by Adsil or equal. Completely coat condenser coils, base pan, cabinet, and all exposed refrigerant parts, covers, and shields. Provide 6 to 8 micron dry film thickness and all cleaning, prep, and finish work required for first class installation. Provide 3 year warranty on the coating. Provide 72 hour notice to engineer for witnessing of field applied coatings.

2.04 Indoor Unit:

A. Enclosure:

1. A 12-gauge galvanized base panel shall be incorporated in all units. Panels shall be a minimum of 20-gauge galvanized steel. Supports shall be constructed of a minimum 16-gauge galvanized steel.

2. Removable panels shall be provided to allow easy access to all internal parts and components. The electrical control box and switch panel shall be enclosed in a
4-15 Ton Cabinets: The thermal and sound insulation shall be 3/4” closed cellular rubber insulation installed in the upper air handling section.

20-30 Ton Cabinets: The unit shall be double wall with 16-gauge galvanized outer panels and 20-gauge inner liners. The insulation shall be 1” solid foam in the double wall cabinet with a minimum R value of 5.0.

B. Refrigeration System:

1. Compressors (4 and 5 HP): The compressor shall be heavy-duty scroll type, single compressor complete with start kit on single-phase motors. The compressor shall be equipped with low and high-pressure safety switches, with internal protection from overheating. The compressor shall be externally vibration isolated. The unit shall be provided with hot gas bypass for each system compressor.

2. Compressors (8 to 30 HP): The compressors shall be a tandem pair, heavy-duty scroll type. A factory-mounted suction line sensor that will deactivate one compressor when the load reaches the mid-range of the system's capacity shall stage the compressors. The compressor shall be equipped with high and low pressure safety switches, with internal protection from overheating. The compressor shall be externally vibration isolated.

3. Hot Gas Bypass: The unit shall include hot gas bypass for each system compressor set. The hot gas bypass is to be used only for coil freeze protection and not for compressor unloading.

4. Receiver: The unit shall include a refrigerant receiver. The receiver shall assist the unit in operating at the highest efficiency over a wide range of load conditions.

5. Evaporator Dehumidifier Coils:

6. Fins: Fins shall be die-formed, raised lanced aluminum, and be damage resistant. Fin collars shall be extruded. Fin spacing shall not exceed 10 FPI.

7. Tubes: Coil shall be fabricated from seamless drawn copper. The inner tubing shall be rifled to produce turbulent refrigeration flow to enhance the heat transfer process. The tubes shall be hydraulically expanded into the fins to form a permanent metal-to-metal bond for maximum heat transfer and stability. The coil shall be a minimum of six rows deep. Coils shall be leak tested with 540 psig of nitrogen.

8. Reheat Coil: Finish shall be die-formed, raised lanced aluminum and shall be damage resistant. Fin spacing shall be no greater than 12 FPI. Coil tubes shall be seamless drawn copper. The inner tubing shall be rifled to produce turbulent refrigeration flow to enhance the heat transfer process. The tubes shall be hydraulically expanded into the fins to form a permanent metal-to-metal bond for maximum heat transfer and stability. Leak test with 625 psig of nitrogen. The coil shall be a minimum of 2 rows, located a minimum of 5” from the evaporator coil.

C. Electric Heater:

1. Capacity shall be in accordance with unit schedule. The heater coils shall be constructed of high grade nickel-chrome allow and insulated by floating ceramic bushings from the galvanized steel frame. Coil terminal pins shall be stainless steel
insulated by means of non-rotating ceramic bushings. The heater shall be equipped with fail-safe, automatic reset and manual reset disc-type thermal cutouts. The unit shall be wired to the units main power lugs to provide a single point of connection for unit power.

D. Air Filters: Provide 4" filter rack with MERV 8 disposable filters. Provide two sets of filters—one for construction and one to be installed at substantial completion.

2.05 Controls:

A. All safety and operational controls shall be factory wired and preset in a control panel in a separate compartment. Provide all necessary operational controls to heat, cool and dehumidify 100% outside air in accordance with the control diagrams on the drawings and the sequence of operation.

B. Safety and Operational Control Features:

- Internal compressor overtemperature protection.
- Hot gas reheat and thermostat to maintain supply air temperature.
- Solid state adjustable trip overloads.
- High pressure cutout.
- Low pressure cutout.
- Anti-recycle time delay start.
- Phase failure and low voltage protection.
- Hot gas bypass.
- SCR controller for head pressure control.
- Outside air thermostat to control compressor.
- Thermal expansion valve.
- Connection for remote on-off control.

2.06 Coil Coating: Provide factory applied ElectroFin E-Coating or equal on condenser, evaporator, and reheat coils. The coating shall be applied to the entire coil assembly. The coil shall be sealed, electro-statically charged, coated, and baked. Provide two year parts warranty on coated coils.

2.07 Refrigerant Piping:

A. Copper tubing ¾" and smaller: Type ACR, soft annealed temper; cast copper-alloy fittings for flared copper tubes; flared joints.

B. Copper tubing 7/8" – 4-1/8": Type ACR, hard-drawn temper tubing; wrought-copper, solder-joint fitting; brazed joints.

C. Silver solder material: Silver solder bearing at least 15% silver; Sil Fos.

2.08 Basic Vibration Isolation: Provide vibration isolation products complying with Division-23 section "Vibration Isolation" and the following list:

A. Equipment Mounting: Type EM1

2.09 Warranty: Manufacturer shall provide two year parts and labor warranty.

2.10 Sequence of Operation:

The following sequence of operations shall be provided by the unit manufacturer:
General: Starting and stopping of equipment shall be by a unit mounted digital controller. With the digital controller enabled by a signal from the building electronic programmable time clock, the unit shall be started automatically by the electronic control system and all controls activated subject to the fire alarm relay, safety and overloads.

Occupied Mode Dehumidification: The motorized OA damper shall open to the balanced position and the indoor fan shall run continuously. The unit shall dehumidify supply air anytime the outdoor air dewpoint is above 55ºf. The unit shall modulate the hot gas reheat to maintain 72ºF leaving air temperature.

Occupied Mode Heating: When the outdoor air temperature falls below 50ºf, the electric heat shall operate as required to maintain the leaving air temperature at 65ºF. The electric heat shall be locked out during cooling.

Unoccupied Mode: The motorized OA damper shall close and the unit shall be not operate.

Override Mode: the override mode shall place the system in occupied mode and the outside air damper for the unit in override shall open to the balanced position.

2.11 Shop Drawings: Provide scaled factory approved refrigerant line layout showing the actual routing on site, including all elevation changes and elbows. Drawings should indicate total length and size of refrigerant piping between indoor and outdoor units and elevations for indoor and outdoor equipment.

PART 3 EXECUTION

3.01 **Installation:** Install in accordance with producer's printed instructions. Brush out fins on all coils.

3.02 Mount units on vibration isolation and concrete housekeeping pads.

3.03 **Refrigerant Piping:** Comply with ANSI B31.5, “Refrigerant Piping,” (except lower pressure limits below 15 psig), and ASHRAE 15 (ANSI B9.1). Make all joints carefully and neatly. Clean pipe and fittings before fluxing. Remove burrs. Braze by the sweat method using Sil Fos. Install field installed refrigerant devices and valves as required.

A. **Refrigerant Piping Layout:** Any deviations from the factory approved shop drawings shall be approved by the factory prior to system startup.

3.04 **Testing:** After job erection, or modification of factory installed piping, pressure test for leaks at 150 psig using a nominal amount of a suitable tracer refrigerant and dry nitrogen or a suitable refrigerant. Perform leak tests with an electronic halide leak detector having a sensitivity of at least ½ ounce R-12 per year. Refrigeration piping will not be accepted unless it is gas tight.

3.05 **Evacuation:** After completing the successful pressure test, multiple-evacuate the system. Leave the compressor isolation valves shut and connect the vacuum pump to both the high and low sides. Evacuate the system to an absolute pressure of 1,500 microns. Then break vacuum to 2 psig with dry nitrogen. Repeat this process. Install the proper biflow drier in the liquid line and evacuate the system to 500 microns. Leave vacuum pump running for at least two hours without interruption. Break vacuum with the refrigerant to be used and raise pressure to 2 psig. Do not operate compressors during the evacuation procedure.

3.06 **Charging:** After completing the successful evacuation procedure, charge refrigerant directly to the system from the original containers through a filter drier. Charge to the manufacturer’s stated conditions of pressure for required temperature. Weigh the refrigerant added and record on the startup report.
3.07 **Controls**: Set up controls for units as described in Sequence of Operations.

3.08 **Cleaning**: Clean tar and all other soil from housing exterior. Leave ready for Division 7, Caulking Work. Caulk around pipe sleeves.

3.09 **Construction Filters**: Provide 4" thick filters in all units during construction. After construction (but prior to the test and balance being performed) install clean final filters.

3.10 **Condensate Drain**: Pipe trapped copper condensate drain (full size of unit outlet) to nearest floor drain or as shown on the drawings. Refer to Division-23 section "Insulation" for pipe insulation.

3.11 **Startup**: Startup by a factory-trained representative. Check entire assembly for correctness of installation, alignment, and control sequencing. Start all component parts in proper sequence. Make all adjustments required to insure proper control and smooth quiet operation. Submit Startup Report.

END OF SECTION 23 81 03
SECTION 23 81 26 AIR SOURCE UNITARY SPLIT SYSTEM HEAT PUMP UNITS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.03 Refer to other Division-23 sections for testing, adjusting, and balancing of air conditioning units (AHUs).

1.04 Approval Submittals:

A. Product Data: Submit manufacturer's technical product data, including dimensions, ratings, electrical characteristics, weight, capacities, materials of construction, and installation instructions.
 1. Split system units
 2. Vibration Isolation

1.05 O&M Data Submittals: Submit manufacturer's maintenance data including parts lists. Include these data, a copy of approval submittals, product data, and wiring diagrams in O&M manual.

PART 2 PRODUCTS

2.01 Quality Assurance:

A. Provide units tested by UL, ARL or ETL.

B. Construct refrigeration system in accordance with ASHRAE 15 (ANSI B 9.1) "Safety Code for Mechanical Refrigeration".

C. Test and rate AHUs in accordance with the applicable ARI standards and provide certified rating seal. Sound test and rate units in accordance with ARI 270.

D. Provide units with an EER or SEER that meets the Florida Energy Efficiency Code and the schedules on the drawings.

E. Acceptable Manufacturers: Subject to compliance with requirements provide units by: Carrier, Trane, Lennox, York or approved equal.

2.02 General:

A. Units shall be factory-assembled, wired and tested. All controls shall be factory-adjusted and preset to the design conditions.

B. Casings: Construct of heavy gauge steel (or aluminum) formed panels rigidly reinforced and braced. Each unit shall be provided with removable panels to permit the unit (including fans and compressors) to be properly maintained and serviced. Entire casing shall be painted with factory-applied finish. Casing for outdoor units shall be provided with weatherproof construction with all seams bolted. Provide stainless steel hardware.

C. Supports: Provide concrete pad 4" larger than the unit on all sides.

2.03 Condensing Unit:
A. **Condenser Fans and Drives:** Fan shall of rustproof construction: hot-dipped galvanized steel, stainless steel or aluminum. Unit shall have a variable speed motor suitable for the duty indicated. Provide a close fretwork galvanized steel or non-ferrous fan and guard. Motors shall be the permanently lubricated type, resiliently mounted.

B. **Condenser Coil:** Construct of copper nonferrous tubes and nonferrous fins. Provide inlet guard to protect condenser fins. Provide seacoast or heresite coating on the condenser coil.

C. **Compressor:** Shall be scroll hermetic or semi-hermetic reciprocating design for R410a refrigerant with vibration isolation. Each compressor shall have separate refrigerant circuit. Motors shall be ball bearing, high starting torque, low starting current type for compressor service. Compressors shall not produce objectionable noise or vibration inside the building. Compressors shall have five (5) year warranty. Provide dual compressor machines if scheduled.

D. **Service Valves:** Provide for high and low pressure readings.

E. **Equipment Coating:** Provide clear inorganic reacted siloxane coating over all surfaces of the unit exposed to the outdoors, MicroGuard AD35 by Adsil or equal. Completely coat condenser coils, base pan, cabinet, and all exposed refrigerant parts, covers, and shields. Provide 6 to 8 micron dry film thickness and all cleaning, prep, and finish work required for first class installation. Provide 3 year warranty on the coating. Provide 72 hour notice to engineer for witnessing of field applied coatings.

2.04 **Evaporator Unit:**

A. Interior of unit shall be thermally and acoustically insulated with minimum R=4.2 insulation. Provide removable panels to permit the unit to be properly serviced and maintained.

B. The evaporator shall include centrifugal fan, fan motor, direct drive and lubricated bearings. Motors shall be high efficiency type. Provide cooling coils constructed of copper tubes and aluminum fins. Filters and coils shall be selected for a maximum face velocity of 500 fpm. Provide thermal expansion valve, sight glass, refrigerant drier, strainer, controls and other necessary devices for a completely automatic unit.

C. Each unit shall be equipped with sloped IAQ drain pans under the entire evaporator coil to prevent condensate carry-over.

2.05 **Electric Heater Section:**

A. Provide electric heating coils controlled by one or more magnetic contactors. Three phase coils shall be wired for balanced current in each wire, if possible. Furnish and install necessary overheating and air flow controls to meet the requirements of the National Electric Code. Provide built-in air flow switch and heater interlock relay.

B. Heaters shall be factory mounted and wired with all required fuses and contactors to provide single point connection.

2.06 **Unit Controls:**

A. All safety and operational controls shall be factory wired.

B. **Safety and Operational Control Features:**

Internal compressor overtemperature protection.
Crankcase heaters.
Individual motor overcurrent protection.
High pressure cutout.
Low pressure cutout.
Anti-recycle timer (5 minute)
Timer-type defrost control.
Liquid line solenoid.

2.07 Refrigerant Piping:

A. Copper tubing 3/4” and smaller: Type ACR, hard-drawn temper tubing; wrought-copper,
solder-joint fitting; brazed joints.

B. Copper tubing 7/8” – 4-1/8”: Type ACR, hard-drawn temper tubing; wrought-copper, solder-
joint fitting; brazed joints.

C. Silver solder material: Silver solder bearing at least 15% silver; Sil Fos.

2.08 Basic Vibration Isolation: Provide vibration isolation products complying with Division-23 section
"Vibration Isolation" and the following list:

A. Equipment Mounting (Indoor): Type EM5

PART 3 EXECUTION

3.01 Installation: Install in accordance with producer’s printed instructions. Brush out fins on all coils.

3.02 Support: Mount units on concrete pads with manufacturer’s recommended service and operating
clearance.

3.03 Mount units on vibration isolation.

3.04 Brush out fins on all coils.

3.05 Refrigerant Piping: Comply with ANSI B31.5, “Refrigerant Piping,” (except lower pressure limits
below 15 psig), and ASHRAE 15 (ANSI B9.1). Make all joints carefully and neatly. Clean pipe and
fittings before fluxing. Remove burrs. Braze by the sweat method using Sil Fos. Install field
installed refrigerant devices and valves as required.

3.06 Testing: After job erection, or modification of factory installed piping, pressure test for leaks at 150
psig using a nominal amount of a suitable tracer refrigerant and dry nitrogen or a suitable
refrigerant. Perform leak tests with an electronic halide leak detector having a sensitivity of at least
½ ounce R-12 per year. Refrigeration piping will not be accepted unless it is gas tight.

3.07 Evacuation: After completing the successful pressure test, multiple-evacuate the system. Leave
the compressor isolation valves shut and connect the vacuum pump to both the high and loq sides.
Evacuate the system to an absolute pressure of 1,500 microns. Then break vacuum to 2 psig with
dry nitrogen. Repeat this process. Install the proper biflow drier in the liquid line and evacuate the
system to 500 microns. Leave vacuum pump running for at least two hours without interruption.
Break vacuum with the refrigerant to be used and raise pressure to 2 psig. Do not operate
compressors during the evacuation procedure.

3.08 Charging: After completing the successful evacuation procedure, charge refrigerant directly to the
system from the original containers through a filter drier. Charge to the manufacturer’s stated
conditions of pressure for required temperature. Weigh the refrigerant added and record on the
startup report.
3.09 **Construction Filters**: Provide 1" thick filters in all units during construction. After construction (but prior to the test and balance being performed) install clean final filters.

3.10 **Cleaning**: Clean tar and all other soil from housing exterior. Leave ready for Division 7, Caulking Work. Caulk around pipe sleeves.

3.11 **Condensate Drain**: Pipe trapped copper condensate drain (full size of unit outlet) to nearest floor/roof drain or as shown on the drawings. Refer to Division-23 section "Insulation" for pipe insulation.

3.12 **Startup**: Check entire assembly for correctness of installation, alignment, and control sequencing. Start all component parts in proper sequence. Make all adjustments required to insure proper smooth quiet operation.

END OF SECTION 23 81 26
SECTION 23 81 28 DUCTLESS SPLIT SYSTEM AIR CONDITIONING UNITS

PART 1 GENERAL

1.01 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.02 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.03 Refer to other Division-23 sections for testing, adjusting, and balancing of units; not work of this section.

1.04 Approval Submittals:

A. Product Data: Submit manufacturer's technical product data, including dimensions, ratings, electrical characteristics, weight, capacities, materials of construction, and installation instructions. Submit assembly-type drawings showing all piping and electrical connections and all mounting requirements. Show methods of fastening and assembly of components. Provide wiring diagrams.

1.05 O&M Data Submittals: Submit manufacturer's maintenance data including parts lists. Include these data, product data, and a copy of approval submittals in O&M manual.

PART 2 PRODUCTS

2.01 Quality Assurance:

A. Test and rate split system air conditioning units in accordance with ARI Standard 210, 240 or 360 as applicable, and provide certified rating seal.

B. Construct refrigeration system of split system air conditioning units in accordance with ASHRAE 15 (ANSI B 9.1) "Safety Code for Mechanical Refrigeration".

C. Provide split system air conditioning units with an SEER that meets the Florida Energy Efficiency Code and the schedule on the drawings.

D. Provide split system air conditioning units that are designed, manufactured, and tested in accordance with UL or ETL requirements.

E. Acceptable Manufacturers: Submit to compliance with requirements, provide units by Daikin, Sanyo, Toshiba, Mitsubishi, or approved equal.

2.02 General:

A. Casings: Construct of painted mill galvanized steel (or aluminum) formed panels rigidly reinforced and braced. Each unit shall be provided with removable panels to permit the unit (including fans and compressors) to be properly maintained and serviced.

2.03 Condensing Unit:

A. Condenser Fans and Drives: Fan shall be of rustproof construction, hot dipped galvanized steel, stainless steel or aluminum. Unit shall have weather protected totally enclosed motor. Provide a close fretwork galvanized steel or non-ferrous fan guard. Motors shall be the permanently lubricated type, resiliently mounted.

B. Condenser Coil: Construct of non-ferrous tubes and aluminum fins. Provide inlet guard
to protect condenser fins. Provide seacoast coating on coils.

C. Compressor: Shall be scroll or hermetic design with vibration isolation. Compressor shall not produce objectionable noise or vibration inside the building. Compressors shall have five (5) year warranty.

D. Service Valves: Provide for high and low pressure readings.

2.04 Evaporator Unit:

A. Interior of unit shall be thermally and acoustically insulated with 1 inch fiberglass duct liner insulation. Provide removable panels to permit the unit to be properly serviced and maintained.

B. The evaporator section shall include centrifugal fan, two-speed fan motor, and direct drive. Provide cooling coil, snap out washable filters, refrigerant drier, controls and other necessary devices for a completely automatic unit. Coils shall have copper tubes and aluminum fins. Provide automatic oscillating louver action to facilitate air distribution.

2.05 Controls:

A. All safety and operational controls shall be factory wired.

B. Provide remote microprocessor-based controls with room thermostat, timer and fan speed switch.

2.06 Refrigerant Piping:

A. Copper tubing 3/4" and smaller: Type ACR, soft annealed temper; cast copper-alloy fittings for flared copper tubes; flared joints.

B. Brazing material: Silver solder bearing at least 15% silver; Sil Fos.

PART 3 EXECUTION

3.01 Installation: Install in accordance with producer's printed instructions.

3.02 Refrigerant Piping: Comply with ANSI B31.5, "Refrigerant Piping," (extend lower pressure limits below 15 psig), and ASHRAE 15 (ANSI B9.1). Make all joints carefully and neatly. Clean pipe and fittings before fluxing. Remove burrs. Braze by the sweat method using Sil Fos.

3.03 Testing: After job erection, pressure test for leaks at 150 psig using a nominal amount of a suitable tracer refrigerant and dry nitrogen or a suitable refrigerant. Perform leak tests with an electronic halide leak detector having a sensitivity of at least 1/2 ounce R-12 per year. Refrigeration piping will not be accepted unless it is gas tight.

3.04 Evacuation: After completing the successful pressure test, multiple-evacuate the system. Leave the compressor isolation valves shut and connect the vacuum pump to both the high and low sides. Evacuate the system to an absolute pressure of 1,500 microns. Then break vacuum to 2 psig with dry nitrogen. Repeat this process. Install the proper biflow drier in the liquid line and evacuate the system to 500 microns. Leave vacuum pump running for at least two hours without interruption. Break vacuum with the refrigerant to be used and raise pressure to 2 psig. Do not operate compressors during the evacuation procedure.

3.05 Charging: After completing the successful evacuation procedure, charge refrigerant directly to
the system from the original containers through a filter drier. Charge to the manufacturer's stated conditions of pressure for required temperature. Weigh the refrigerant added and record on the startup report.

3.06 Cleaning: Clean tar and all other soil from housing exterior. Leave ready for Division 7, Caulking Work. Caulk around pipe sleeves.

3.07 Condensate Drain: Pipe trapped copper condensate drain to outside the building or to a point of disposal as shown on the drawings. Pipe shall be full size of unit outlet. Refer to Division-23 section "Insulation" for pipe insulation.

3.08 Startup: Check entire assembly for correctness of installation, alignment, and control sequencing. Start all component parts in proper sequence. Make all adjustments required to insure proper smooth quiet operation.

END OF SECTION 23 81 28
SECTION 23 84 16 MECHANICAL DEHUMIDIFICATION UNITS

1 GENERAL

1.1 Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.2 Division-23 Basic Mechanical Materials and Methods sections apply to work of this section.

1.3 Approval Submittals:

1.3.1 Product Data: Submit manufacturer's technical product data, including dimensions, ratings, electrical characteristics, weight, capacities, materials of construction, and installation instructions.

1.4 Test Reports and Verification Submittals:

1.4.1 Submit Startup Report by factory-trained representative.

1.5 O&M Data Submittals: Submit manufacturer's maintenance data including parts lists. Include these data, a copy of approval submittals, product data, and wiring diagrams in O&M manual.

2 PRODUCTS

2.1 Quality Assurance:

2.1.1 Provide units tested by UL, ARL or ETL.

2.1.2 Acceptable Manufacturers: Subject to compliance with requirements provide units by Innovative Dehumidifier Systems, Ultra-Aire, or approved equal.

2.2 General:

2.2.1 Units shall be factory-assembled, wired and tested. All controls shall be factory-adjusted and preset to the design conditions.

2.2.2 In Wall Dehumidifier: Construct of heavy gauge steel formed panels rigidly reinforced and braced. Each unit shall be fully serviceable from the front access panel. Units shall be sealed to minimize leakage. Unit shall be designed to fit within 16" o.c. wall studs. Unit shall operate at 47 dBA or less. Provide epoxy coated coils. Provide automatic control system with build in humidistat behind tamper proof cover. Provide washable air filter, drain connector, drain tube, and control board with built-in safety switch.

2.2.3 Warranty: Provide 24 month warranty for materials and workmanship after the date of shipment.

3 EXECUTION

3.1 Installation: Install in accordance with producer's printed instructions.

3.2 Mount units level and plumb from structure.
3.3 Controls: Set up controls for automatic operation when the room relative humidity exceeds 60%.

3.4 Cleaning: Clean tar and all other soil from housing exterior. Leave ready for Division 7, Caulking Work.

3.5 Condensate Drain: Pipe condensate drain (full size of unit outlet) to nearest hub drain or as shown on the drawings.

END OF SECTION 23 84 16
SECTION 260500 - ELECTRICAL GENERAL REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

The Electrical General Requirements are supplementing and applicable to Division 26 Sections and shall apply to all phases of work specified herein, shown on the Drawings, or required to provide a complete installation of electrical systems. Section 26 is sub-divided for convenience only.

A. This Section includes the following:

1. Job Conditions
2. Regulatory Requirements
3. Electrical equipment coordination and installation.
4. Submittals, Operating and Maintenance instructions and As-built drawings.
5. Common electrical installation requirements.
6. Warranty of work.

1.2 JOB CONDITIONS:

A. SITE INSPECTIONS: Before submitting proposals, each bidder should visit the site and fully familiarize himself with all job conditions and shall be fully informed as to the extent of his work. No consideration will be given after bid opening date for alleged misunderstanding as to the requirements of work involved in connecting to the utilities or as to requirements of materials to be furnished.

B. EXISTING CONDITIONS: All utilities, existing system and conditions shown on the plans as existing are approximate, and the Contractor shall verify before any work is started.

C. SCHEDULED INTERRUPTIONS: Planned interruptions of utilities service, to any facility affected by this contract, shall be carefully planned and approved by Architect at least ten (10) days in advance of the requested interruption. The Contractor shall not interrupt services until the Architect has granted specific approval. The request shall indicate services to be affected, date and time of interruption and duration of outage. Request for interruption of service will not be approved until all equipment and materials required for the completion of that particular phase of work are on the job site. The work may have to be scheduled after normal working hours.

D. ACCIDENTAL INTERRUPTIONS: All excavation and/or remodeling work required shall be performed with care so as not to interrupt other existing services (water, gas, electrical, sewer, sprinklers, etc.). If accidental utility interruption resulting from work performed by the Contractor occurs, service shall be immediately restored to its original condition without delay, by and at the expense of the Contractor, using skilled workmen of the trade required.
E. MAINTAINING SERVICE:

(1) Any existing service (or operating system) which must be interrupted for any length of time shall be supplied with a temporary service if necessary for continuation of the normal operation of this facility.

(2) Any existing system or part of an existing system currently in operation shall remain so after all additions or renovations are made and all work is completed.

1.3 REGULATORY REQUIREMENTS:

A. PERMITS, FEES, AND INSPECTIONS: This Contractor shall secure and pay for all permits, and inspections required on work performed under this section of the Specifications. He shall assume full responsibility for all assessments and taxes necessary for the completion and acceptance of the work.

B. APPLICABLE STANDARDS AND CODES: The electrical installation shall comply with all applicable building codes; local, state, and federal ordinances; and the National Electrical Code. In case of a discrepancy among these applicable regulatory codes and ordinances, the most stringent requirement shall govern. The Contractor shall notify the Architect in writing of any such discrepancy. Should the Contractor perform any work that does not comply with the applicable regulatory codes and ordinances he shall bear all cost arising in correcting the deficiencies. Application standards and codes shall include all local ordinances, all state laws, and the applicable requirements of the following: using the editions in legal effect at the time of application for permit.

1. American National Standards Institute - ANSI
2. National Electrical Manufacturer's Association - NEMA
5. The National Fire Alarm Code – NFPA 72
6. Florida Building Code
7. Underwriters’ Laboratories, Inc. – UL

C. DRAWINGS AND SPECIFICATIONS: The drawings and these specifications are complementary each to the other. What is called for by one shall be as binding as if called for by both. Omissions from the drawings and specifications of details of work which are evidently necessary to carry out the intent of the drawings and specifications, or which are customarily performed, shall not relieve the Contractor from performing such work. In any case of discrepancy in the figures or catalog numbers, the matter shall be submitted to the Architect, who shall promptly make a determination in writing. Any adjustment by the Contractor shall be at the Contractor’s own risk and expense. Electrical drawings are diagrammatic only. Do not scale these drawings. All equipment shall be installed in accordance with manufacturer's recommendations and any conflicting data shall be verified before bidding.

D. LETTERS CERTIFYING COMPLIANCE AND REVIEW: These Documents will be revised, as required by any legal authority having jurisdiction and by any serving
utility, with no additional cost to the Owner. As soon as practical after bidding, and before any work is commenced, the Contractor shall meet with all legal authorities having jurisdiction, review all materials and details of this project and agree on any required revisions. A letter shall be written to the Architect listing the names, dates, places of such review, the revisions required (at no additional cost). A copy of the letter shall also be sent to the reviewing authority. The Contractor shall also meet with each serving utility and repeat the above procedure. A letter certifying each meeting shall be written also with the information as described above.

The Contractor shall after completion of the work, furnish the Architect a certificate of final inspection and approval from the applicable local inspection department. Make necessary changes to plans and specifications to meet code standards at no additional cost to the Owner.

1.4 COOPERATION:

A. INTERFACING WITH OTHER CRAFTS: It shall be the responsibility of the Contractor to cooperate and coordinate with all other crafts working on this project. This Contractor shall do all cutting, trenching, backfill and structural removals to permit entry of the electrical system components. The General Contractor shall do all patching and finishing. The Architect's representative shall render a decision in writing as to space allotment in congested areas. No claims for "extras" due to such decisions shall be allowed, even though the work has already been installed. When the Contractor submits for approval any item or equipment, he shall determine for himself whether or not it will fit the space provided. If, after installation of any equipment, wiring or other items, it is determined that ample maintenance or passage space has not been provided, then the Contractor shall rearrange this work and/or furnish other equipment even though the equipment installed has been approved. A 1/2" = 1'0" scaled drawing of the main building equipment rooms shall be submitted with the electrical shop drawings showing the proposed location of all equipment in each room. SPACE ALLOCATION IN THESE ROOMS IS CRITICAL. ALSO SUBMIT ELEVATIONS OF EACH MAJOR WALL.

B. EQUIPMENT FURNISHED UNDER OTHER SECTIONS: This Contractor shall furnish and install, complete electrical roughing-in and connections to all equipment furnished under other sections and indicate on drawings. This includes all outlets as shown on mechanical and electrical drawings. All such equipment shall be set in place as work of other sections.

C. HEATING AND AIR CONDITIONING:

1. The Contractor shall furnish all branch circuit wiring to motors and control panels or centers including disconnects, receptacles, switches, and appurtenances to which the system at the units may be connected, to provide a complete system of wiring for power. Control equipment and control circuit wiring is specified in the Mechanical Section.

2. Control devices to be included in the branch circuit, except those furnished integral with the equipment, will be delivered by the Heating and Air Conditioning Contractor and installed by the Electrical Contractor.
1.5 WORKMANSHIP: All work shall be executed in a neat and substantial manner by skilled workman, well qualified, and regularly engaged in the type of work required. Substandard work shall be removed and replaced by the Contractor at no cost to the Owner.

1.6 APPROVAL OF MATERIALS AND EQUIPMENT:

A. PRIOR-SUBMITTALS: The Contractor shall base his proposal on the materials specified herein and on the drawings. Reference to a particular product by manufacturer, trade name, or catalog number establishes the quality standards of material and equipment required for this installation and is not intended to exclude products equal in quality and similar design. The Architect reserves the sole right to decide the equality of materials proposed for use in lieu of these specified. It shall be the Contractor's responsibility to furnish the information and data sufficient to establish the quality and utility of the items in question, including furnishing of samples if required. If other equipment manufacturers determine that their equipment will fit in the space and meet the recommended clearances, suit all job conditions, equal or exceed the quality of the specified items, then a request may be made in writing to the Architect at least ten (10) working days prior to bid date for permission to be included in the approved equipment list. All data required for evaluation shall accompany the above letter.

B. SUBMITTALS:

1. Submittals: The Contractor shall submit a list of equipment proposed for installation. He shall submit catalog data and shop drawings on all proposed systems and their components. Where substitutions alter the design or space requirements, the Contractor shall defray all items of cost for the revised design and construction including costs to all allied trades involved. Provide six (6) copies of submittals and shop drawings as a minimum unless the General Conditions requires a greater number of copies.

 a. Submittals Schedule: Submittals shall be submitted within thirty (30) days after the contract is awarded. It is not the responsibility of the Engineer to expedite the review of submittals if the contractor has not adequately prepared the submittals in a time efficient manner. The contractor bears all the responsibility for the added time requirements of resubmittals.

 b. Processing Time: Allow enough time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Engineer's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

 1) Initial Review: Allow 15 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Engineer will advise Contractor when a submittal being processed must be delayed for coordination.

 2) Resubmittal Review: Allow 15 days for review of each resubmittal.
c. Identification: Place a permanent label or title block on each submittal for identification. Each major section of submittals such as power equipment, lighting equipment, fire alarm, etc., shall be secured in a booklet or stapled with a covering index which lists the following information:

1) Project name and date
2) Name, address, and phone number of General contractor and project manager.
3) Name, address, and phone number of Sub-contractor and project manager.
4) Supplier of equipment with phone number and person responsible for this project.
5) Index of each item covered in submittal and model number.
6) Any deviation from contract documents shall be specifically noted on submittal cover index and specifically identified with highlighting, encircling, or boldly on specific submittal sheet.

d. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.

Include previous submittal review comments.
1) For each item being resubmitted, include previous review comment and explain how resubmitted item meets the criteria of the previous review comment.
2) Only one (1) resubmittal will be accepted. If the resubmittal does not meet the review comments on the initial submittal or the intent of the contract documents the contractor shall provide the original specified equipment or pay the Engineer Three Hundred Dollars ($300.00) BEFORE another resubmittal review will be performed.

e. Determinations of Equipment Quality: The final authority on the determination of the quality of any piece of equipment specified, submitted, or resubmitted is solely the Professional Engineer’s. As much information as is provided by the Contractor will be used to consider a submitted item to the specified item to determine compliance. The Contractor may provide the actual submitted piece of equipment and the specified item to the Engineer for a table top comparison at his convenience.

2. Electrical and Mechanical/Plumbing/Fire Protection Equipment Coordination’s:

The electrical power equipment submittals shall be accompanied by a letter verifying coordination of electrical services for all mechanical, plumbing, and fire protection equipment requiring power. The letter shall follow the format listed below.

To: (General Contractor)

Re: ____________________________ (Project name and location)

We the undersigned subcontractors certify that we have coordinated
the electrical requirements for mechanical, plumbing, and fire protection sprinkler equipment as evidenced by the coordination chart listed herein.

<table>
<thead>
<tr>
<th>Item</th>
<th>Load Full Load Amps</th>
<th>1 Phase or 3 Phase</th>
<th>Number of Electrical Connections</th>
<th>Maximum Overcurrent Protection</th>
<th>Minimum Overcurrent Protection</th>
<th>Breaker Proposed</th>
<th>Circuit Proposed</th>
</tr>
</thead>
</table>

The above list details all required electrical connections for mechanical equipment.

Signed: ____________________

For: Mechanical Subcontractor

The above list details all required electrical connections for plumbing equipment.

Signed: ____________________

For: Plumbing Subcontractor

The above list details all required electrical and fire alarm connections for fire protection equipment.

Signed: ____________________

For: Fire Protection Sprinkler Subcontractor

The above list of equipment has been reviewed and the required connections are being provided. (Any exceptions or request for direction shall be listed here)

Signed: ____________________

For: Electrical Subcontractor

1.7 PRODUCT DELIVERY, STORAGE AND HANDLING

A. PROTECTION: Take necessary precautions to protect all material, equipment, apparatus and work from damage. Failure to do so to the satisfaction of the Architect will be sufficient cause for the rejection of the material, equipment or work
in question. Contractor is responsible for the safety and good condition of the materials installed until final acceptance by the owner.

B. CLEANING: Conduit openings shall be capped or plugged during installation. Fixtures and equipment shall be tightly covered and protected against dirt, moisture, chemical and mechanical injury. At the completion of the work the fixtures, material and equipment shall be thoroughly cleaned and delivered in condition satisfactory to the Architect.

1.8 TESTING AND BALANCING: Make tests that may be required by the Owner or the Architect in connection with the operation of the electrical system in the buildings. Balance all single-phase loads connected to all panelboards in the buildings to insure approximate equal divisions of these loads on the main secondary power supply serving the buildings. All tests shall be made in accordance with the latest standards of the IEEE and the NEC. The installation shall be tested for performance, grounds and insulation resistance. A "megger" type instrument shall be used. Contractor shall perform circuit continuity and operational tests on all equipment furnished or connected by Contractor. The tests shall be made in the presence of the Architect or his representative. The Contractor shall notify the Architect at least twenty-four (24) hours in advance of tests. The Contractor shall provide all testing equipment and all costs shall be borne by him. Written reports shall be made of all tests. All faults shall be corrected immediately.

A letter shall be written giving the following:

A. Measured amps on each phase of each panel.

B. Resistance to ground of each grounding electrode.

C. Measured voltage phase to phase and phase to neutral at each panel.

D. Ground continuity and polarity instrument used.

1.9 OPERATING AND MAINTENANCE INSTRUCTIONS/AS BUILT DRAWINGS:

A. Four (4) complete sets of instructions containing the manufacturer’s operating and maintenance instructions for each piece of equipment shall be furnished to the Owner. Each set shall be permanently bound and shall have a hard cover. One complete set shall be furnished at the time that the test procedure is submitted, and remaining sets shall be furnished before the Contract is completed. Flysheets shall be placed before instructions covering each subject. The instruction sheets shall be approximately 8-1/2" by 11” with large sheets of Drawings folded in. The instructions shall include information for major pieces of equipment and systems.

B. Upon completion of the work and at the time designated, the services of one project engineer shall be provided by the Contractor to instruct the representative of the Owner in the operation and maintenance of the systems.

C. This Contractor shall provide as-built Drawings at the completion of the job. Drawings shall show all significant changes in equipment, wiring, routing, location, etc. All
underground conduit routing shall be accurately indicated with locations dimensioned.

1.10 GUARANTEE AND SERVICE: Upon completion of all tests and acceptance, the Contractor shall furnish the Owner a written guarantee covering the electrical work done for a period of one (1) year from date of acceptance. Guarantee includes equipment capacity and performance ratings specified without excessive noise levels. Upon notice from the Architect or the Owner, the Contractor shall, during the guarantee period, rectify and replace any defective material or workmanship and repair any damage caused thereby without additional cost.

PART 2 – PRODUCTS – NOT APPLICABLE

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION

A. Comply with NECA 1.

B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.

C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.

D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.

E. Right of Way: Give to raceways and piping systems installed at a required slope.

END OF SECTION 260500
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 B. Related Requirements:
 1. Section 271500 "Communications Horizontal Cabling" for cabling used for voice and data circuits.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES
 A. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
 B. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN-2-THWN-2

2.2 CONNECTORS AND SPLICES
 A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN-2-THWN-2, single conductors in raceway.

B. Exposed Feeders: Type THHN-2-THWN-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-2-THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-2-THWN-2, single conductors in raceway.

E. Exposed Branch Circuits, Including in Crawlspace: Type THHN-2-THWN-2, single conductors in raceway.

F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-2-THWN-2, single conductors in raceway.

G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-2-THWN-2, single conductors in raceway.

H. Branch Circuits Installed below Raised Flooring: Type THHN-2-THWN-2, single conductors in raceway.

I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."
3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.

3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
 b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

B. Test and Inspection Reports: Prepare a written report to record the following:

1. Procedures used.
2. Results that comply with requirements.
3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519
SECTION 26 05 23 – FIRESTOP SYSTEMS AND ACOUSTICAL WALL SLEEVES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Through penetration firestop systems.
2. Sleeves for raceways and cables.
3. Sleeve seals.
4. Conduits and sleeves through acoustically sensitive wall.

1.2 PERFORMANCE REQUIREMENTS

A. Rated Systems: Provide through-penetration firestop systems with the following ratings determined per UL 1479:

1. F-Rated Systems: Provide through-penetration firestop systems with F-ratings indicated, but not less than that equaling or exceeding fire-resistance rating of constructions penetrated.
2. T-Rated Systems: For the following conditions, provide through-penetration firestop systems with T-ratings indicated, as well as F-ratings, where systems protect penetrating items exposed to potential contact with adjacent materials in occupiable floor areas:
 a. Penetrations located outside wall cavities.
 b. Penetrations located outside fire-resistance-rated shaft enclosures.
3. L-Rated Systems: Where through-penetration firestop systems are indicated in smoke barriers, provide through-penetration firestop systems with L-ratings of not more than 3.0 cfm/sq. ft (0.01524cu. m/s x sq. m) at both ambient temperatures and 400 deg F (204 deg C).

B. For through-penetration firestop systems exposed to view, traffic, moisture, and physical damage, provide products that, after curing, do not deteriorate when exposed to these conditions both during and after construction.

C. For through-penetration firestop systems exposed to view, provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.

1.3 QUALITY ASSURANCE

A. Installer Qualifications: A firm that has been approved by FMG according to FMG 4991, "Approval of Firestop Contractors."

B. Installation Responsibility: Assign installation of through-penetration firestop systems and fire-resistive joint systems in Project to a single qualified installer.
C. Fire-Test-Response Characteristics: Provide through-penetration firestop systems that comply with the following requirements and those specified in Part 1 "Performance Requirements" Article:

1. Firestopping tests are performed by a qualified testing and inspecting agency. A qualified testing and inspecting agency is UL or another agency performing testing and follow-up inspection services for firestop systems acceptable to authorities having jurisdiction.

2. Through-penetration firestop systems are identical to those tested per testing standard referenced in "Part 1 Performance Requirements" Article. Provide rated systems bearing classification marking of qualified testing and inspecting agency.

D. Coordinate construction of openings and penetrating items to ensure that through-penetration firestop systems are installed according to specified requirements.

E. Do not cover up through-penetration firestop system installations that will become concealed behind other construction until each installation has been examined by building inspector, if required by authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the through-penetration firestop systems indicated for each application that are produced by one of the following manufacturers:

2. Hilti, Inc.
4. NUCO Inc.
5. RectorSeal Corporation (The).
6. Specified Technologies Inc.
7. 3M; Fire Protection Products Division.
8. Tremco; Sealant/Weatherproofing Division.

2.2 FIRESTOPPING

A. Compatibility: Provide through-penetration firestop systems that are compatible with one another; with the substrates forming openings; and with the items, if any, penetrating through-penetration firestop systems, under conditions of service and application, as demonstrated by through-penetration firestop system manufacturer based on testing and field experience.

B. Accessories: Provide components for each through-penetration firestop system that
are needed to install fill materials and to comply with Part 1 "Performance Requirements" Article. Use only components specified by through-penetration firestop system manufacturer and approved by qualified testing and inspecting agency for firestop systems indicated.

2.3 SLEEVES FOR RACEWAYS AND CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Coordinate sleeve selection and application with selection and application of firestopping.

2.4 SLEEVE SEALS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.

2. Pressure Plates: Plastic. Include two for each sealing element.

3. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 CONDUITS AND SLEEVES THROUGH ACCOUSTICALLY SENSITIVE WALLS

Refer to Architectural details for requirements for penetrating acoustically sensitive walls.

PART 3 - EXECUTION

3.1 THROUGH-PENETRATION FIRESTOP SYSTEM INSTALLATION

A. General: Install through-penetration firestop systems to comply with Part 1 "Performance Requirements" Article and with firestop system manufacturer's written installation instructions and published drawings for products and applications indicated.

B. Install forming/damming/backing materials and other accessories of types required to support fill materials during their application and in the position needed to produce cross-sectional shapes and depths required to achieve fire ratings indicated.

1. After installing fill materials and allowing them to fully cure, remove combustible forming materials and other accessories not indicated as permanent components of firestop systems.
C. Install fill materials for firestop systems by proven techniques to produce the following results:

1. Fill voids and cavities formed by openings, forming materials, accessories, and penetrating items as required to achieve fire-resistance ratings indicated.
2. Apply materials so they contact and adhere to substrates formed by openings and penetrating items.
3. For fill materials that will remain exposed after completing Work, finish to produce smooth, uniform surfaces that are flush with adjoining finishes.

D. Identification: Identify through-penetration firestop systems with preprinted metal or plastic labels. Attach labels permanently to surfaces adjacent to and within 6 inches (150 mm) of edge of the firestop systems so that labels will be visible to anyone seeking to remove penetrating items or firestop systems. Use mechanical fasteners for metal labels. Include the following information on labels:

 1. The words "Warning - Through-Penetration Firestop System - Do Not Disturb. Notify Building Management of Any Damage."
 2. Contractor's name, address, and phone number.
 3. Through-penetration firestop system designation of applicable testing and inspecting agency.
 4. Date of installation.
 5. Through-penetration firestop system manufacturer's name.
 6. Installer's name.

3.2 FIELD QUALITY CONTROL

A. Inspecting Agency: Owner will engage an independent inspecting agency to inspect through-penetration firestops. Independent inspecting agency shall comply with ASTM E 2174 requirements including those related to qualifications, conducting inspections, and preparing test reports.

B. Where deficiencies are found, repair or replace through-penetration firestop systems so they comply with requirements.

C. Proceed with enclosing through-penetration firestop systems with other construction only after inspection reports are issued and firestop installations comply with requirements.

3.3 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

B. Coordinate sleeve selection and application with selection and application of firestopping.

C. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes
or formed openings are used. Install sleeves during erection of slabs and walls.

D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

E. Cut sleeves to length for mounting flush with both surfaces of walls.

F. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level.

G. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

H. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.

I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint.

J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials.

K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between conduit and sleeve for installing mechanical sleeve seals.

END OF SECTION 26 05 23
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes grounding and bonding systems and equipment.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 CONDUCTORS
 A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
 B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
2.3 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless [compression] [exothermic]-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.4 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) will extend above finished floor. If necessary, install ground rod before manhole is placed and provide
No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.

C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for taps to equipment grounding terminals.

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
3.5 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:

 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports for multiple raceways, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.3 ACTION SUBMITTALS

A. Product Data: For steel slotted support systems.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 1. Trapeze hangers. Include Product Data for components.
 2. Steel slotted channel systems. Include Product Data for components.
 3. Equipment supports.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.

1. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
2. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
3. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
4. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
 2. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified
loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete."

C. Anchor equipment to concrete base.

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
INTENTIONALLY LEFT BLANK
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.
 4. Nonmetal wireways and auxiliary gutters.
 5. Surface raceways.
 7. Handholes and boxes for exterior underground cabling.

B. Related Requirements:
 1. Section 270528 "Pathways for Communications Systems" for conduits, wireways, surface pathways, innerduct, boxes, faceplate adapters, enclosures, cabinets, and handholes serving communications systems.

1.2 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of conduit groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. PVC-Coated Steel Conduit: PVC-coated IMC.
 1. Comply with NEMA RN 1.
 2. Coating Thickness: 0.040 inch, minimum.

F. EMT: Comply with ANSI C80.3 and UL 797.

G. FMC: Comply with UL 1;

H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
 2. Fittings for EMT:
 a. Material: Steel or die cast.
 b. Type: Compression
 3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions were installed, and including flexible external bonding jumper.
 4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ENT: Comply with NEMA TC 13 and UL 1653.

C. RNC: **Type EPC-40-PVC**, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

D. LFNC: Comply with UL 1660.

E. Continuous HDPE: Comply with UL 651B.

F. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.

G. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

H. Fittings for LFNC: Comply with UL 514B.

I. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Description: Sheet metal, complying with UL 870 and NEMA 250, **Type 1** unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

2.4 NONMETALLIC WIREWAYS AND AUXILIARY GUTTERS

A. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.

C. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.
D. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

E. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.5 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

D. Tele-Power Poles:
 1. Material: **Galvanized steel with ivory baked-enamel finish.**
 2. Fittings and Accessories: Dividers, end caps, covers, cutouts, wiring harnesses, devices, mounting materials, and other fittings shall match and mate with tele-power pole as required for complete system.

2.6 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, **ferrous alloy aluminum**, Type FD, with gasketed cover.

D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

E. Metal Floor Boxes:
 1. Material: **Cast metal.**
 2. Type: **Fully adjustable.**
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Nonmetallic Floor Boxes: Nonadjustable, **round** or **rectangular.**
1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

H. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 1. Listing and labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

I. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

J. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.

K. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

L. Device Box Dimensions: 4 inches square by 2-1/8 inches deep

M. Gangable boxes are allowed.

N. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC or IMC
 2. Concealed Conduit, Aboveground: GRC or IMC
 3. Underground Conduit: RNC, Type EPC-40-PVC
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFNC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R

B. Indoors: Apply raceway products as specified below unless otherwise indicated.
1. Exposed, Not Subject to Physical Damage: **EMT**.
2. Exposed, Not Subject to Severe Physical Damage: **EMT**.
3. Exposed and Subject to Severe Physical Damage: **IMC**. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 d. Gymnasiums.
4. Concealed in Ceilings and Interior Walls and Partitions: **EMT**.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): **FMC**, except use **LFMC** in damp or wet locations.
6. Damp or Wet Locations: **IMC**.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 **stainless steel** in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 1/2-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.

1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
3. EMT: Use **setscrew, steel** fittings. Comply with NEMA FB 2.10.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface raceways only where indicated on Drawings.

G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
C. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

D. Arrange stub-ups so curved portions of bends are not visible above finished slab.

E. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

F. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

G. Support conduit within 12 inches of enclosures to which attached.

H. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to RNC, Type EPC-40-PVC, or IMC before rising above floor.

I. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

K. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

L. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

N. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches of slack at
each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

O. Surface Raceways:

1. Install surface raceway with a minimum 2-inch radius control at bend points.
2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

P. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces.

Q. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

R. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F (75 deg C temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per degree F of temperature change for PVC conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
S. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

T. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

U. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between the box and cover plate or the supported equipment and box.

V. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

W. Locate boxes so that cover or plate will not span different building finishes.

X. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Y. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

Z. Set metal floor boxes level and flush with finished floor surface.

AA. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:
 1. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."
 2. Install manufactured duct elbows for stub-up at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 3. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.

b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

4. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.

D. Install handholes with bottom below frost line, below grade.

E. Field-cut openings for conduits according to enclosure manufacturer’s written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.5 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.6 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. Sleeves for Rectangular Openings:

2. Minimum Metal Thickness:
a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Advance Products & Systems, Inc.
 b. Metraflex Company (The).
 c. Proco Products, Inc.

2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
3. Pressure Plates: Carbon steel.
4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. HOLDRITE.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
2. Sealant shall have VOC content of g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch (25-mm) annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Identification for raceways.
2. Identification of power and control cables.
3. Identification for conductors.
5. Warning labels and signs.
6. Instruction signs.
7. Equipment identification labels.
8. Miscellaneous identification products.

1.2 ACTION SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1.3 QUALITY ASSURANCE

A. Comply with ANSI A13.1.
B. Comply with NFPA 70.
D. Comply with ANSI Z535.4 for safety signs and labels.
E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

PART 2 - PRODUCTS

2.1 POWER RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:

1. **Black letters on an orange field**
2. Legend: Indicate voltage and **system or service type**.
C. Self-Adhesive Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Snap-Around Labels for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands for Raceways Carrying Circuits at 600 V or Less: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

F. Write-On Tags: Polyester tag, 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
 1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.2 ARMORED AND METAL-CLAD CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Colors for Raceways Carrying Circuits at 600 V and Less:
 1. **Black letters on an orange field.**
 2. Legend: Indicate voltage and system or service type.

C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

D. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.

2.3 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Write-On Tags: Polyester tag, 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.
1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

D. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

E. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve, 2 inches (50 mm) long, with diameter sized to suit diameter of raceway or cable it identifies and to stay in place by gripping action.

2.4 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.

C. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

D. Write-On Tags: Polyester tag, 0.010 inch 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.5 UNDERGROUND-LINE WARNING TAPE

A. Tape:

1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
2. Printing on tape shall be permanent and shall not be damaged by burial operations.
3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:

1. Comply with ANSI Z535.1 through ANSI Z535.5.
2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE,

C. Tag: **Type I:**

1. Pigmented polyolefin, bright-colored, *continuous-printed on one side with the inscription of the utility*, compounded for direct-burial service.
2. Thickness: 4 mils.
3. Weight: 18.5 lb/1000 sq. ft.
4. 3-Inch Tensile According to ASTM D 882: 30 lbf, and 2500 psi.

2.6 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Baked-Enamel Warning Signs:

1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
2. 1/4-inch grommets in corners for mounting.
3. Nominal size, 7 by 10 inches

D. Metal-Backed, Butyrate Warning Signs:

1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
2. 1/4-inch grommets in corners for mounting.
3. Nominal size, 10 by 14 inches.

E. Warning label and sign shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.7 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.

1. Engraved legend with **black letters on white face**.
2. Punched or drilled for mechanical fasteners.
3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

B. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

2.8 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

B. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

C. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

B. Apply identification devices to surfaces that require finish after completing finish work.

C. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

D. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

E. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-
color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

G. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits More Than 30 A, and 120 V to ground: Install labels at 30-foot maximum intervals.

B. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:

2. Power.
3. UPS.

C. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.

 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.

 b. Colors for 208/120-V Circuits:

 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.

 c. Colors for 480/277-V Circuits:

 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.

 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in
boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

D. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.

 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

END OF SECTION 260553
SECTION 260574 - OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.2 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Other Action Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form.

1. Arc-flash study input data, including completed computer program input data sheets.
2. Arc-flash study report; signed, dated, and sealed by a qualified professional engineer.

 a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

1.3 INFORMATIONAL SUBMITTALS

A. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance procedures according to requirements in NFPA 70E shall be provided in the equipment manuals.

B. Operation and Maintenance Procedures: In addition to items specified in Section 017823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.
1.5 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.

B. Arc-Flash Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

C. Arc-Flash Study Specialist Qualifications: Professional engineer in charge of performing the study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Comply with IEEE 1584 and NFPA 70E.

B. Analytical features of device coordination study computer software program shall have the capability to calculate mandatory features as listed in IEEE 399.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENT

A. Executive summary.

B. Study descriptions, purpose, basis and scope.

C. One-line diagram, showing the following:

1. Protective device designations and ampere ratings.
2. Cable size and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center and panelboard designations.

D. Study Input Data: As described in "Power System Data" Article.
E. Short-Circuit Study Output:

1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

F. Incident Energy and Flash Protection Boundary Calculations:

1. Arcing fault magnitude.
2. Protective device clearing time.
3. Duration of arc.
5. Working distance.
6. Incident energy.

G. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of the computer printout.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.

B. Calculate short-circuit currents according to IEEE 551.

C. Base study on the device characteristics supplied by device manufacturer.

D. The extent of the electrical power system to be studied is indicated on Drawings.
E. Begin analysis at the service, extending down to the system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. The calculations shall include the ac fault-current decay from induction motors and shall apply to low-voltage, three-phase ac systems.

H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and single line-to-ground fault at each of the following:
 1. Electric utility's supply termination point.
 2. Switchgear.
 3. Low-voltage switchgear.
 4. Motor-control centers.
 5. Standby generators and automatic transfer switches.

3.3 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Use the short-circuit study output and the field-verified settings of the overcurrent devices.

C. Calculate maximum and minimum contributions of fault-current size.
 1. The minimum calculation shall assume that the utility contribution is at a minimum and shall assume no motor load.
 2. The maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.

D. Calculate the arc-flash protection boundary and incident energy at locations in the electrical distribution system where personnel could perform work on energized parts.

E. Include low-voltage equipment locations, except 240-V ac and 208-V ac systems fed from transformers less than 125 kVA.

F. Safe working distances shall be specified for calculated fault locations based on the calculated arc-flash boundary, considering incident energy of 1.2 cal/sq.cm.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations
shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors shall be decremented as follows:

1. Fault contribution from induction motors should not be considered beyond three to five cycles.

H. Arc-flash computation shall include both line and load side of a circuit breaker as follows:

1. When the circuit breaker is in a separate enclosure.
2. When the line terminals of the circuit breaker are separate from the work location.

I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.4 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the arc-flash hazard analysis.

1. Verify completeness of data supplied on the one-line diagram on Drawings. Call discrepancies to the attention of Architect.
2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.

B. Gather and tabulate the following input data to support coordination study.

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Obtain electrical power utility impedance at the service.
3. Power sources and ties.
4. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
5. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
6. Motor horsepower and NEMA MG 1 code letter designation.
7. Low-voltage cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

3.5 DEMONSTRATION

A. Engage the Arc-Flash Study Specialist to train Owner's maintenance personnel in the potential arc-flash hazards associated with working on energized equipment and the significance of the arc-flash warning labels.
END OF SECTION 260574
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Time switches.
 2. Photoelectric switches.
 3. **Indoor occupancy switchbox-mounted occupancy** sensors.

B. Related Requirements:

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

A. Description: Solid state, with **SPST** dry contacts rated for 1800 VA, to operate connected load, complying with UL 773.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Light-Level Monitoring Range: **1.5 to 10 fc**, with an adjustment for turn-on and turn-off levels within that range.
 3. Time Delay: Thirty-second minimum, to prevent false operation.
5. Mounting: Twist lock complying with NEMA C136.10, with base.

2.2 INDOOR OCCUPANCY SENSORS

A. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
5. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
7. Bypass Switch: Override the "on" function in case of sensor failure.
8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.

B. PIR Type: Ceiling mounted; detect occupants in coverage area by their heat and movement.

1. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in..
2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.
3. Detection Coverage (Corridor): Detect occupancy within 90 feet when mounted on a 10-foot- high ceiling.

C. Ultrasonic Type: Ceiling mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy.

1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s
2. Detection Coverage (Small Room): Detect occupancy anywhere within a circular area of 600 sq. ft. when mounted on a 96-inch- high ceiling.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
4. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. when mounted on a 96-inch-high ceiling.
5. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet when mounted on a 10-foot-high ceiling in a corridor not wider than 14 feet

D. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.

1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.

B. Wall-Switch Sensor Tag WS1:

1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft.
2. Sensing Technology: Dual technology - PIR and ultrasonic.
3. Switch Type: SP, field selectable automatic "on," or manual "on" automatic "off."
5. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
7. Concealed "off" time-delay selector at 30 seconds, and 5, 10, and 20 minutes.
8. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
2.4 LIGHTING CONTACTORS

A. Description: Electrically operated and **mechanically** held, combination-type lighting contactors with **nonfused disconnect**, complying with NEMA ICS 2 and UL 508.

1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.
4. Provide with control and pilot devices as **indicated on Drawings**, matching the NEMA type specified for the enclosure.

2.5 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than **No. 18 AWG**. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than **No. 14 AWG**. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

2.6 LIGHTING CONTROL PANEL

A. Contractor shall submit manufacturer shop drawings for approval prior to performing work. The drawing circuiting is diagrammatic only. The manufacturers lighting control shop drawings shall be used for installation of circuits, devices, and light fixtures.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

B. Occupancy Adjustments: When requested within **12 months** from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to **two** visits to Project during other-than-normal occupancy hours for this purpose.
For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.

C. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

D. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.

E. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.

2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Lighting control devices will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 260923
INTENTIONALLY LEFT BLANK
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes distribution panelboards and lighting and appliance branch-circuit panelboards.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Include evidence of NRTL listing for series rating of installed devices.
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 7. Include wiring diagrams for power, signal, and control wiring.
 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards.

1.3 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Panelboard schedules for installation in panelboards.

1.4 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NEMA PB 1.
C. Comply with NFPA 70.

1.6 WARRANTY

A. Special Warranty: Manufacturer’s standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.

1. Warranty Period: **Five** years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Enclosures: **Flush- and surface**-mounted cabinets.

1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, **Type 1**
 b. Outdoor Locations: NEMA 250, **Type 3R**.
 c. Other Wet or Damp Indoor Locations: NEMA 250, **Type 3R**

2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.

3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.

B. Incoming Mains Location: **Top and bottom**.

C. Conductor Connectors: Suitable for use with conductor material and sizes.

D. Service Equipment Label: NRTL labeled for use as service equipment for panelboards with one or more main service disconnecting and overcurrent protective devices.

E. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

F. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by an NRTL. Include size and type of allowable upstream and branch devices, and listed and labeled for series-connected short-circuit rating by an NRTL.

2.2 PERFORMANCE REQUIREMENTS

A. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1

2.3 DISTRIBUTION PANELBOARDS

A. Panelboards: NEMA PB 1, power and feeder distribution type.

B. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

D. Branch Overcurrent Protective Devices: For Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers; plug-in circuit breakers where individual positive-locking device requires mechanical release for removal.

E. Branch Overcurrent Protective Devices: Fused switches.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

B. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

C. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

D. Column-Type Panelboards: Narrow gutter extension, with cover, to overhead junction box equipped with ground and neutral terminal buses.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:

 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I squared x t response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

B. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Receive, inspect, handle, store and install panelboards and accessories according to NEMA PB 1.1.

B. Mount top of trim **74 inches** above finished floor unless otherwise indicated.

C. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

D. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

E. Install filler plates in unused spaces.

F. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

G. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

H. Comply with NECA 1.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 260553 "Identification for Electrical Systems."
B. Create a directory to indicate installed circuit loads and incorporating Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 262416
INTENTIONALLY LEFT BLANK
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Receptacles, receptacles with integral GFCI, and associated device plates.
2. Weather-resistant receptacles.
3. Snap switches and wall-box dimmers.
4. Solid-state fan speed controls.
5. Wall-switch and exterior occupancy sensors.
6. Communications outlets.

1.2 ADMINISTRATIVE REQUIREMENTS

A. Coordination:

1. Receptacles for Owner-Furnished Equipment: Match plug configurations.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.
2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

2.4 GFCI RECEPTACLES

A. General Description:
 1. Straight blade, feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

2.5 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:
 1. Products: Subject to compliance with requirements, Catalog numbers in lists below are for 20-A devices; revise catalog numbers to require other configurations and ratings.

2.6 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.
B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. Fluorescent Lamp Dimmer Switches: Modular; compatible with dimmer ballasts; trim potentiometer to adjust low-end dimming; dimmer-ballast combination capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.7 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.

1. Plate-Securing Screws: Metal with head color to match plate finish.
2. Material for Finished Spaces: Smooth, high-impact thermoplastic

2.8 FINISHES

A. Device Color:

1. Wiring Devices Connected to Normal Power System: As selected by unless otherwise indicated or required by NFPA 70 or device listing.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailling existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:
 1. Line Voltage: Acceptable range is 105 to 132 V.
 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 262726
INTENTIONALLY LEFT BLANK
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Nonfusible switches.

1.2 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated.
B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.
PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

B. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 4. Lugs: Suitable for number, size, and conductor material.
 5. Service-Rated Switches: Labeled for use as service equipment.

2.2 NONFUSIBLE SWITCHES

A. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

B. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Lugs: Suitable for number, size, and conductor material.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

C. Install fuses in fusible devices.
D. Comply with NECA 1.

3.2 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:

1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

C. Tests and Inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 262816
INTENTIONALLY LEFT BLANK
SECTION 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes packaged engine-generator sets for emergency power supply with the following features:

1. Diesel engine.
2. Unit-mounted cooling system.
3. Unit-mounted control and monitoring.
4. Performance requirements for sensitive loads.
5. Fuel system.
6. Outdoor enclosure.

B. Related Requirements:

1. Section 263600 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:

1. Include plans and elevations for engine-generator set and other components specified. Indicate access requirements affected by height of subbase fuel tank.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer manufacturer and testing agency.

B. Source quality-control reports, including, but not limited to the following:

1. Certified summary of prototype-unit test report.
2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
3. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
5. Report of exhaust emissions showing compliance with applicable regulations.

C. Field quality-control reports.

D. Warranty: For special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency’s Field Supervisor: Certified by NETA to supervise on-site testing.

1.6 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: 2 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Caterpillar; Engine Div.
2. Generac Power Systems, Inc.
5. Taylor Power Systems

B. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. ASME Compliance: Comply with ASME B15.1.
B. NFPA Compliance:

2. Comply with NFPA 70.
3. Comply with NFPA 110 requirements for Level 1 emergency power supply system.

C. UL Compliance: Comply with UL 2200.

D. Engine Exhaust Emissions: Comply with EPA Tier 2 requirements and applicable state and local government requirements.

E. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:

1. Ambient Temperature: Minus 15 to plus 40 deg C.
2. Relative Humidity: Zero to 95 percent.
3. Altitude: Sea level to 1000 feet (300 m).

F. Unusual Service Conditions: Engine-generator equipment and installation are required to operate under the following conditions:

1. High salt-dust content in the air due to sea-spray evaporation.

2.3 ASSEMBLY DESCRIPTION

A. Factory-assembled and -tested, water-cooled engine, with brushless generator and accessories.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a testing agency acceptable to authorities having jurisdiction, and marked for intended location and application.

C. EPSS Class: Engine-generator set shall be classified as a Class 12 in accordance with NFPA 110.

D. Induction Method: Turbocharged.

E. Governor: Adjustable isochronous, with speed sensing.

F. Emissions: Comply with EPA Tier 3 requirements.

G. Mounting Frame: Structural steel framework to maintain alignment of mounted components without depending on concrete foundation. Provide lifting attachments sized and spaced to prevent deflection of base during lifting and moving.

H. Capacities and Characteristics:
1. Power Output Ratings: Nominal ratings as indicated at 0.8 power factor excluding power required for the continued and repeated operation of the unit and auxiliaries.
2. Output Connections: Three-phase, four wire.
3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.

I. Generator-Set Performance:

1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
7. Sustained Short-Circuit Current: For a three-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
8. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.4 ENGINE

A. Fuel: Diesel.

B. Rated Engine Speed: 1800 rpm.

C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm (11.4 m/s).

D. Lubrication System: The following items are mounted on engine or skid:

1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
E. Jacket Coolant Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.

F. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine-generator-set mounting frame and integral engine-driven coolant pump.
 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 3. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.

G. Muffler/Silencer: Commercial type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
 1. Minimum sound attenuation of 12 dB at 500 Hz.
 2. Sound level measured at a distance of 25 feet (8 m) from exhaust discharge after installation is complete shall be 80 dBA or less.

H. Air-Intake Filter: Heavy-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.

I. Starting System: 24-V electric, with negative ground.
 1. Components: Sized so they are not damaged during a full engine-cranking cycle with ambient temperature at maximum specified in "Performance Requirements" Article.
 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 3. Cranking Cycle: As required by NFPA 110 for system level specified.
 4. Battery: Lead acid, with capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least three times without recharging.
 5. Battery Stand: Factory-fabricated, two-tier metal with acid-resistant finish designed to hold the quantity of battery cells required and to maintain the arrangement to minimize lengths of battery interconnections.
 6. Battery Charger: Current-limiting, automatic-equalizing and float-charging type designed for lead-acid batteries. Unit shall comply with UL 1236.

2.5 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When
generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms.

B. Provide minimum run time control set for 15 minutes with override only by operation of an emergency-stop switch.

C. Comply with UL 508A.

D. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration. Panel shall be powered from the engine-generator set battery.

E. Indicating Devices: As required by NFPA 110 for Level 2 system, including the following:

 1. AC voltmeter.
 2. AC ammeter.
 3. AC frequency meter.
 4. EPS supplying load indicator.
 5. Ammeter and voltmeter phase-selector switches.
 6. DC voltmeter (alternator battery charging).
 7. Engine-coolant temperature gage.
 8. Engine lubricating-oil pressure gage.
 9. Running-time meter.

F. Protective Devices and Controls in Local Control Panel: Shutdown devices and common visual alarm indication as required by NFPA 110 for Level 2 system, including the following:

 1. Start-stop switch.
 2. Overcrank shutdown device.
 3. Overspeed shutdown device.
 4. Coolant high-temperature shutdown device.
 5. Coolant low-level shutdown device.
 6. Low lube oil pressure shutdown device.
 7. Air shutdown damper shutdown device when used.
 8. Overcrank alarm.
 10. Coolant high-temperature alarm.
 13. Low lube oil pressure alarm.
 14. Air shutdown damper alarm when used.
 15. Lamp test.
 16. Contacts for local common alarm.
17. Coolant high-temperature prealarm.
18. Generator-voltage adjusting rheostat.
20. Control switch not in automatic position alarm.
21. Low cranking voltage alarm.
22. Battery-charger malfunction alarm.
23. Battery low-voltage alarm.
24. Battery high-voltage alarm.
25. Generator overcurrent protective device not closed alarm.

G. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.

H. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.

2.6 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Overcurrent protective devices for the entire EPSS shall be coordinated to optimize selective tripping when a short circuit occurs. Coordination of protective devices shall consider both utility and EPSS as the voltage source.
 1. Overcurrent protective devices for the EPSS shall be accessible only to authorized personnel.

B. Generator Circuit Breaker: Molded-case, electronic-trip type; 100 percent rated; complying with UL 489.
 2. Trip Settings: Selected to coordinate with generator thermal damage curve.
 3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
 4. Mounting: Adjacent to or integrated with control and monitoring panel.

C. Ground-Fault Indication: Comply with NFPA 70, "Emergency System" signals for ground fault.
 1. Indicate ground fault with other generator-set alarm indications.
 2. Trip generator protective device on ground fault.

2.7 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.

B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.
C. Electrical Insulation: Class H or Class F.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required. Provide 12 lead alternator.

E. Range: Provide broad range of output voltage by adjusting the excitation level.

F. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

G. Enclosure: Drip proof.

H. Instrument Transformers: Mounted within generator enclosure.

I. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified and as required by NFPA 110.

1. Adjusting Rheostat on Control and Monitoring Panel: Provide plus or minus 5 percent adjustment of output-voltage operating band.

J. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

K. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

L. Subtransient Reactance: 12 percent, maximum.

2.8 OUTDOOR GENERATOR-SET ENCLOSURE

A. Description: Vandal-resistant, sound-attenuating, weatherproof aluminum housing, wind resistant up to 140 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.

B. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.

1. Louvers: Fixed-engine, cooling-air inlet and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.

2. Automatic Dampers: At engine cooling-air inlet and discharge. Dampers shall be closed to reduce enclosure heat loss in cold weather when unit is not operating.

3. Ventilation: Provide temperature-controlled exhaust fan interlocked to prevent operation when engine is running.

2.9 VIBRATION ISOLATION DEVICES

A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-
steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.

2. Minimum Deflection: 1 inch (25 mm).

B. Restrained Spring Isolators: Freestanding, steel, open-spring isolators with seismic restraint.

1. Housing: Steel with resilient vertical-limit stops to prevent spring extension due to wind loads or if weight is removed; factory-drilled baseplate bonded to 1/4-inch-(6-mm-) thick, elastomeric isolator pad attached to baseplate underside; and adjustable equipment mounting and leveling bolt that acts as blocking during installation.
2. Outside Spring Diameter: Not less than 80 percent of compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Minimum Deflection: 1 inch (25 mm).

C. Comply with requirements in Section 232116 Hydronic Piping Specialties" for vibration isolation and flexible connectors materials for steel piping.

D. Comply with requirements in Section 233113 "Metal Ducts" for vibration isolation and flexible connector materials for exhaust shroud and ductwork.

E. Vibration isolation devices shall not be used to accommodate misalignments or to make bends.

2.10 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.11 SOURCE QUALITY CONTROL

A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with packaged engine-generator manufacturers’ written installation and alignment instructions and with NFPA 110.

B. Equipment Mounting:
 1. Install packaged engine generators on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 2. Coordinate size and location of concrete bases for packaged engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

C. Install packaged engine-generator to provide access, without removing connections or accessories, for periodic maintenance.

D. Install packaged engine-generator with restrained spring isolators having a minimum deflection of 1 inch (25 mm) on 4-inch- (100-mm-) high concrete base. Secure enclosure to anchor bolts installed in concrete bases. Concrete base construction is specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Install Schedule 40, black steel piping with welded joints and connect to engine muffler. Install thimble at wall. Piping shall be same diameter as muffler outlet.

 1. Install flexible connectors and steel piping materials according to requirements in Section 232116 Hydronic Piping Specialties."
 2. Insulate muffler/silencer and exhaust system components according to requirements in Section 230719 "HVAC Piping Insulation."
 3. Install isolating thimbles where exhaust piping penetrates combustible surfaces with a minimum of 9 inches (225 mm) clearance from combustibles.

F. Install condensate drain piping to muffler drain outlet full size of drain connection with a shutoff valve, stainless-steel flexible connector, and Schedule 40, black steel pipe with welded joints.

G. Installation requirements for piping materials and flexible connectors are specified in Section 232116 "Hydronic Piping Specialties." Copper and galvanized steel shall not be used in the fuel-oil piping system.

H. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.2 CONNECTIONS

A. Connect cooling-system water piping to engine-generator set and heat exchanger with flexible connectors.
B. Connect engine exhaust pipe to engine with flexible connector.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Provide a minimum of one 90 degree bend in flexible conduit routed to the generator set from a stationary element.

E. Balance single-phase loads to obtain a maximum of 10 percent unbalance between any two phases.

3.3 IDENTIFICATION

A. Identify system components according to Section 230553 "Identification for HVAC Piping and Equipment" and Section 260553 "Identification for Electrical Systems."

B. Install a sign indicating the generator neutral is bonded to the main service neutral at the main service location.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:

1. Perform tests recommended by manufacturer and each visual and mechanical inspection and electrical and mechanical test listed in the first two subparagraphs as specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.

 a. Visual and Mechanical Inspection

 1) Compare equipment nameplate data with drawings and specifications.
 2) Inspect physical and mechanical condition.
 3) Inspect anchorage, alignment, and grounding.
 4) Verify the unit is clean.

 b. Electrical and Mechanical Tests

 1) Perform insulation-resistance tests in accordance with IEEE 43.

 a) Machines larger than 200 horsepower (150 kilowatts). Test duration shall be 10 minutes. Calculate polarization index.
b) Machines 200 horsepower (150 kilowatts) or less. Test duration shall be one minute. Calculate the dielectric-absorption ratio.

2) Test protective relay devices.
3) Verify phase rotation, phasing, and synchronized operation as required by the application.
4) Functionally test engine shutdown for low oil pressure, overtemperature, overspeed, and other protection features as applicable.
5) Conduct performance test in accordance with NFPA 110.
6) Verify correct functioning of the governor and regulator.

2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.

a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.

b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.

c. Verify acceptance of charge for each element of the battery after discharge.

d. Verify that measurements are within manufacturer's specifications.

4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
6. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
7. Harmonic-Content Tests: Measure harmonic content of output voltage at 25 percent and 100 percent of rated linear load. Verify that harmonic content is within specified limits.

C. Coordinate tests with tests for transfer switches and run them concurrently.

D. Test instruments shall have been calibrated within the last 12 months, traceable to NIST Calibration Services, and adequate for making positive observation of test results. Make calibration records available for examination on request.

E. Leak Test: After installation, charge exhaust, coolant, and fuel systems and test for leaks. Repair leaks and retest until no leaks exist.

F. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation for generator and associated equipment.
G. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

H. Remove and replace malfunctioning units and retest as specified above.

I. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

J. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION 263213
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 263600 - TRANSFER SWITCHES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes automatic transfer switches rated 600 V and less.

1.2 ACTION SUBMITTALS

A. Product Data: Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings: Dimensioned plans, elevations, sections, and details showing minimum clearances, conductor entry provisions, gutter space, installed features and devices, and material lists for each switch specified.

1.3 INFORMATIONAL SUBMITTALS

A. Manufacturer Seismic Qualification Certification: Submit certification that transfer switches accessories, and components will withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems." Include the following:

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2. Dimensioned Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based.

B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NEMA ICS 1.

C. Comply with NFPA 70.

D. Comply with NFPA 99.

E. Comply with NFPA 110.

F. Comply with UL 1008 unless requirements of these Specifications are stricter.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Contactor Transfer Switches:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 c. Onan/Cummins Power Generation.

B. Transfer Switches Using Molded-Case Switches or Circuit Breakers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Eaton Electrical Sector; Eaton Corporation.
 b. GE Zenith Controls.
 c. Hubbell Industrial Controls, Inc.

2.2 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.

B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location.

C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.

D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.

E. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electric-motor-operated mechanism, mechanically and electrically interlocked in both directions.

F. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are not acceptable.
 2. Switch Action: Double throw; mechanically held in both directions.
 3. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.

G. Neutral Switching. Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles.

H. Neutral Terminal: Solid and fully rated, unless otherwise indicated.

I. Oversize Neutral: Ampacity and switch rating of neutral path through units indicated for oversize neutral shall be double the nominal rating of circuit in which switch is installed.

J. Battery Charger: For generator starting batteries.
 1. Float type rated 10 A.
 2. Ammeter to display charging current.
 3. Fused ac inputs and dc outputs.

K. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.3 AUTOMATIC TRANSFER SWITCHES

A. Comply with Level 1 equipment according to NFPA 110.

B. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated.
C. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval is adjustable from 1 to 30 seconds.

D. Transfer Switches Based on Molded-Case-Switch Components: Comply with NEMA AB 1, UL 489, and UL 869A.

E. In-Phase Monitor: Factory-wired, internal relay controls transfer so it occurs only when the two sources are synchronized in phase.

F. Motor Disconnect and Timing Relay: Controls designate starters so they disconnect motors before transfer and reconnect them selectively at an adjustable time interval after transfer. Time delay for reconnecting individual motor loads is adjustable between 1 and 60 seconds, and settings are as indicated.

G. Programmed Neutral Switch Position: Switch operator has a programmed neutral position arranged to provide a midpoint between the two working switch positions, with an intentional, time-controlled pause at midpoint during transfer.

H. Automatic Transfer-Switch Features:

1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage is adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.

2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.

3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.

4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.

5. Test Switch: Simulate normal-source failure.

6. Switch-Position Pilot Lights: Indicate source to which load is connected.

 a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."

8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.

9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.
10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.

11. Engine Shutdown Contacts: Instantaneous; shall initiate shutdown sequence at remote engine-generator controls after retransfer of load to normal source.

12. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.

13. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:

 a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 b. Push-button programming control with digital display of settings.
 c. Integral battery operation of time switch when normal control power is not available.

2.4 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Design each fastener and support to carry load indicated by seismic requirements and according to seismic-restraint details. See Section 260548.16 "Seismic Controls for Electrical Systems."

B. Floor-Mounting Switch: Anchor to floor by bolting.

 1. Concrete Bases: 4 inches high, reinforced, with chamfered edges. Extend base no more than 4 inches in all directions beyond the maximum dimensions of switch, unless otherwise indicated or unless required for seismic support. Construct concrete bases according to Section 260529 "Hangers and Supports for Electrical Systems."

C. Identify components according to Section 260553 "Identification for Electrical Systems."

D. Set field-adjustable intervals and delays, relays, and engine exerciser clock.
3.2 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.
 a. Check for electrical continuity of circuits and for short circuits.
 b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 c. Verify that manual transfer warnings are properly placed.
 d. Perform manual transfer operation.
4. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.
 a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 c. Verify time-delay settings.
 d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 e. Perform contact-resistance test across main contacts and correct values exceeding 500 microhms and values for 1 pole deviating by more than 50 percent from other poles.
 f. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.
5. Ground-Fault Tests: Coordinate with testing of ground-fault protective devices for power delivery from both sources.
a. Verify grounding connections and locations and ratings of sensors.

C. Coordinate tests with tests of generator and run them concurrently.

D. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.

E. Remove and replace malfunctioning units and retest as specified above.

F. Prepare test and inspection reports.

G. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.

 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.
 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 3. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Section 017900 "Demonstration and Training."

B. Coordinate this training with that for generator equipment.

END OF SECTION 263600
SECTION 264313 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes field-mounted SPDs for low-voltage (120 to 600 V) power distribution and control equipment.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for VPRs, Inominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.

1.3 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Sample Warranty: For manufacturer's special warranty.

1.4 CLOSEOUT SUBMITTALS
A. Maintenance data.

1.5 WARRANTY
A. Manufacturer's Warranty: Manufacturer agrees to replace or replace SPDs that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL SPD REQUIREMENTS
A. SPD with Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NFPA 70.
C. Comply with UL 1449.
D. MCOV of the SPD shall be the nominal system voltage.

2.2 SERVICE ENTRANCE SUPPRESSOR

A. SPDs: Comply with UL 1449, Type 1.
 1. SPDs with the following features and accessories:
 a. Integral disconnect switch.
 b. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 c. Indicator light display for protection status.

B. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 200 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

C. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 1. Line to Neutral: 700 V for 208Y/120 V.
 2. Line to Ground: 1200 V for 208Y/120 V.
 3. Line to Line: 1000 V for 208Y/120 V.

D. SCCR: Equal or exceed 200 kA.
E. Innominal Rating: 20 kA.

2.3 PANEL SUPPRESSORS

A. SPDs: Comply with UL 1449, Type 1.
 1. Include LED indicator lights for power and protection status.
 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.

B. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

C. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 1. Line to Neutral: 700 V for 208Y/120 V.
 2. Line to Ground: 700 V for 208Y/120 V.
 3. Neutral to Ground: 700 V for 208Y/120 V.
4. Line to Line: **1200 V for 208Y/120 V**

D. SCCR: Equal or exceed **200 kA**.

E. Inominal Rating: **10 kA**.

2.4 ENCLOSURES

A. Indoor Enclosures: NEMA 250, Type 1.

B. Outdoor Enclosures: NEMA 250, **Type 3R**.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install an OCPD or disconnect as required to comply with the UL listing of the SPD.

C. Install SPDs with conductors between suppressor and points of attachment as short and straight as possible, and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.

D. Use crimped connectors and splices only. Wire nuts are unacceptable.

E. Complete startup checks according to manufacturer's written instructions. Energize SPDs after power system has been energized, stabilized, and tested.

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative.

1. Compare equipment nameplate data for compliance with Drawings and Specifications.
2. Inspect anchorage, alignment, grounding, and clearances.
3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. An SPD will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.
3.3 DEMONSTRATION

A. **Train** Owner’s maintenance personnel to operate and maintain SPDs.

END OF SECTION 264313
SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes the following types of LED luminaires:
 2. Downlight.
 3. Lowbay.
 4. Recessed linear.
 5. Strip light.
 7. Surface mount, nonlinear.
 8. Suspended, linear.
 9. Suspended, nonlinear.
 11. Finishes.
 12. Luminaire support.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product, arranged by designation.
B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

C. Product Schedule: For luminaires and lamps.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale and coordinated with each other, using input from installers of the items involved:

B. Product Certificates: For each type of luminaire.

C. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Standards:

1. ENERGY STAR certified.
2. California Title 24 compliant.
3. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
4. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
5. UL Listing: Listed for damp location.
6. Recessed luminaires shall comply with NEMA LE 4.

C. CRI of minimum 80. CCT of 4100 K.

D. Rated lamp life of 50,000 hours to L70.
E. Lamps dimmable from 100 percent to 0 percent of maximum light output.

F. Internal driver.

G. Nominal Operating Voltage: 277 V ac.
 1. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

H. Housings:
 1. Extruded-aluminum housing and heat sink.

2.2 DOWNLIGHT
 A. Minimum 1,000 lumens. Minimum allowable efficacy of 80 lumens per watt.
 B. Universal mounting bracket.
 C. Integral junction box with conduit fittings.
 D. Optics:
 1. Fixed lens.

2.3 LOWBAY
 A. Minimum 10,000 lumens. Minimum allowable efficacy of 80 lumens per watt.
 B. Universal mounting bracket.

2.4 RECESSED LINEAR
 A. Minimum allowable efficacy of 85 lumens per watt.
 B. Integral junction box with conduit fittings.

2.5 STRIP LIGHT
 A. Minimum 750 lumens. Minimum allowable efficacy of 80 lumens per watt.
 B. Integral junction box with conduit fittings.

2.6 SURFACE MOUNT, LINEAR
 A. Minimum 750 lumens. Minimum allowable efficacy of 80 lumens per watt.
B. Integral junction box with conduit fittings.

2.7 SURFACE MOUNT, NONLINEAR
A. Minimum 750 lumens. Minimum allowable efficacy of 80 lumens per watt.
B. Integral junction box with conduit fittings.

2.8 SUSPENDED, LINEAR
A. Minimum allowable efficacy of 85 lumens per watt.

2.9 SUSPENDED, NONLINEAR
A. Minimum allowable efficacy of 85 lumens per watt.
B. Integral junction box with conduit fittings.

2.10 MATERIALS
A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging
B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
C. Diffusers, and Globes:
 1. Acrylic: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.
D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear anodized powder-coat finish.
2.11 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.12 LUMINAIRE SUPPORT

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).

D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports: Sized and rated for luminaire weight.

E. Flush-Mounted Luminaire Support: Secured to outlet box.

F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 120 inches (6 m) in length.
2. Ceiling mount with four-point pendant mount with [5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 120 inches (6 m) in length.
3. Ceiling mount with hook mount.

H. Suspended Luminaire Support:

1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod wire support for suspension for each unit length of luminaire chassis, including one at each end.
4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:

1. Secure to any required outlet box.
2. Secure luminaire using approved fasteners in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

K. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.
SECTION 265219 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Emergency Lighting Unit: A lighting unit with integral or remote emergency battery powered supply and the means for controlling and charging the battery and unit operation.
D. Fixture: See "Luminaire" Paragraph.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support, arranged by designation.
B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, coordinated with each other, using input from installers of the items involved:
B. Product Certificates: For each type of luminaire.

C. Seismic Qualification Data: Certificates, for luminaires, accessories, and components, from manufacturer.

D. Sample Warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.

D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for recessed luminaires.

F. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body.

1. Emergency Connection: Operate one lamp(s) continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects
from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Less than 0 deg F (minus 18 deg C) or exceeding 104 deg F (40 deg C), with an average value exceeding 95 deg F (35 deg C) over a 24-hour period.
 b. Ambient Storage Temperature: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C).
 c. Humidity: More than 95 percent (condensing).
 d. Altitude: Exceeding 3300 feet (1000 m).

4. Test Push-Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.

 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

5. Battery: Sealed, maintenance-free, nickel-cadmium type.

6. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.

7. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

G. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.

1. Emergency Connection: Operate one fluorescent or LED lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

3. Nightlight Connection: Operate lamp in a remote fixture continuously.

5. Charger: Fully automatic, solid-state, constant-current type.

6. Housing: NEMA 250, Type 1 enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the ballast manufacturer, whichever is less.

7. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.

8. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.2 EMERGENCY LIGHTING

A. General Requirements for Emergency Lighting Units: Self-contained units.

B. Emergency Luminaires:
 1. Emergency Luminaires: as indicated on Drawings.

C. Emergency Lighting Unit:
 1. Emergency Lighting Unit: as indicated on Drawings.
 2. Operating at nominal voltage of 277 V ac.
 3. Wall with universal junction box adaptor.
 4. UV stable thermoplastic housing, rated for damp locations.
 5. Two LED lamp heads.
 6. Internal emergency power unit.
 7. External emergency power unit.

2.3 EXIT SIGNS

A. Internally Lighted Signs:
 1. Operating at nominal voltage of 277 V ac.
 2. Lamps for AC Operation: Fluorescent, two for each fixture; 20,000 hours of rated lamp life.
 3. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
 4. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.

2.4 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:
 1. Smooth operating, free of light leakage under operating conditions.
 2. Designed to permit relamping without use of tools.
 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Glass: Annealed crystal glass unless otherwise indicated.
2. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
3. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

D. Conduit: Electrical metallic tubing, minimum 3/4 inch (21 mm) in diameter.

2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:
 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position when testing emergency power unit.
 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of fixture weight.

E. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach fixtures directly to gypsum board.

F. Suspended Luminaire Support:
1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.
4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling Grid Mounted Luminaires:
1. Secure to any required outlet box.
2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.

H. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.2 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 265219
SECTION 270526 - GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Grounding conductors.
 2. Grounding connectors.
 3. Grounding busbars.
 4. Grounding rods.
 5. Grounding labeling.

1.2 DEFINITIONS
 A. BCT: Bonding conductor for telecommunications.
 B. EMT: Electrical metallic tubing.
 C. TGB: Telecommunications grounding busbar.
 D. TMGB: Telecommunications main grounding busbar.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
 A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:
 1. Ground rods.
 2. Ground and roof rings.
 3. BCT, TMGB, TGBs, and routing of their bonding conductors.
 B. Qualification Data: For Installer, installation supervisor, and field inspector.
 C. Qualification Data: For testing agency and testing agency’s field supervisor.
 D. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS
 A. Operation and maintenance data.

1.6 QUALITY ASSURANCE
 A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Installation Supervision: Installation shall be under the direct supervision of ITS Technician who shall be present at all times when Work of this Section is performed at Project site.
 2. Field Inspector: Currently registered by BICSI as ITS Installer 2 to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 SYSTEM COMPONENTS
 A. Comply with J-STD-607-A.

2.2 CONDUCTORS
 A. Comply with UL 486A-486B.
 B. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
 2. Cable Tray Equipment Grounding Wire: No. 6 AWG.
 C. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmils (14.2 sq. mm), 14 strands of No. 17 AWG conductor, and 1/4 inch (6.3 mm) in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with two-hole copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
2.3 CONNECTORS

A. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.

B. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.

1. Electroplated tinned copper, C and H shaped.

C. Busbar Connectors: Cast silicon bronze, solderless compression-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch (15.8- or 25.4-mm) centers for a two-bolt connection to the busbar.

D. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 GROUNDING BUSBARS

A. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with J-STD-607-A.

1. Predrilling shall be with holes for use with lugs specified in this Section.
2. Mounting Hardware: Stand-off brackets that provide a 4-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

B. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 2 inches in cross section, length as indicated on Drawings. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with J-STD-607-A.

1. Predrilling shall be with holes for use with lugs specified in this Section.
2. Mounting Hardware: Stand-off brackets that provide at least a 2-inch (50-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

C. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with J-STD-607-A. Predrilling shall be with holes for use with lugs specified in this Section.

1. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
2. Rack-Mounted Horizontal Busbar: Designed for mounting in 19- or 23-inch (483- or 584-mm) equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.

3. Rack-Mounted Vertical Busbar: 72 or 36 inches ((1827 or 914 mm) long, with) stainless-steel or copper-plated hardware for attachment to the rack.

2.5 GROUND RODS

A. Ground Rods: Copper-clad; 3/4 inch by 10 feet in diameter.

2.6 LABELING

A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch (10 mm). Overlay shall provide a weatherproof and UV-resistant seal for label.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.

B. Inspect the test results of the ac grounding system measured at the point of BCT connection.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.

B. Comply with NECA 1.

C. Comply with J-STD-607-A.
3.3 APPLICATION

A. Conductors: Install solid conductor for **No. 8** AWG and smaller and stranded conductors for **No. 6** AWG and larger unless otherwise indicated.

1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than **No. 6** AWG.
2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than **No. 6** AWG.

B. Conductor Terminations and Connections:

1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
3. Connections to Ground Rods at Test Wells: Bolted connectors.

C. Conductor Support:

1. Secure grounding and bonding conductors at intervals of not less than 36 inches ((900 mm).)

D. Grounding and Bonding Conductors:

1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
2. Install without splices.
3. Support at not more than 36-inch (900-mm) intervals.
4. Install grounding and bonding conductors in 3/4-inch (21-mm) PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.
 a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with requirements in Section 270528 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

3.4 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than **No. 3/0** AWG.
3.5 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 12 inches (300 mm) above finished floor unless otherwise indicated.

B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

3.6 CONNECTIONS

A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.

B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.

C. Assemble the wire connector to the conductor, complying with manufacturer’s written instructions and as follows:
 1. Use crimping tool and the die specific to the connector.
 2. Pretwist the conductor.
 3. Apply an antioxidant compound to all bolted and compression connections.

D. Primary Protector: Bond to the TMGB with insulated bonding conductor.

E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot (1 sq. mm/linear meter) of conductor length, up to a maximum size of No. 3/0 AWG 168 kcmils (85 sq. mm) unless otherwise indicated.

F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install top-mounted rack grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB No. 2 AWG bonding conductors.

G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.

H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard.
I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA/EIA-568-B.1 and TIA/EIA-568-B.2 when grounding screened, balanced, twisted-pair cables.

J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.

K. Access Floors: Bond all metal parts of access floors to the TGB.

3.7 IDENTIFICATION

A. Labels shall be preprinted or computer-printed type.

1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.

2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.

3. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.

 a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.

3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.

 a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB. Maximum acceptable ac current level is 1 A.
C. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.

D. Grounding system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 270526
SECTION 270528 - PATHWAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal conduits and fittings.
 2. Nonmetallic conduits and fittings.
 3. Optical-fiber-cable pathways and fittings.
 4. Surface pathways.
 5. Boxes, enclosures, and cabinets.

B. Related Requirements:
 1. Section 260533 "Raceways and Boxes for Electrical Systems" for conduits, wireways, surface raceways, boxes, enclosures, cabinets, handholes, and faceplate adapters serving electrical systems.

1.2 ACTION SUBMITTALS

A. Product Data: For surface pathways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. General Requirements for Metal Conduits and Fittings:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

B. GRC: Comply with ANSI C80.1 and UL 6.

C. ARC: Comply with ANSI C80.5 and UL 6A.

D. EMT: Comply with ANSI C80.3 and UL 797.

E. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Setscrew or compression.
3. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.

F. Joint Compound for GRC or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS
A. General Requirements for Nonmetallic Conduits and Fittings:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.
B. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
C. Continuous HDPE: Comply with UL 651B.
D. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
E. Solvent cements and adhesive primers shall have a VOC content of 510 and 550 g/L or less, respectively, when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS
A. Description: Comply with UL 2024; flexible-type pathway, approved for plenum, riser or general-use installation unless otherwise indicated.
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Comply with TIA-569-B.

2.4 SURFACE PATHWAYS
A. General Requirements for Surface Pathways:
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with TIA-569-B.

B. Surface Nonmetallic Pathways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL-94 V-0 requirements for self-extinguishing characteristics.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets:
 1. Comply with TIA-569-B.
 2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, _aluminum_, Type FD, with gasketed cover.

D. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

E. Metal Floor Boxes:
 1. Material: _Cast metal or sheet metal_.
 2. Type: _Fully adjustable_.
 3. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, _cast aluminum_ with gasketed cover.

H. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep).

I. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

J. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, **Type 1 OR Type 3R** with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

K. Cabinets:
1. **NEMA 250, Type 1 or Type 3R** galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.

2. Hinged door in front cover with flush latch and concealed hinge.

3. Key latch to match panelboards.

4. Metal barriers to separate wiring of different systems and voltage.

5. Accessory feet where required for freestanding equipment.

6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Outdoors: Apply pathway products as specified below unless otherwise indicated:

1. Exposed Conduit: **GRC**.
2. Concealed Conduit, Aboveground: **GRC, EMT, RNC, Type EPC-40-PVC**.
3. Boxes and Enclosures, Aboveground: **NEMA 250, Type 3R**.

B. Indoors: Apply pathway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: **EMT**.
2. Exposed, Not Subject to Severe Physical Damage: **EMT**
3. Exposed and Subject to Severe Physical Damage: **GRC**.
4. Concealed in Ceilings and Interior Walls and Partitions: **EMT**
5. Damp or Wet Locations: **GRC**.
6. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: **Plenum-type, optical-fiber-cable pathway, Plenum-type, communications-cable pathway, or EMT**.
7. Pathways for Concealed General-Purpose Distribution of Optical-Fiber or Communications Cable: **EMT**.
8. Boxes and Enclosures: **NEMA 250 Type 1**, except use **NEMA 250 Type 4 stainless steel** in institutional and commercial kitchens and damp or wet locations.

C. Minimum Pathway Size: 3/4-inch (21-mm) trade size. Minimum size for optical-fiber cables is 1 inch (27 mm).

D. Pathway Fittings: Compatible with pathways and suitable for use and location.

1. Rigid Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. EMT: Use **setscrew or compression, steel** or **cast-metal** fittings. Comply with NEMA FB 2.10.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface pathways only where indicated on Drawings.
G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C).

3.2 INSTALLATION

A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

B. Keep pathways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

C. Arrange stub-ups so curved portions of bends are not visible above finished slab.

D. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches (300 mm) of changes in direction. Utilize long radius ells for all optical-fiber cables.

E. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

F. Stub-ups to Above Recessed Ceilings:
 1. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

G. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.

H. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

I. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

J. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

K. Spare Pathways: Install pull wires in empty pathways. Cap underground pathways designated as spare above grade alongside pathways in use.

L. Surface Pathways:
 1. Install surface pathway for surface telecommunications outlet boxes only where indicated on Drawings.

M. Pathways for Optical-Fiber and Communications Cable: Install pathways as follows:
1. 3/4-Inch (21-mm) Trade Size and Smaller: Install pathways in maximum lengths of 50 feet (15 m).
2. 1-Inch (27-mm) Trade Size and Larger: Install pathways in maximum lengths of 75 feet (23 m).
3. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements.

N. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound.

O. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service pathway enters a building or structure.
 3. Where otherwise required by NFPA 70.

4. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.

5. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

6. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

P. Mount boxes at heights indicated on Drawings in accordance with ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Q. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR COMMUNICATIONS PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.
3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage or deterioration.

END OF SECTION 270528
SECTION 270536 - CABLE TRAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Ladder cable tray.
 2. Cable tray accessories.
 3. Warning signs.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: For each type of cable tray.

1.3 INFORMATIONAL SUBMITTALS
 A. Seismic Qualification Data: Certificates, for cable trays, accessories, and components, from manufacturer.
 B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR CABLE TRAYS
 A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.
 B. Sizes and Configurations: See the Cable Tray Schedule on Drawings for specific requirements for types, materials, sizes, and configurations.
 C. Structural Performance: See articles on individual cable tray types for specific values for uniform load distribution, concentrated load, and load and safety factor parameters.

2.2 LADDER CABLE TRAY
 A. Description:
 1. Configuration: Two longitudinal side rails with transverse rungs swaged or welded to side rails, complying with NEMA VE 1.
2. Width: as indicated on Drawings.
3. Minimum Usable Load Depth: 4 inches (100 mm)
4. Straight Section Lengths: 10 feet (3.0 m) except where shorter lengths are required to facilitate tray assembly.
5. Rung Spacing: 12 inches (300 mm) o.c.
6. Radius-Fitting Rung Spacing: 9 inches (225 mm) at center of tray's width.
7. Minimum Cable-Bearing Surface for Rungs: 7/8-inch (22-mm) width with radius edges.
8. No portion of the rungs shall protrude below the bottom plane of side rails.
9. Structural Performance of Each Rung: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb (90-kg) concentrated load, when tested according to NEMA VE 1.
10. Fitting Minimum Radius: 12 inches (300 mm).
11. Class Designation: Comply with NEMA VE 1, Class 5AA
12. Splicing Assemblies: Bolted type using serrated flange locknuts.
13. Splice-Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

B. Materials and Finishes:

1. Steel:
 a. Straight Section and Fitting Side Rails and Rungs: Steel complies with the minimum mechanical properties of ASTM A 1011/A 1011M, SS, Grade 33.
 b. Steel Tray Splice Plates: ASTM A 1011/A 1011M, HSLAS, Grade 50, Class 1.
 c. Fasteners: Steel complies with the minimum mechanical properties of ASTM A 510/A 510M, Grade 1008.
 1) Hardware: Galvanized, ASTM B 633.
 1) Hardware: Galvanized, ASTM B 633.
 1) Hardware: Galvanized, ASTM B 633.
 g. Finish: Powder-coat enamel paint.
 1) Powder-Coat Enamel: Cable tray manufacturer's recommended primer and corrosion-inhibiting treatment, with factory-applied powder-coat paint.
 2) Epoxy-Resin Prime Coat: Cold-curing epoxy primer, MPI# 101.
 3) Epoxy-Resin Topcoat: Epoxy, cold-cured gloss, MPI# 77.
 4) Hardware: Chromium-zinc plated, ASTM F 1136.
h. Finish: Factory-standard primer, ready for field painting, with chromium-zinc-plated hardware according to ASTM F 1136.

i. Finish: Black oxide finish for support accessories and miscellaneous hardware according to ASTM D 769.

2.3 CABLE TRAY ACCESSORIES

A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.

B. Barrier Strips: Same materials and finishes as for cable tray.

C. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.

2.4 WARNING SIGNS

A. Comply with requirements for identification in Section 270553 "Identification for Communications Systems."

B. Lettering: 1-1/2-inch-(40-mm-) high, black letters on yellow background with legend "Warning! Not To Be Used as Walkway, Ladder, or Support for Ladders or Personnel."

2.5 SOURCE QUALITY CONTROL

A. Testing: Test and inspect cable trays according to NEMA VE 1.

PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION

A. Install cable trays according to NEMA VE 2.

B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.

C. Fasten cable tray supports to building structure.

D. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb (90 kg).

E. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.

F. Support wire-basket cable trays with wall brackets.

G. Support trapeze hangers for wire-basket trays with 1/4-inch-(6-mm-) diameter rods.
H. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.

I. Install expansion connectors where cable trays cross building expansion joints and in cable tray runs that exceed dimensions recommended in NEMA VE 2. Space connectors and set gaps according to applicable standard.

J. Seal penetrations through fire and smoke barriers.

K. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.

L. Install barriers to separate cables of different systems, such as power, communications, and data processing.

M. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.

N. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.2 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems."

B. Cable trays with shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

C. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.3 CABLE INSTALLATION

A. Install cables only when each cable tray run has been completed and inspected.

B. Fasten cables on horizontal runs with cable clamps or cable ties according to NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket.

C. Fasten cables on vertical runs to cable trays every 18 inches (450 mm).

D. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches (1800 mm).
E. Tie MI cables down every 36 inches (900 mm) where required to provide a 2-hour fire rating and every 72 inches (1800 mm) elsewhere.

F. In existing construction, remove inactive or dead cables from cable trays.

3.4 CONNECTIONS

A. Connect raceways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.
2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.
3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.
4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.
5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.
6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.
7. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.
8. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.

B. Prepare test and inspection reports.

3.6 PROTECTION

A. Protect installed cable trays and cables.

END OF SECTION 270536
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 271100 - COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Telecommunications mounting elements.
 2. Backboards.
 3. Telecommunications equipment racks and cabinets.

B. Related Requirements:
 1. Section 271500 "Communications Horizontal Cabling" for voice and data cabling associated with system panels and devices.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
 3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of Commercial Installer, Level 2.
2. **Installation Supervision:** Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.

3. **Field Inspector:** Currently registered by BICSI as RCDD to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm).

2.2 EQUIPMENT FRAMES

A. **General Frame Requirements:**

 1. **Distribution Frames:** Freestanding and wall-mounting, modular-steel units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.

 2. **Module Dimension:** Width compatible with EIA 310-D standard, 19-inch (480-mm) panel mounting.

 3. **Finish:** Manufacturer's standard, baked-polyester powder coat.

B. **Floor-Mounted Racks:** Modular-type, steel or aluminum construction.

 1. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug.

 2. Baked-polyester powder coat finish.

C. **Cable Management for Equipment Frames:**

 1. Metal, with integral wire retaining fingers.

 2. Baked-polyester powder coat finish.

 3. Vertical cable management panels shall have front and rear channels, with covers.

 4. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

2.3 POWER STRIPS

A. **Power Strips:** Comply with UL 1363.

 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

 2. Rack mounting.

 4. LED indicator lights for power and protection status.
5. LED indicator lights for reverse polarity and open outlet ground.
6. Circuit Breaker and Thermal Fusing: When protection is lost, circuit opens and cannot be reset.
7. Circuit Breaker and Thermal Fusing: Unit continues to supply power if protection is lost.
9. Rocker-type on-off switch, illuminated when in on position.
11. Protection modes shall be line to neutral, line to ground, and neutral to ground.
 UL 1449 clamping voltage for all three modes shall be not more than 330 V.

2.4 GROUNDING

A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

B. Telecommunications Main Bus Bar:
 1. Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
 2. Ground Bus Bar: Copper, minimum 1/4 inch thick by 4 inches wide (6 mm thick by 100 mm wide) with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart.
 3. Stand-Off Insulators: Comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.

C. Comply with J-STD-607.

2.5 LABELING

A. Comply with TIA/EIA-606 and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Contact telecommunications service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.

B. Comply with requirements in Section 270528 "Pathways for Communications Systems" for materials and installation requirements for underground pathways.

3.2 INSTALLATION

A. Comply with NECA 1.
B. Comply with BICSI TDMM for layout and installation of communications equipment rooms.

C. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

D. Coordinate layout and installation of communications equipment with Owner's telecommunication and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier.
 1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
 2. Record agreements reached in meetings and distribute them to other participants.
 3. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.
 4. Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.

E. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.4 FIRESTOPPING
 A. Comply with TIA-569-B, Annex A, "Firestopping."
 B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING
 A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
 B. Comply with J-STD-607.
 C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

1. Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.

3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606. Comply with requirements in Division 26 Section "Identification for Electrical Systems."

B. Comply with requirements in Division 09 for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

C. Paint and label colors for equipment identification shall comply with TIA/EIA-606 for Class 2 level of administration.

D. Labels shall be preprinted or computer-printed type.

END OF SECTION 271100
SECTION 271500 - COMMUNICATIONS HORIZONTAL CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. Cable connecting hardware, patch panels, and cross-connects.
 3. Telecommunications outlet/connectors.
 4. Cabling system identification products.

B. Related Requirements:
 1. Section 271300 "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.

1.2 ADMINISTRATIVE REQUIREMENTS

A. Coordinate layout and installation of telecommunications cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:
 1. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 2. Wiring diagrams to show typical wiring schematics, including the following:
 b. Patch panels.
 c. Patch cords.
 3. Cross-connects and patch panels. Detail mounting assemblies and show elevations and physical relationship between the installed components.
1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.

B. Source quality-control reports.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings by BICSI level 2 installer.

2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site. Test each pair of UTP cable for open and short circuits.

PART 2 - PRODUCTS

2.1 HORIZONTAL CABLE DESCRIPTION

A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.

1. TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.

2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.

3. Bridged taps and splices shall not be installed in the horizontal cabling.
2.2 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1 when tested according to test procedures of this standard.

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm).

2.4 UTP CABLE

A. Description: 100-ohm, four-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.
 1. Comply with ICEA S-90-661 for mechanical properties.
 2. Comply with TIA/EIA-568-C.1 for performance specifications.
 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, General Purpose: Type CM or CMG.
 b. Communications, Plenum Rated: Type CMP complying with NFPA 262.
 c. Communications, Riser Rated: Type CMR, complying with UL 1666.

2.5 UTP CABLE HARDWARE

A. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

B. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
1. **Number of Jacks per Field:** One for each four-pair conductor group of indicated cables, plus spares and blank positions adequate to suit specified expansion criteria.

C. **Jacks and Jack Assemblies:** Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

D. **Patch Cords:** Factory-made, four-pair cables in lengths as required by IT personnel; terminated with eight-position modular plug at each end.

1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
2. Patch cords shall have color-coded boots for circuit identification.

2.6 TELECOMMUNICATIONS OUTLET/CONNECTORS

A. **Jacks:** 100-ohm, balanced, twisted-pair connector; four-pair, eight-position modular. Comply with TIA/EIA-568-B.1.

B. **Workstation Outlets:** Two-port-connector assemblies mounted in multigang faceplate.

1. **Plastic Faceplate:** High-impact plastic. Coordinate color with Division 26.
2. **Metal Faceplate:** Stainless steel complying with requirements with Division 26.
3. For use with snap-in jacks accommodating any combination of UTP work area cords.
 a. Flush mounting jacks, positioning the cord at a 45-degree angle.
4. **Legend:** Factory labeled by silk-screening or engraving for stainless steel faceplates.
5. **Legend:** Machine printed, in the field, using adhesive-tape label.
6. **Legend:** Snap-in, clear-label covers and machine-printed paper inserts.

2.7 GROUNDING

A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

B. Comply with J-STD-607.

2.8 IDENTIFICATION PRODUCTS

A. Comply with TIA/EIA-606 and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Comply with requirements in Division 26.
2.9 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.
B. Factory test UTP cables on reels according to TIA/EIA-568-B.1.
C. Factory test UTP cables according to TIA/EIA-568-B.2.
D. Cable will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS

A. Install cables in pathways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal pathways and cables except in unfinished spaces.

1. Install plenum cable in environmental air spaces, including plenum ceilings.
2. Comply with requirements in Section 270528 "Pathways for Communications Systems."
3. Comply with requirements in Section 270536 "Cable Trays for Communications Systems."

B. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures:

1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer’s limitations on bending radii.
2. Install lacing bars and distribution spools.
3. Install conductors parallel with or at right angles to sides and back of enclosure.

3.3 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:

2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
3. Install 110-style IDC termination hardware unless otherwise indicated.
4. MUTOA shall not be used as a cross-connect point.
5. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 b. Locate consolidation points for UTP at least 49 feet (15 m) from communications equipment room.
6. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
7. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
8. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
9. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
10. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
12. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
13. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:
2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.

D. Open-Cable Installation:
1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend UTP cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1524 mm) apart.
3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

E. Group connecting hardware for cables into separate logical fields.
F. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA-569-B for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.

2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).

3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).

5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).

6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.4 FIRESTOPPING

A. Comply with TIA-569-B, Annex A, "Firestopping."

B. Comply with BICSI TDMM, "Firestopping Systems" Article.
3.5 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with J-STD-607.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. Comply with requirements for identification specified in Division 26.

1. Administration Class: 1.
 2. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.

B. Comply with requirements in Division 09 for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 level of administration.

D. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

E. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606-A. Furnish electronic record of all drawings, in software and format selected by Owner.

F. Cable and Wire Identification:

1. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.

2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

G. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.

1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.7 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.
3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
5. UTP Performance Tests:
 a. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:
 1) Wire map.
2) Length (physical vs. electrical, and length requirements).
3) Insertion loss.
4) Near-end crosstalk (NEXT) loss.
5) Power sum near-end crosstalk (PSNEXT) loss.
6) Equal-level far-end crosstalk (ELFEXT).
7) Power sum equal-level far-end crosstalk (PSELFEXT).
8) Return loss.
9) Propagation delay.
10) Delay skew.

6. Final Verification Tests: Perform verification tests for UTP systems after the complete communications cabling and workstation outlet/connectors are installed.

a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.

b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.

B. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

C. End-to-end cabling will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.8 DEMONSTRATION

A. Train Owner’s maintenance personnel in cable-plant management operations, including changing signal pathways for different workstations, rerouting signals in failed cables, and keeping records of cabling assignments and revisions when extending wiring to establish new workstation outlets.

END OF SECTION 271500
SECTION 271533 - COMMUNICATIONS COAXIAL HORIZONTAL CABLING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Communications coaxial cable.
 2. CATV coaxial cable.
 3. Coaxial cable hardware.
 5. Identification products.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings:
 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 3. Cabling administration drawings and printouts.

1.3 INFORMATIONAL SUBMITTALS
A. Qualification Data: For RCDD, installation supervisor, and field inspector.
B. Source quality-control reports.
C. Field quality-control reports.
D. Maintenance Data: For splices and connectors to include in maintenance manuals.

1.4 CLOSEOUT SUBMITTALS
A. Software and Firmware Operational Documentation.
B. Maintenance Data: For coaxial cable, splices, and connectors to include in maintenance manuals.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Layout Responsibility: Preparation of Shop Drawings, Administration Drawings, and field testing program development by an RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of Level 2 Installer, who shall be present at all times when Work of this Section is performed at Project site.

B. Testing Agency Qualifications: Testing agency must have personnel certified by BICSI on staff.

1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD.

1.6 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard, and the requirements of TIA-568-C.4.

B. Telecommunications Pathways and Spaces: Comply with TIA-569-D.

C. Grounding: Comply with TIA-607-B.

2.2 GENERAL CABLE CHARACTERISTICS

A. Communications Cable: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:

1. Communications, Plenum Rated: Type CMP complying with UL 1685.
2. Communications, Plenum Rated: Type CM, Type CMG, Type CMP, Type CMR, or Type CMX in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."

B. CATV Cable: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:
1. CATV Plenum Rated: Type CATVP, complying with NFPA 262.
2. CATV Cable: Type CATV, or CATVP or CATVR installed in general purpose, riser, or plenum communications raceways or cable routing assemblies in fireproof riser shafts with firestops at each penetration.

2.3 COMMUNICATIONS COAXIAL CABLE

A. Description: Coaxial cable with a 75-ohm characteristic impedance designed for broadband data transmission.

B. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 13, and with NFPA 70, "Class 1, Class 2, and Class 3 Remote-Control, Signaling, and Power-Limited Circuits" and "Communications Circuits" articles. Types are as follows:

1. RG-6/U: UL Type CMP.
 a. No. 16 AWG, solid, copper-covered steel conductor.
 b. Plenum rated.
 c. Gas-injected, foam-PE insulation.
 d. Shielded with 100 percent aluminum tape and 40 percent aluminum braid.
 e. Double shielded with 100 percent aluminum foil shield, 60 percent aluminum braided inner shield, and 40 percent aluminum braided outer shield.
 f. Jacketed with black PVC or PE.
 g. Suitable for indoor installations.

2. RG-11/U: UL Type CMP.
 a. No. 14 AWG, solid, copper-covered steel conductor.
 b. Plenum rated. Suitable for outdoor installations in ambient temperatures ranging from minus 40 to plus 85 deg F (minus 40 to plus 30 deg C).
 c. Gas-injected, foam-PE insulation.
 d. Shielded with 100 percent aluminum tape and 40 percent aluminum braid.
 e. Double shielded with 100 percent aluminum foil shield, 60 percent aluminum braided inner shield, and 40 percent aluminum braided outer shield.
 f. Jacketed with sunlight-resistant, black PVC or PE.

2.4 CATV COAXIAL CABLE

A. Description: Coaxial cable with a 75-ohm characteristic impedance designed for CATV transmission.

B. NFPA and UL compliance, listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1655 and with NFPA 70, "Community Antenna Television and Radio Distribution Systems" Article. Types are as follows:

1. RG-6/U: UL Type CATVP.
a. No. 18 AWG, solid, copper-covered steel conductor.
b. Plenum rated.
c. Gas-injected, foam-PE insulation.
d. Shielded with 100 percent aluminum tape and 40 percent aluminum braid.
e. Double shielded with 100 percent aluminum foil shield, 60 percent aluminum braided inner shield, and 40 percent aluminum braided outer shield.
f. Jacketed with black PVC or PE.
g. Suitable for indoor installations.

2.5 COAXIAL CABLE HARDWARE

A. Description: Hardware designed to connect, splice, and terminate coaxial cable with a 75-ohm characteristic impedance.

B. Coaxial-Cable Connectors: Type F, 75 ohms.

C. Jacks and Jack Assemblies: Modular, color-coded, with female Type F connectors.

D. Patch Cords: Factory-made cables in required lengths; terminated with a male Type F connector at each end.

E. Faceplates:
 3. For use with snap-in jacks accommodating any combination of twisted pair, optical-fiber, and coaxial work area cords.
 a. Flush-mounted jacks, positioning the cord at a 90-degree angle from faceplate surface.

4. Legend:
 a. Factory labeled by silk-screening or engraving.
 b. Machine printed, in the field, using adhesive-tape label.
 c. Snap-in, clear-label covers and machine-printed paper inserts.

2.6 GROUNDING

A. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

B. Comply with TIA-607-B.
PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate horizontal cabling with the protectors and demarcation point provided by communications service provider.

3.2 INSTALLATION OF COAXIAL HORIZONTAL CABLES

A. Comply with NECA 1 and NECA/BICSI 568.

 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for raceways and boxes specified in Section 270528 “Pathways for Communications Systems.”

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

D. General Requirements for Cabling:
 2. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and patch panels.
 3. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 4. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 5. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section. Use lacing bars and distribution spools.
 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 7. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 8. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
E. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend coaxial cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1524 mm) apart.
3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.

F. Installation of Cable Routed Exposed under Raised Floors:

1. Install plenum-rated cable only.
2. Install cabling after the flooring system has been installed in raised floor areas.
3. Coil cable 6 feet (1800 mm) long not less than 12 inches (300 mm) in diameter below each feed point.

G. Outdoor Coaxial Cable Installation:

1. Install outdoor connections in enclosures complying with NEMA 250, Type 4X. Install corrosion-resistant connectors with properly designed O-rings to keep out moisture.
2. Attach antenna lead-in cable to support structure at intervals not exceeding 36 inches (915 mm).

H. Group connecting hardware for cables into separate logical fields.

I. Separation from EMI Sources:

1. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 b. Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (610 mm).

2. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 b. Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
3. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating Between 2 and 5 kVA: A minimum of 3 inches (76 mm).
 c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).

4. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).

5. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.3 FIRESTOPPING
 A. Comply with TIA-569-C, Annex A, "Firestopping."
 B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.4 GROUNDING
 A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
 B. Comply with TIA-607-B and NECA/BICSI-607.
 C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
 D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.5 IDENTIFICATION
 A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 B. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
 C. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications.
closets, **horizontal pathways and cables**, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.

D. Cable and Wire Identification:

1. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communications cabling, use a different color for jacks and plugs of each service.

E. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA 606-B, for the following:

1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections.

B. Tests and Inspections:

1. Visually inspect coaxial jacket materials for NRTL certification markings.
2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
3. Test coaxial horizontal copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination.

C. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
D. Remove and replace cabling where test results indicate that they do not comply with specified requirements.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 271533
SECTION 27 41 00 - AUDIO – VISUAL SYSTEMS

PART 1 GENERAL

1. RELATED SECTIONS

 (A) The Drawings, General, Special and Supplementary Conditions of the Contract to the Work of this Section.

 (B) All project construction documents correspond to this Section.

 (C) The Specification Sections of other disciplines correspond to this Section, insofar as contractor coordination and the requirements for interconnection with the work of other contractors are required, and insofar as they apply.

 (D) Division 16000 – Electrical Systems

2. SYSTEM DESCRIPTION

 (A) Audio Reinforcement Systems consist of loudspeakers, audio power amplification, equipment cabinet, cabling, rigging materials, and wiring.

 (B) Video Reinforcement consist digital video processing, HDBaseT transmitter, switcher, receiver, display, cabling and connectors.

 (C) Integration of any owner furnished equipment (OFE), furnishing and installation of specified products, as well as incidental equipment, hardware and cabling required providing complete and fully functional systems. Furnish, deliver, erect, and connect all the material and equipment described herein and in the drawings, and also all other incidental material and tools, transportation, etc. required to make work complete, in accordance with these plans and specifications, as required to leave the system in first class operating condition, excluding those items designated WORK BY OTHERS (WBO) or NOT IN CONTRACT (NIC).

 (D) Verify dimensions and conditions at the job site prior to installation, and perform installation in accordance with these specifications, manufacturers’ recommendations and all applicable code requirements.

 (E) The AV systems include the following major items:

 a) Digital audio mixing, processing and routing components
 b) Loudspeakers and loudspeaker mounting or support hardware
 c) Video displays, video processors, support cabling & hardware
 d) Equipment Racks, Cabinetry, and Furniture
 e) Cables, Connectors, Plates, and Wiring
 f) Preparation of submittal information
 g) Installation in accordance with the contract documents, manufacturer’s recommendations, and all applicable code requirements
 h) Specific control system programming, training & support
 i) Initial tests and adjustments, demonstration for approval, final adjustments and documentation
 j) Instruction of operating personnel; provision of manuals
 k) Maintenance services; warranty
(F) Provision of system testing, system documentation and instruction of Owner Personnel.

(G) Guarantees and Warranties.

3. REFERENCES

In addition to the references in Division 1, all requirements of the latest published edition, unless otherwise noted, including but not limited to the following, shall apply. In the event of conflict between cited or referenced standards, the more stringent shall govern.

c) Society of Cable Television Engineers (S.C.T.E.)
d) Society of Motion Picture and Television Engineers (S.M.P.T.E.)
e) American Society for Testing Materials (A.S.T.M.)
f) National Cable Television Association (N.C.T.A.)
g) Electronic Industries Association (E.I.A)
h) Telecommunications Industries Association (T.I.A.)
l) DOE Standard DOE-STD-1090-99 Hoisting and Rigging

4. SUBMITTALS

(A) Provide shop drawings and record drawings using the following scales:
 a) Details – not less than 1/4"=1'-0"
 b) Plans – not less than 1/8"=1'-0"

(B) Mark all submittal documents to show the project name, date, Architect, Contractor, Sub-Contractor, and this specification Section number.

(C) Make each specified submittal as a coordinated package complete with all information. Uncoordinated sets will be returned without review.

(D) Cable and Connector Submittal: Submit sample cable with connections and wire labels. Cable sample should be 18" in length. Submit cable/connector assemblies for each type of cable to be used on the project. Manufacturer’s cable jacket ID lettering must be included on the sample cable.

(E) Product Data: Submit manufacturer’s product data sheets for each item of equipment that will be provided as part of this contract. Provide a complete list of proposed equipment broken down by system. Provide a budget summary page listing price by system. Binders shall be 3-ring binders sized to handle materials plus 34% excess. All cut sheets shall be arranged by system type and then by specification number with tabbed dividers between sections. A table of contents shall appear at the front of the binder.
(F) Submit heat load calculations showing how loads were derived if requested by Owner or Owners Representative.

(G) Custom Software Programming including Graphical User Interface (as required). Provide for approval at least three (3) weeks prior to system commissioning, electronic copies of all custom software. It is the Contractor’s responsibility for all custom software programming for the systems they are controlling. Coordination with the Consultant is required for the development of this software.

(H) Provide Panel Fabrication Details including panel engraving schedule to Owner and Consultant prior to ordering panels.

(I) Any technical questions shall be submitted by email to the AV Consultant, unless otherwise noted by the Owner, Architect or Purchasing Agent.

Walthall & Associates, Inc.
200 Swift Creek Drive; Suite G
Cantonment, FL 32533
Electronic mail: chuck@walthall.us
Telephone (850) 478-9002

5. QUALIFICATIONS

(A) Bidder shall be an A/V systems contractor, normally engaged in the full time business of A/V systems installation. Show proof that bidder has been in the communications system installation business for a period of no less than five years and has completed projects of similar size and scope. The Owner and/or Owner’s representative reserves the right to reject any bids submitted by firms without sufficient experience in projects of this size, complexity, or any other terms the owner or owner’s representative may deem relevant.

(B) No sub-contractor or contract employees will be permitted to perform the contractor’s responsibilities as defined herein, unless specifically identified in the bid submission and approved by the Owner and/or Owner’s representative. The contractor shall have sole responsibility for the satisfactory execution of the work, even though he may have sub-contracted a portion of the work, or had certain manufacturers install their own products.

(C) The Contractor shall provide resumes of the project coordinator (manager) and lead installer planned to be used for this project. This shall be presented at the presentation of proposal. The Contractor shall maintain the same project manager and lead installer throughout the course entire course of the project. If a personnel change is required the Contractor shall notify the Owner and/or Owner’s representative and the General Contractor 30 calendar days prior to the change.

6. QUALITY ASSURANCE

(A) Review architectural, civil, structural, mechanical, electrical, and other project documents relative to this work.

(B) Verify all dimensions on the site.

(C) Coordinate the specified work with all other trades.

(D) Provide all items not indicated on the drawings or mentioned in the specifications that are necessary, required or appropriate for this work to realize complete, stable and safe operation.
(E) Review project documentation and continuously make known any conflicts discovered and provide all items necessary to complete this work to the satisfaction of the Owner and/or Owner’s representative without additional expense. In all cases where a device or item or equipment is referred to in singular number or without quantity, each such reference shall apply to as many such devices or items as are required to complete the work.

(F) Provide additional support or positioning members as required for the proper installation and operation of equipment, materials and devices provided as part of this work as approved by the Owner and/or Owner’s representative, without additional expense.

(G) Regularly examine all construction, and the work of others, which may affect the work to ensure proper conditions for the equipment and devices before their manufacture, fabrication or installation. Contractor shall be responsible for the proper fitting of the systems, equipment, materials, and devices provided as part of this work.

(H) Promptly notify the Owner and/or Owner’s representative of any difficulties that may prevent proper coordination or timely completion of this work. Failure to do so shall constitute acceptance of construction as suitable in all ways to receive this work, except for defects that may develop in the work of others after its execution.

(I) The Systems Contractor shall maintain the same Project Coordinator (Manager) and Field Supervisor throughout the entire project. The Systems Contractor shall provide contact information to the client, AV Consultant, General Contractor and Electrical Contractor, for both parties prior to commencing on-site project work.

(J) Source Limitations: Obtain as many products as possible from a single manufacturer. Obtain each item as a completely newly manufactured unit, including necessary mounting hardware, manuals and accessories.

7. OWNER’S RIGHT TO USE EQUIPMENT

(A) The Owner reserves the right to use equipment, material and services provided as part of this work prior to final acceptance without incurring any obligation to:

 a) Accept material and equipment or completed systems until all punch list work is completed and all systems are acceptable.
 b) Pay additional cost or charge.
 c) Commence the warranty period for any system or device provided as part of the work.

8. PERMITS AND INSPECTIONS

(A) Obtain all required permits and inspections.
(B) Furnish material and workmanship for this work in conformance with all code requirements
(C) Perform all tests required herein, or as may be reasonably required to demonstrate conformance with the specifications.

9. DELIVERY, STORAGE, AND HANDLING

(A) Store equipment and materials safely and securely inside at the job site in a manner that will not interfere with the work of other trades.
(B) Replace all damaged or defective work or material at no additional cost, prior to acceptance.

(C) Check, and if necessary, clean all systems, equipment, devices and components included in the work after acceptance and completion of the work of all other trades.

(D) Store materials in designated areas.

(E) Provide and maintain suitable barriers, guards, fences and signs wherever necessary for the safety of others relative to and/or for the protection of this work.

(F) Protect all materials and equipment to prevent the entry or adhesion of concrete, plaster, unintended paint, or other damaging debris or materials.

10. SHOP DRAWINGS, PRODUCT DATA AND SAMPLES

(A) Submit shop drawings, product data and samples together in one package within thirty (30) days after award of the Contract and prior to ordering equipment.

(B) Submit catalog data sheets, neatly bound with title page, space for submittal stamps, and tabbed dividers between Sections. Provide a complete list of proposed equipment. Provide a summary of pricing broken down by system. Denote all substitutions.

(C) Submit rack layouts indicating the proposed arrangement of mounted equipment including junction boxes and locations of conduit penetrations.

(D) Submit construction details of all custom fabricated items and approved equipment modifications. Include complete parts lists, schematic diagrams, and all dimensions required for proper assembly.

(E) Submit finish schedule indicating proposed color selections and finishes for custom fabricated items, wall plates and custom labels.

(F) Submit mounting and support details for all items mounted overhead, including loudspeakers complete with parts lists and dimensions. Include a full plan view, front elevation and side elevation of each unique item with corresponding support structure and mounting hardware.

(G) Approval of shop drawings or submittal indicates only the acceptance of the manufacturer and quality. Specific requirements, arrangements, and quantities still must comply with the intent of the contract documents as interpreted by the Owner and/or Owner’s representative unless specifically approved in writing.

(H) Submittals, which are incomplete, deviate significantly from the requirements of the Contract Documents, or contain numerous errors, will be returned without review for rework.

11. PROJECT RECORD DRAWINGS (As Built Drawings)

(A) Approved shop drawings, updated to accurately document the final conditions of the system installation. Legibly mark to record actual construction:

a) Field changes of dimension and detail.

b) Changes made by Revision Order, Directive or other modifications.

c) Details not in original contract drawings.

d) Any other miscellaneous items installed under this contract. At a minimum, the ends of each line should have the type of termination, coordinate and elevation indicated.

e) Layouts of system devices showing actual device locations.

f) Results of all Field Quality Control Tests in this Section.
12. OPERATION MANUALS

(A) Operation manuals shall include, but not limited to the following sections:

a) Table of Contents.

b) Typed description of system including key features and operational concepts (e.g. remote control features, switching functions, and mixing capabilities).

c) Setup diagrams and typed instructions for use in typical situations as directed by the Owner.

d) Small scale plans showing locations and circuit numbers for all system outlets and receptacles.

e) Single-line block diagrams showing all major components of the systems.

f) Manufacturer’s operation manuals for user-operated equipment (tape decks, processors, communication equipment, etc.).

13. MAINTENANCE MANUALS

(A) Provide the owner any maintenance manuals that come packaged with equipment.

14. PROJECT CONDITIONS

(A) If project conditions indicate a need to vary from the Specifications or Drawings, notify the Owner and/or Owner’s representative, make recommendations, and proceed with the necessary changes only after receipt of approval from the Owner and/or Owner’s representative.

(B) All accessories provided by equipment manufacturer shall retain the property of the owner. Collect, inventory and present to owner after Acceptance Testing.

15. WARRANTY

(A) Provide a one (1) year System Warranty, and the following, at no additional cost to the Owner.

(B) Warranty shall contain the following:

a) Date, project title and number.

b) Contractor’s name, address, telephone number and point of contact.

c) Title and number of each as-built document.

d) Signature of contractor, or its authorized representative.

e) Include the name of a contact person for service or maintenance and define the limits of the system warranty.

(C) During the System Warranty period, answer all service calls and requests for information within twenty-four (24) hours. Repair or replace faulty items and correct faulty workmanship on site within twenty-four (24) hours of all service calls.

(D) Conduct all warranty repairs and service at the job site unless in violation of manufacturer’s warranty. In the latter event, provide substitute systems, equipment, and/or devices, acceptance to the Owner, for the duration of such off site repairs. Transport warranty materials, parts, and personnel to and from the job site at no additional cost.

(E) For products with manufacturer’s warranties lasting more than one (1) year, register warranties in the Owner’s name.
16. SUBSTITUTIONS

(A) Denote any substitutions for consideration by the Owner or Owner’s representative.

18. BRAND NAMES AND ACCEPTABLE ALTERNATIVES

(B) The brand name(s) and model number(s) mentioned are used in this specification as a measure of quality and performance. Any brand or manufacture of acceptable or better quality and performance than that specified will be considered for acceptance by the Owner and/or Owner’s representative at time of Bid. However, the Owner and/or Owner’s representative reserves the right to reject and deny any substitution that it may, in its sole discretion, deem unequal, and the findings in this regard shall be accepted by the bidder as final and binding.

19. OWNER FURNISHED EQUIPMENT (O.F.E.)

(A) Certain equipment may be identified as Owner Furnished (OFE or Existing). This Owner Furnished Equipment may presently be part of the Owner’s system, or will be provided by the Owner, and will be delivered to the contractor’s off-site construction facility, delivered to the contractor’s on-site secured storage area, or installed on site by others, as appropriate, for incorporation into the system.

(B) Clean and inspect the OFE, and notify the Owner and/or Owner’s representative of damage or defect and the extent of repair and/or adjustment required to bring the OFE to original specification. Service OFE only if directed by the Owner and/or Owner’s representative under the arrangements of a separate contract.

(C) Connect, terminate and properly incorporate OFE into the proper system for its type. Reconnect any equipment disconnected for installation of new equipment. Verify proper operation and control functions as before removal.

20. INSURANCE

(A) Insure materials against theft, vandalism, damage due to the elements, fire, etc., to their full value. Materials and the flawless condition of materials shall remain the responsibility of the contractor until acceptance of the system by the Owner.

(B) Contractor shall be responsible for having in force the following insurance protection, this protection shall also be required for any subcontractors the Contractor may hire. Certificates of insurance shall be provided within five (5) calendar days upon request.

 a) Workers Compensation Coverage for all workers
 b) General, Automobile and Excess or Umbrella Liability Coverage
 c) General Liability Coverage – Occurrence Form Required
 d) Business Automobile Liability Coverage

21. WORK BY OTHERS (WBO, BY OTHERS) NOT IN CONTRACT (NIC)

(A) As noted on drawings and in project documentation

22. BEST VALUE ITEMIZED PROPOSAL
(A) As noted elsewhere, the AV contractor shall furnish items meeting or exceeding the specifications, items which are new and of the latest technology.

(B) Each item or system group of items shall be individually priced with the understanding PANAMA CITY BEACH FIRE STATION may select any single or any combination of items as required meeting any budget constraints. Where the contractor chooses, an alternate item or system may be proposed in addition to the items specified.

(C) Award will be based on best value to PANAMA CITY BEACH FIRE STATION, so proposers are required to attach literature as required, on each individual component proposed and may include with each a narrative explaining the merits of the component.

(D) In addition to above, the AV contractor shall include a narrative at the beginning of his proposal describing the Project Approach, personal experience and overall relative value to PANAMA CITY BEACH FIRE STATION. This narrative should not exceed two double-spaced typewritten pages and may include any other points the proposer wishes to include.

PART 2 PRODUCTS

1. GENERAL

(A) All equipment, except OFE, and materials shall be new, latest version at time of bid, and shall conform to applicable UL, CSA, or ANSI provisions. Re-manufactured or "B" stock equipment will not be accepted without prior written consent from the Owner and/or Owner’s representative. Evidence of unauthorized re-manufactured, or "B" stock equipment on the project site will be deemed evidence of the contractor’s Failure to Perform the Work. Take care during installation to prevent scratches, dents, chips or disfiguration.

(B) Regardless of the length or completeness of the descriptive paragraph herein, each device shall meet all of its published manufacturer’s specifications. Verify performance as required.

(C) Asbestos Prohibition: No Asbestos containing materials shall be used under this section. The contractor shall insure that all materials incorporated in the project are Asbestos free unless specifically authorized in writing by the Owner and/or Owner’s representative.

(D) All products listed below are listed for sole source information and establishment of the level of quality required by this project. Refer to the project drawings to establish quantities.

(E) Install all rack mounted equipment with black steel 10-32, button head machine screws with plastic cup washers protecting equipment panel. Do not over torque, round out, strip or mar screws.

(F) Provide and install an escutcheon ring around all pipes, poles and mounts that penetrate the ceiling. Color to be determined by owner.

(G) Some rack-mounted equipment may require shaft locks, covers, or removal of knobs; provide and install during Acceptance Testing.

(H) Provide plastic permanent approved labels at the front and rear of all rack-mounted power amplification and signal processing equipment. Mount labels on the equipment rack or equipment chassis, and attach in a neat, plumb, and permanent manner. Embossed labels will not be accepted. Label equipment with schematic enumeration reference, and with descriptive information regarding its function or area it is serving. Similarly, provide permanent approved labels at the rear only of equipment mounted in furniture consoles.

(I) All engraving shall be 1/8" block lettering unless noted otherwise. On dark panels or pushbuttons, letters shall be white. Letters shall be black on stainless steel, brushed natural aluminum plates or light-colored push buttons.
(J) All accessories provided by equipment manufacturer shall retain the property of the owner. Collect, inventory and present to owner after Acceptance Testing.

(K) Per IEC-268 standard, all XLR connectors not mounted on equipment shall be wired pin 2 hot (high), pin 3 (low), and pin 1 screen (shield).

2. AUDIO SYSTEMS MATERIALS

(A) The materials or description of work in this section is typical for all systems in this section and all following specification sections.

(B) All equipment items required to provide a fully functional system may not be noted or depicted on the schematic diagrams. Confirm your quote includes all required equipment documented in the system drawings and any required equipment not listed or shown. Report any missing or required equipment to the Consultant prior to submitting your quote.

(C) Mounting Hardware exposed to the weather shall be aluminum, brass, and epoxy painted galvanized steel, or stainless steel. Apply corrosion inhibitor to all threaded fittings. AV Contractor can sub the control system programming, training and support from a certified programmer/company.

(D) AUDIO-VISUAL, PRODUCTION, DIGITAL SIGNAGE & STAGE LIGHTING EQUIPMENT

Verify with system drawings, on-site inspection and requirements to provide a fully functional system(s).

Provide all materials, labor, training and miscellaneous equipment required.

Provide all display mounting devices; wall, ceiling, truss, etc. as required.

Provide all required network, DMX, audio, video and control cables as required.

Provide Owner training and support as outlined in this document.

3. CABLES AND CONTROL WIRING

(A) All electrical conductors installed under this contract, except where otherwise specified, shall be soft drawn annealed stranded copper having a conductivity of not less than 98% of pure copper and shall be Anaconda, Triangle, General or approved equal for power, and Alpha, Belden, or West Penn for low voltage. Cables in plenum rated ceilings outside conduit shall be similar to those listed above, except plenum rated.

(B) Homerun ALL Loudspeaker Cables, Reinforcement Loudspeaker Cables, Monitor and Foldback Loudspeaker Cables. Cables between loudspeakers interconnect junction boxes and racks to be at least No. 12 AWG jacketed pair equal to West Penn CL3 rated product or as shown on the AV drawings.

(C) Other Loudspeaker Cables to be at least No. 16 AWG jacketed pair equal to West Penn CL3 rated product or as shown on the AV drawings.

(D) Line Level and Microphone Level Cables to be at least No. 22 AWG shielded jacketed pair equal to West Penn CL3-452 or CL3-291 or as shown on the AV drawings. Multi-conductor High Resolution Video Cable shall be manufactured by Extron Electronics or West Penn CDT.

(F) Coaxial Cable for video and RF transport shall be RG-6 quad-shielded with a solid copper center conductor. Any other cable if installed shall be removed and replaced with approved cable at no additional expense to the owner.
4. ADD OPTIONS

(A) Provide pricing on the following add option for purchasing consideration by the Owner. Ensure pricing includes all necessary components, parts and labor to provide a fully functional system.

5. DELETE OPTIONS

(A) Provide pricing on the following delete options for purchasing consideration by the Owner. Ensure pricing includes all necessary components, parts and labor to provide a fully functional system.

a) DELETE OPTIONS are at Owner's discretion upon receipt of proposal.

6. FABRICATION

(A) Equipment Racks

a) Pre-assemble and test all racks before delivery to the job site, provide a written report on pre-assembly and test results to Owner/Owner's Representative.

b) Verify the depth of each rack prior to assembly to ensure that mounted equipment will fit completely inside with the front and rear door closed.

7. SOURCE QUALITY CONTROL TESTS

(A) Use the following test equipment meeting the following minimum specifications to perform the Source Quality Control Tests and Field Quality Control Tests. Furnish the same test equipment for the performance of Acceptance Testing.

a) Digital Multimeter

 DC to 20 kHz bandwidth
 300 V range, 100 mV resolution
 10 megohms input impedance
 Direct reading of dBm across 600-ohm load
 DC resistance to .1 ohm
 Dual Trace Oscilloscope (if required or requested)
 100 MHz bandwidth
 1 mV/CM sensitivity
 Dual time base capability

b) Sine/Square Wave Generator

 5 Hz to 5 kHz bandwidth
Output level of 0 dBm with less than .5% THD

c) Impedance Bridge
 Range: 1 ohm to 1 megohm
 Three test frequencies, minimum, ranging from 250 Hz to 4 kHz

d) Sound Level Meter
 ANSI Type 2 with one-octave filter set

(B) Measurements
 a) Measure and record impedances curves for each loudspeaker line entering rack at 1000 Hz.
 b) Grounding System tests as described in the Technical Systems Specification.

8. MISCELLANEOUS CONNECTORS

(A) Certain connectors not identified in specific paragraphs, or indicated on the drawings, are specified by generic “type”. At all times, match connector types used in adjacent project areas, including existing audio, television and audiovisual systems.

a) D(*)F - Switchcraft D(*)F or Neutrik NC(*)F
b) D(*)M - Switchcraft D(*)M or Neutrik NC(*)MP
c) TRS-F - Switchcraft 121
d) TRS-M - Switchcraft 280 or Neutrik NP3C-BAG
e) TRS-FJ - Switchcraft 14B or Neutrik NJ3FP6C-BAG
f) S4FC - Neutrik NL4FC
g) S4MP - Neutrik NL4MP
h) BNC - Canare BCJ-R
i) BNCL - Canare BCP-S4
j) BNC-R - Canare BCJ-RU

PART 3 EXECUTION

1. INSTALLATION

(A) Verify existing conditions before starting work.

(B) Execute all work in accordance with Part 1.3 References in this guideline, and with all local and state codes, ordinances, and regulations.

(C) Install equipment according to manufacturer’s recommendations.

(D) Install all rack-mounted equipment with black steel 10-32, button head machine screws, using plastic cup washers to protect equipment panel.

(E) Rack mounted equipment shall be mounted into racks and fully wired and tested, before delivery to job site. (Does not apply when racks are existing)

(F) Install flat black blank panels in all unused rack positions. Use no larger then a two space panel.

(G) Ensure that levels and impedances are properly matched between components.

(H) Choose colors and finishes of all exposed and custom fabricated items and labels to blend in with the surroundings as approved by the Owner and/or Owner’s representative.
(I) Firmly and permanently attach electrical boxes, enclosures and permanent equipment to the building. Rigidly mounted equipment and devices shall be level, plumb and square.
 a) Set “flush-mounted” units so that the face of the cover, bezel, or escutcheon is in the same plane as the surrounding finished surface.
 b) Mount boxes, panels and trim so that there are no gaps, cracks, or obvious lines between the trim and the adjacent finished surface, and ready them to receive final finish, as applicable.
 c) Provide access panels where needed to access boxes, panels and enclosures in walls or ceilings, as indicated and dimensioned on the shop drawings.
 d) Finish panels to match the surrounding surfaces.

(J) Supports and mounts for equipment to be installed over public areas shall be permanently attached to suitable building structure adequate to support the equipment loads with a safety factor of at least five.

(K) Use attachment hardware with a minimum SAE Grade 5 load rating. Do not use formed eyebolts or lag screws for support or connection of suspended equipment.

(L) Verify capacity of mounting methods used in the work and associated liabilities. All attachments, attachment points, reinforcement requirements, and hardware selection shall be executed in accordance with the references in PART 1.

2. GROUNDING, SHIELDING AND ISOLATING

(A) Mount and enclose all electrical and electronic equipment in metal enclosures, pedestals or equipment racks.

(B) All junction boxes shall be bonded to the building safety ground.

(C) Use EMT type conduit for all wiring outside of equipment racks except plenum rated wiring above a lay-in ceiling, and outdoor conduits and raceways, where separate insulated ground wiring shall be supplied.

(D) Use flexible conduits and PVC fittings to provide insulated connections of the building electrical raceways to equipment racks. Mount all equipment racks at the job site in a manner that provides electrical isolation from the building structure and electrical raceways.

(E) Electronics racks and cabinets shall be bonded to the isolated ground technical power system only. Refer to Section 16770 for coordination and test with the Electrical Contractor.

(F) In the case where a metal equipment cabinet or rack is located on a suspended, concrete or bonded flooring system, the enclosure shall be placed on a Santoprene isolating mat with a minimum thickness of 3/32" and a Durometer of 80A..

3. WIRING PRACTICES

(A) Where specific instructions are not given, perform all wiring in strict adherence to standard broadcast and sound engineering practices in accordance with the references listed in PART 1.

(B) Group all wiring into the following classifications by power level or signal type:
 a) Microphone Level: less than -20 dBm.
 b) Line Level Audio and DC Control Circuits: -20 dBm to +30 dBm.
 c) Speaker Level: greater than +30 dBm.
 d) AC Mains Power Circuits
(C) Separate wiring of differing classifications by at least six (6) inches, wherever possible. Wherever lines of differing classification must come closer together than six (6) inches, cross them perpendicular to each other.

(D) Neatly harness wires together within racks by power level classification using horizontal and vertical wiring supports as required. Rigidly support all wires within 6” of fixed connection points. Leave service loops of sufficient lengths to allow rack hinges or slides to fully extend to facilitate access to rear panel connectors from the front of each rack. Do not use self-adhesive anchor pads for support of cables.

(E) Observe consistent polarity throughout the audio systems as follows:
 a) Use only balanced differential inputs throughout all audio systems unless otherwise noted.
 b) Use approved transformers where directed to reduce objectionable system noise to acceptable levels.

(F) Exercise care in wiring to avoid damaging the cables and equipment. Use grommets around cutouts and knockouts where conduit or chase nipples are not installed. Use bushings where conduit terminal connections are exposed in or out of junction boxes.

(G) Cut off unused wire ends approximately one-half inch (1/2") past the wire jacket. Fold them back over the jacket, and secure in place with heat-shrink tubing. In multi-conductor cables, preserve all unused conductors for future use. Failure to do so may result in replacement of cables at the contractor’s expense.

(H) Provide a minimum 6” service loop or enough cable to allow for three (3) subsequent terminations which ever is greater.

(I) All cable jacket exposed stripped ends shall be dressed with the appropriate sized heat shrink.

(J) All drain cables shall be protected from the jacket strip to the point of termination. Exposed bare wire is not acceptable.

(K) Make all connections using rosin-core solder in conjunction with approved mechanical connectors unless other is specified by manufacturer. Connect microphone, control, and line level wiring through approved connectors. Connect speaker level wiring using approved terminal barrier strips. Mount all terminal devices on a non-conductive (electrically) rigid surface. Provide 10% spare terminals at each location. Label each terminal with a unique number.

(L) Make all power amplifier output connections directly into amplifier binding posts, friction fit connectors are not acceptable. In the event the amplifier doesn’t have binding posts, and has barrier strip connections, crimp and solder the appropriate fork lug to the cable and torque screws to manufacturer’s specification.

(M) All fiber optic cable splicing shall utilize the fusion splice method. The maximum allowable loss per fusion splice shall be 0.5 dB.

4. LABELING

(A) Label products in a logical, legible, and permanent manner corresponding to the Drawings. Wording, format, style, color, and arrangement of text will be subject to the Owner and/or Owner’s representative’s approval. Submit samples and labeling schedule for approval. Labeling will be verified at final adjustment and equalization.

(B) Label all wall plates for input, output, and control receptacles as well as connector mounting plates in all boxes using 1/8” engraved lettering filled with black or contrasting paint, as approved.

(C) Use engraved plastic labels similar to Lamicoid, squarely and permanently attached, to label the following:
a) Patch panel designation strips.

b) Front and back of all rack mounted equipment including controls

c) Barrier strips, terminals, transformers, switches, relays, volume controls, and similar devices.

(D) Label pushbutton switches with engraved lettering filled with contrasting color paint.

(E) Label all permanently installed wires on both ends with approved permanent clip-on type or sleeve type markers. Wrap-around adhesive labels will not be accepted unless completely covered with clear heat shrink tubing.

(F) Label all portable equipment with engraved block letters using initials and/or words. Label all portable cables similarly with printed heat-shrinkable tags located 12 inches from the male connector end. Verify lettering through the Owner and/or Owner’s representative prior to engraving or printing.

(G) Label access panels and backboards with designations corresponding to the drawings. Where devices are concealed above access ceilings, provide permanent lamicoid labels, on the ceiling supports corresponding to the drawings in finishes and sizes approved by the Owner and/or Owner’s representative.

5. FIELD QUALITY CONTROL TESTS

(A) Maintain a competent supervisor and supporting technical personnel, acceptable to the Owner and/or Owner’s representative during the entire installation.

(B) Before connecting any equipment to AC power outlets, measure the AC voltages between hot, neutral, and ground and verify correct voltage and polarity of AC power. Equipment damaged by connecting to improperly wired outlets shall be replaced at no addition cost to the Owner.

(C) Upon completion of the system installation, it shall be the responsibility of the contractor to perform the necessary adjustments and balancing of all signals and amplifier gain, and other level controls to ensure proper system operation. The Owner shall physically inspect the system and/or Owner’s representative to assure that all equipment is installed in a neat and workmanlike manner as called for by the plans and specifications.

(D) Determine the proper sequence of energizing systems to minimize the risk of damage.

(E) After successfully energizing the systems, make all preliminary adjustments and document the setting of all controls, parameters of all corrective networks, voltages at key system interconnection points, gains and losses, as applicable.

(F) Verify the performance parameters of the individual systems following established professional procedures, in addition to those specified herein.

(G) Measure and record impedance curves of all loudspeaker lines at amplifier rack terminal barrier strips prior to connecting to amplifier outputs.

(H) Apply a sine-wave sweep signal to each loudspeaker system, sweeping from 50 Hz to 5000 Hz at a sound pressure level which is 10 dB below the loudspeaker’s rated electrical input power. Listen for rattle noise or objectionable noise and correct if apparent.

(I) Using a +4 dBm sine-wave input, set controls of each component to produce a +4 dBm sine-wave output. Under these conditions (unity gain), the presence of any waveform, distortion, interference signals, or oscillations shall be unacceptable.

(J) Check for proper polarity of ceiling mounted loudspeakers by applying music program or pink noise to each system and walking through the transition areas of coverage from one loudspeaker to the next. Transition should be smooth with no apparent shifting of source from one loudspeaker to the next.
(K) Drive each ceiling distributed loudspeaker system with one octave of pink noise centered at 1000 Hz at a sound pressure level which is at least 10 dB above the ambient noise. Adjust power amplifiers to provide uniform distribution of sound throughout the seating areas within a tolerance of ±3 dB. Use an ANSI Type 2 sound level meter set for slow meter damping to take readings at seated ear height.

(L) Individually drive each reinforcement loudspeaker with one octave of pink noise centered at 1000 Hz at a sound pressure level, which is at least 10 dB above the ambient noise. Adjust power amplifiers to provide an equal sound pressure level from each loudspeaker on its aiming axis in the seating area. Use an ANSI Type 2 sound level meter set for slow meter damping to take readings at seated ear height.

(M) Upon completion of initial tests and adjustments, notify the Owner and/or Owner’s representative the system is ready for final equalization and acceptance testing.

6. TEST EQUIPMENT

(A) Provide the following test equipment on site during construction and available to the Owner and/or Owner’s representative during final adjustment and acceptance testing:

 a) Digital Multi-meter
 b) 100 MHz Dual Trace Storage Oscilloscope
 c) Video Test Pattern Generator (XGA, Component, YC and Composite)
 d) Sine/Square Wave Generator
 e) Impedance Bridge
 f) Sound Level Meter - ANSI Type 2 with one-octave filter set

7. FINAL ADJUSTMENT AND EQUALIZATION

(A) Schedule a time for the Owner and/or Owner’s representative to perform the Final Adjustment and Equalization. Notify the Owner and/or Owner’s representative and Consultant at least twenty one (21) days in advance.

(B) Furnish project lead installer to assist the Owner and/or Owner’s representative during the Final Adjustment and Equalization.

(C) Audio Systems acceptance tests shall employ an approved sound level meter, and spectrum analyzer and digital multi-meter to be provided by the contractor. Measurements shall be made at the combined output of the amplifiers and at selected locations throughout the facility.

(D) Video Systems acceptance tests shall employ and approved video test pattern generator, PC with min. XGA output and a 100MHz dual trace storage oscilloscope. Measurements shall be made at the point of signal origination and compared to signal at the display device. Minimum requirements at the display device shall be a rise time no greater than 7.5ns (5ns preferred) and amplitude of .7 volts.

(E) Record final settings on all equipment and submit with contract closeout documents.

8. CLEAN UP

(A) Remove all unnecessary tools and equipment, unused materials, packing materials, and debris from each area where Work has been completed on a daily basis unless designated for storage.

(B) Clean all areas around system equipment and be sure that the inside of each equipment rack is free of cut wire ends, solder splatters, and other debris.
9. DEMONSTRATIONS AND TRAINING

(A) Furnish a technician who is qualified to operate and maintain the systems specified in this Section to instruct Owner designated personnel regarding the design features and proper operation of the systems.

(B) If requested by the Owner, furnish the same technician/instructor during the first formal use of each system to further instruct and assist Owner personnel in system operation.

(C) Upon completion of the Work, the Owner and/or Owner’s representative may elect to verify test data as part of the acceptance procedure. Provide personnel and equipment, at the convenience of the Owner and/or Owner’s representative, to reasonably demonstrate system performance and to assist with such tests without additional cost to the Owner and/or Owner’s representative.

10. FINAL PROCEDURES

(A) Perform any and all remedial work to correct inadequate performance or unacceptable conditions of, or relating to any of this work, as determined by the Owner and/or Owner’s representative, at no additional expense to the Owner and/or Owner’s representative.

(B) Furnish all portable and loose equipment to the Owner along with complete documentation of the materials presented. All portable equipment shall be presented in the original manufacturer’s packing, complete with all included instructions and miscellaneous manuals and documents.

(C) Test Reports and Certificates:
 a) Document all acceptance testing, calibration and correction procedures described herein with the following information:
 b) Parameters measured and their values, including values measured prior to calibration or correction, as applicable.
 c) Parameters associated with calibration or corrective networks, components, or devices.
 d) All software shall have certified backups and escrow provisions reviewed with the Owner and/or Owner’s representative and equipment supplier.
 e) Provide all operational software, configuration files, source code, and final settings and adjustment, in Compact Disc format, sleeved in the final documentation binder. The configurations, and source code become the sole property of the owner at project completion
 f) A list of all equipment, indicating manufacturer, model number, serial number and equipment location (rack/room number). Update following acceptance testing if modified.

(D) Present, review and clarify all materials to the Owner and/or Owner’s representative and/or operating personnel and fully demonstrate the operation and maintenance of the systems, equipment, and devices specified herein.

(E) Check, inspect, and if necessary, adjust all systems, equipment, devices and components specified, at the Owner’s convenience, approximately thirty (30) days after the Owner acceptance of this work.

END OF SECTION
SECTION 275116 - PUBLIC ADDRESS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Preamplifiers.
 2. Power amplifiers.
 4. Equipment cabinet.
 5. Telephone paging adapters.
 6. Tone generator.
 7. Loudspeakers.
 8. Noise-operated gain controllers.
 10. Conductors and cables.
 11. Pathways.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Power, signal, and control wiring.

C. Delegated-Design Submittal: For supports and seismic restraints for control consoles, equipment cabinets and racks, and components indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of supports and seismic restraints for control consoles, equipment cabinets and racks, and components.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain public address system from single source from single manufacturer.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NFPA 70.

2.2 FUNCTIONAL DESCRIPTION OF SYSTEM

A. System Functions:

1. Selectively connect any zone to any available signal channel.
2. Selectively control sound from microphone outlets and other inputs.
3. "All-call" feature shall connect the all-call sound signal simultaneously to all zones regardless of zone or channel switch settings.
4. Telephone paging adapter shall allow paging by dialing an extension from any local telephone instrument and speaking into the telephone.
5. Produce a program-signal tone that is amplified and sounded over all speakers, overriding signals currently being distributed.
6. Reproduce high-quality sound that is free of noise and distortion at all loudspeakers at all times during equipment operation including standby mode with inputs off; output free of nonuniform coverage of amplified sound.

2.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports and seismic restraints for control consoles, equipment cabinets and racks, and components, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

2.4 SYSTEM DESCRIPTION

A. Compatibility of Components: Coordinate component features to form an integrated system. Match components and interconnections for optimum performance of specified functions.

B. Equipment: Comply with UL 813. Equipment shall be modular, using solid-state components, and fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied at 110 to 130 V, 60 Hz.
C. Equipment Mounting: Where rack, cabinet, or console mounting is indicated, equipment shall be designed to mount in a 19-inch (483-mm) housing complying with EIA/ECA-310-E.

D. Weather-Resistant Equipment: Listed and labeled by a qualified testing agency for duty outdoors or in damp locations.

2.5 PREAMPLIFIERS

A. Preamplifier: Separately mounted.

B. Preamplifier: Integral to power amplifier.

C. Output Power: Plus 4 dB above 1 mW at matched power-amplifier load.

D. Total Harmonic Distortion: Less than 1 percent.

E. Frequency Response: Within plus or minus 2 dB from 20 to 20,000 Hz.

F. Input Jacks: Minimum of three. One matched for low-impedance microphone; one USB port; and the other matchable to DVD or CD player, or radio tuner signals without external adapters.

G. Minimum Noise Level: Minus 55 dB below rated output.

H. Controls: On-off, input levels, and master gain.

2.6 POWER AMPLIFIERS

A. Mounting: Rack.

B. Output Power: 70-V balanced line. 80 percent of the sum of wattage settings of connected for each station and speaker connected in all-call mode of operation, plus a 10 percent allowance for future stations.

C. Total Harmonic Distortion: Less than 3 percent at rated power output from 50 to 12,000 Hz.

E. Frequency Response: Within plus or minus 3 dB from 20 to 12,000 Hz.

F. Output Regulation: Less than 2 dB from full to no load.

G. Controls: On-off, input levels, and low-cut filter.

H. Input Sensitivity: Matched to preamplifier and to provide full-rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on speaker microphone or handset transmitter.
2.7 MICROPHONES

A. Paging Microphone:
 1. Type: Dynamic, with **cardioid** polar characteristic.
 2. Impedance: **500 ohms**.
 3. Frequency Response: Uniform, 50 to 15,000 Hz.
 4. Sensitivity: Minus 70 dB.
 5. Output Level: Minus 58 dB, minimum.
 6. Cable: Braided shield cable with **Neutrik** XLR connectors. Coordinate impedance with microphone impedance.

2.8 CONTROL CONSOLE

A. Cabinet: Modular, **desktop**, complying with EIA/ECA-310-E.

B. Housing: Steel, **0.0478 inch (1.2 mm)** minimum, with removable front and rear panels. Side panels are removable for interconnecting side-by-side mounting.

C. Panel for Equipment and Controls: Rack mounted.

D. Controls:
 1. Switching devices to select signal sources for distribution channels.
 2. Program selector switch to select source for each program channel.
 3. Switching devices to select zones for paging.
 4. All-call selector switch.

E. Indicators: A visual annunciation for each distribution channel to indicate source being used.

F. Self-Contained Power and Control Unit: A single assembly of basic control, electronics, and power supply necessary to accomplish specified functions.

G. Spare Positions: 20 percent spare zone control and annunciation positions on console.

H. Microphone jack.

2.9 LOUDSPEAKERS

A. Cone-Type Loudspeakers:
 1. Minimum Axial Sensitivity: 91 dB at 1 m, with 1-W input.
 2. Frequency Response: Within plus or minus 3 dB from 50 to 15,000 Hz.
 3. Size: **6 inches (150 mm)** with 1-inch (25-mm) voice coil and minimum 5-oz (140-g) ceramic magnet.
 4. Rated Output Level: **8 W**.
 5. Minimum Dispersion Angle: 100 degrees.
6. Matching Transformer: Full-power rated with four taps. Maximum insertion loss of 0.5 dB.
7. Surface-Mounted Units: Ceiling, wall, or pendant mounted, as indicated, in steel back boxes, acoustically dampened. Front face of at least 0.0478-inch (1.2-mm) steel and whole assembly rust proofed and shop primed for field painting.

B. Horn-Type Loudspeakers:

1. Type: Single-horn units, double-reentrant design, with minimum full-range power rating of 15 W.
2. Matching Transformer: Full-power rated with four standard taps. Maximum insertion loss of 0.5 dB.
3. Frequency Response: Within plus or minus 3 dB from 250 to 12,000 Hz.
4. Dispersion Angle: 130 by 110 degrees.
6. Units in Damp, Wet, or Outdoor Locations: Listed and labeled for environment in which they are located.
7. Units in Hazardous (Classified) Locations: Listed and labeled for environment in which they are located. Provide any accessories required to maintain listing.

2.10 OUTLETS

A. Microphone Outlet: Three-pole, polarized, locking-type, microphone receptacles in single-gang boxes. Equip wall outlets with brushed stainless-steel device plates. Equip floor outlets with gray tapered rubber or plastic cable nozzles and fixed outlet covers.

2.11 CONDUCTORS AND CABLES

A. Jacketed, twisted pair and twisted multipair, untinned solid copper.

1. Insulation for Wire in Conduit: Thermoplastic, not less than 1/32 inch (0.8 mm) thick.
2. Microphone Cables: Neoprene jacketed, not less than 2/64 inch (0.8 mm) thick, over shield with filled interstices. Shield No. 34 AWG, tinned, soft-copper strands formed into a braid or approved equivalent foil. Shielding coverage on conductors is not less than 60 percent.
3. Plenum Cable: Listed and labeled for plenum installation.

2.12 PATHWAYS

A. Conduit and Boxes: Comply with Section 270528 "Pathways for Communications Systems."

1. Outlet boxes shall be not less than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.
PART 3 - EXECUTION

3.1 WIRING METHODS

 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for pathways and boxes specified in Section 270528 "Pathways for Communications Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.2 INSTALLATION OF PATHWAYS

A. Comply with requirements in Section 270528 "Pathways for Communications Systems." for installation of conduits and wireways.

B. Install manufactured conduit sweeps and long-radius elbows whenever possible.

3.3 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Cable Installation Requirements:
 1. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
 2. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
 3. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
 5. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 6. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.

C. Open-Cable Installation:
1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.

2. Suspend speaker cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceiling by cable supports not more than 60 inches (1524 mm) apart.

3. Cable shall not be run together with network cabling or through structural members or be in contact with pipes, ducts, or other potentially damaging items.

D. Separation of Wires: Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate pathways or, where exposed or in same enclosure, separate conductors at least 12 inches (300 mm) apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other communication equipment conductors as recommended by equipment manufacturer.

3.4 INSTALLATION

A. Coordinate layout and installation of system components and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

B. Match input and output impedances and signal levels at signal interfaces. Provide matching networks where required.

C. Identification of Conductors and Cables: Color-code conductors and apply wire and cable marking tape to designate wires and cables so they identify media in coordination with system wiring diagrams.

D. Equipment Cabinets and Racks:

1. Group items of same function together, either vertically or side by side, and arrange controls symmetrically. Mount monitor panel above the amplifiers.

2. Arrange all inputs, outputs, interconnections, and test points so they are accessible at rear of rack for maintenance and testing, with each item removable from rack without disturbing other items or connections.

3. Blank Panels: Cover empty space in equipment racks so entire front of rack is occupied by panels.

E. Wall-Mounted Outlets: Flush mounted.

F. Floor-Mounted Outlets: Conceal in floor and install cable nozzles through outlet covers. Secure outlet covers in place. Trim with carpet in carpeted areas.

G. Conductor Sizing: Unless otherwise indicated, size speaker circuit conductors from racks to loudspeaker outlets not smaller than No. 18 AWG and conductors from microphone receptacles to amplifiers not smaller than No. 22 AWG.

H. Weatherproof Equipment: For units that are mounted outdoors, in damp locations, or where exposed to weather, install consistent with requirements of weatherproof rating.

I. Speaker-Line Matching Transformer Connections: Make initial connections using tap settings indicated on Drawings.
J. Connect wiring according to Section 271500 "Communications Horizontal Cabling".

3.5 GROUNDING

A. Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

B. Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding.

C. Install grounding electrodes as specified in Section 270526 "Grounding and Bonding for Communications Systems."

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

1. Schedule tests with at least seven days' advance notice of test performance.
2. After installing public address system and after electrical circuitry has been energized, test for compliance with requirements.
3. Operational Test: Perform tests that include originating program and page messages at microphone outlets, preamplifier program inputs, and other inputs. Verify proper routing and volume levels and that system is free of noise and distortion.
4. Acoustic Coverage Test: Feed pink noise into system using octaves centered at 500 and 4000 Hz. Use sound-level meter with octave-band filters to measure level at five locations in each zone. For spaces with seated audiences, maximum permissible variation in level is plus or minus 2 dB. In addition, the levels between locations in same zone and between locations in adjacent zones must not vary more than plus or minus 3 dB.
5. Power Output Test: Measure electrical power output of each power amplifier at normal gain settings of 50, 1000, and 12,000 Hz. Maximum variation in power output at these frequencies must not exceed plus or minus 1 dB.

C. Inspection: Verify that units and controls are properly labeled and interconnecting wires and terminals are identified. Prepare a list of final tap settings of paging speaker-line matching transformers.

D. Public address system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.
1. Include a record of final speaker-line matching transformer-tap settings and signal ground-resistance measurement certified by Installer.

3.7 ADJUSTING

A. On-Site Assistance: Engage a factory-authorized service representative to provide on-site assistance in adjusting sound levels, resetting transformer taps, and adjusting controls to meet occupancy conditions.

END OF SECTION 275116
THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 275123 - INTERCOMMUNICATIONS AND PROGRAM SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes: Manually switched intercommunications and program systems with the following components:

1. Master stations.
2. Speaker-microphone stations.
3. Intercommunication amplifier.
4. Conductors and cables.
5. Raceways.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For intercommunications and program systems. Include plans, elevations, sections, details, and attachments to other work.

1. Wiring Diagrams: For power, signal, and control wiring.
 a. Identify terminals to facilitate installation, operation, and maintenance.
 b. Single-line diagram showing interconnection of components.
 c. Cabling diagram showing cable routing.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 FUNCTIONAL DESCRIPTION OF SYSTEMS

A. Master Station:
 1. Communicating selectively with other master and speaker-microphone stations by actuating selector switches.
 2. Communicating with individual stations in privacy.
 3. Including other master-station connections in a multiple-station conference call.
 4. Overriding any conversation by a designated master station.

B. Speaker-Microphone Station:
 1. Having privacy from remote monitoring without a warning tone signal at monitored station. Designated speaker-microphone stations have a privacy switch to prevent another station from listening and to permit incoming calls.
 2. Communicating hands free.
 3. Calling master station by actuating call switch.
 4. Returning a busy signal to indicate that station is already in use.
 5. Being free of noise and distortion during operation and when in standby mode.

2.2 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS

A. Coordinate features and select components to form an integrated system. Match components and interconnections for optimum performance of specified functions.

B. Expansion Capability: Increase number of stations in the future by 25 percent above those indicated without adding any internal or external components or main trunk cable conductors.

C. Equipment: Modular type using solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied at 110 to 130 V, 60 Hz.

D. Weather-Resistant Equipment: Listed and labeled by an NRTL for duty outdoors or in damp locations.

2.3 MASTER STATION

A. Station-Selector and Talk-Listen Switches: Heavy-duty type with gold-plated contacts rated for five million operations.

B. Volume Control: Regulates incoming-call volume.
C. LED Annunciation: Identifies calling stations and stations in use. LED remains on until call is answered.

D. Tone Annunciation: Momentary audible tone signal announces incoming calls.

E. Speaker Microphone: Transmits and receives calls.

F. Handset with Hook Switch: Telephone type with 18-inch- (450-mm-) long, permanently coiled cord. Arrange to disconnect speaker when handset is lifted.

G. Equipment Cabinet: Comply with TIA/EIA-310-D. Lockable, ventilated metal cabinet houses terminal strips, power supplies, amplifiers, system volume control, and auxiliary equipment.

2.4 SPEAKER-MICROPHONE STATIONS

A. Mounting: Flush unless otherwise indicated, and suitable for mounting conditions indicated.

B. Faceplate: Stainless steel or anodized aluminum with tamperproof mounting screws.

C. Back Box: Two-gang galvanized steel with 2-1/2-inch (64-mm) minimum depth.

D. Speaker: 3 inches (76 mm), 2.3 oz. (65 g) minimum; permanent magnet.

E. Tone Annunciation: Recurring momentary tone indicates incoming calls.

F. Call Switch: Mount on faceplate. Permits calls to master station.

2.5 INTERCOMMUNICATION AMPLIFIER

A. Minimum Output Power: 2 W adequate for all functions.

B. Total Harmonic Distortion: Less than 5 percent at rated output power with load equivalent to one station connected to output terminals.

D. Frequency Response: Within plus or minus 3 dB from 70 to 10,000 Hz.

E. Output Regulation: Maintains output level within 2 dB from full to no load.

F. Input Sensitivity: Matched to input circuit and to provide full-rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on master stations, speaker microphones, or handset transmitters.

G. Amplifier Protection: Prevents damage from shorted or open output.
2.6 CONDUCTORS AND CABLES

A. Conductors: Jacketed, twisted pair and twisted multipair, untinned solid copper. Sizes as recommended by system manufacturer, but no smaller than No. 22 AWG.

B. Insulation: Thermoplastic, not less than 1/32 inch (0.8 mm) thick.

C. Shielding: For speaker-microphone leads and elsewhere where recommended by manufacturer; No. 34 AWG, tinned, soft-copper strands formed into a braid or equivalent foil.

1. Minimum Shielding Coverage on Conductors: 60 percent.

D. Plenum Cable: Listed and labeled for plenum installation.

2.7 RACEWAYS

A. Intercommunication and Program System Raceways and Boxes: Comply with requirements in Division 26.

B. Intercommunication and Program System Raceways and Boxes: Same as required for electrical branch circuits specified in Division 26.

C. Intercommunication and Program System Raceways and Boxes: EMT.

D. Outlet boxes shall be not less than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

E. Flexible metal conduit is prohibited.

PART 3 - EXECUTION

3.1 WIRING METHODS

A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.

1. Install plenum cable in environmental air spaces, including plenum ceilings.
2. Comply with requirements for raceways and boxes specified in Division 26.

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer’s limitations on bending radii. Provide and use lacing bars and distribution spools.
3.2 INSTALLATION OF RACEWAYS
 A. Comply with requirements in Division 26.
 B. Install manufactured conduit sweeps and long-radius elbows whenever possible.

3.3 INSTALLATION OF CABLES
 A. Comply with NECA 1.
 B. General Requirements:
 1. Terminate conductors; no cable shall contain unterminated elements. Make
 terminations only at outlets and terminals.
 2. Splices, Taps, and Terminations: Arrange on numbered terminal strips in
 junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
 Cables may not be spliced.
 3. Secure and support cables at intervals not exceeding 30 inches (760 mm) and
 not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks,
 frames, and terminals.
 4. Bundle, lace, and train conductors to terminal points without exceeding
 manufacturer's limitations on bending radii. Install lacing bars and distribution
 spools.
 5. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice
 cable between termination, tap, or junction points. Remove and discard cable if
 damaged during installation and replace it with new cable.
 6. Cold-Weather Installation: Bring cable to room temperature before dereeling.
 Heat lamps shall not be used.
 C. Separation of Wires: Separate speaker-microphone, line-level, speaker-level, and
 power wiring runs. Install in separate raceways or, where exposed or in same
 enclosure, separate conductors at least 12 inches (300 mm) apart for speaker
 microphones and adjacent parallel power and telephone wiring. Separate other
 intercommunication equipment conductors as recommended by equipment
 manufacturer.

3.4 INSTALLATION
 A. Match input and output impedances and signal levels at signal interfaces. Provide
 matching networks where required.
 B. Identification of Conductors and Cables: Color-code conductors and apply wire and
 cable marking tape to designate wires and cables so they identify media in
 coordination with system wiring diagrams.
 C. Weatherproof Equipment: For units that are mounted outdoors, in damp locations, or
 where exposed to weather, install consistent with requirements of weatherproof rating.
D. Speaker-Line Matching Transformer Connections: Make initial connections using tap settings indicated on Drawings.

E. Connect wiring according to Division 26.

3.5 GROUNDING

A. Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

B. Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding.

C. Install grounding electrodes as specified in Section 270526 "Grounding and Bonding for Communications Systems."

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

 1. Schedule tests with at least seven days' advance notice of test performance.
 2. After installing intercommunications and program systems and after electrical circuitry has been energized, test for compliance with requirements.
 3. Operational Test: Test originating station-to-station messages at each intercommunication station. Verify proper routing and volume levels and that system is free of noise and distortion. Test each available message path from each station on system.

C. Inspection: Verify that units and controls are properly labeled and interconnecting wires and terminals are identified. Prepare a list of final tap settings of paging speaker-line matching transformers.

D. Intercommunications and program systems will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 275123
SECTION 283111 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Fire-alarm control unit.
3. System smoke detectors.
5. Remote annunciator.
6. Addressable interface device.

B. Related Requirements:

1. Section 280513 "Conductors and Cables for Electronic Safety and Security" for cables and conductors for fire-alarm systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product, including furnished options and accessories.

B. Shop Drawings: For fire-alarm system.

1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
2. Include plans, elevations, sections, details, and attachments to other work.
3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
4. Detail assembly and support requirements.
5. Include voltage drop calculations for notification-appliance circuits.
6. Include battery-size calculations.
7. Include input/output matrix.
8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
9. Include performance parameters and installation details for each detector.
10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
11. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location of duct smoke detectors and access to them.
a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.

b. Show field wiring required for HVAC unit shutdown on alarm.

c. Locate detectors according to manufacturer’s written recommendations.

12. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal and Design Requirements:
1. Submittals shall be approved by authorities having jurisdiction prior to commencing construction.
2. The contractor will provide the design drawings as part of this effort. The drawings shall be submitted for AHJ approval.
3. Design Drawings shall be prepared by a professional engineer who is licensed in the State of Florida and has relevant experience. The professional engineer drawings shall comply with the State requirements for the facility being renovated.

D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Field quality-control reports.

C. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
c. Complete wiring diagrams showing connections between all devices and equipment.
d. Riser diagram.
e. Record copy of site-specific software.
f. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:

 1) Equipment tested.
 2) Frequency of testing of installed components.
 3) Frequency of inspection of installed components.
 4) Requirements and recommendations related to results of maintenance.
 5) Manufacturer's user training manuals.

 g. Manufacturer's required maintenance related to system warranty requirements.
 h. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:

 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.

C. NFPA Certification: Obtain certification according to NFPA 72 by an NRTL (nationally recognized testing laboratory).

D. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

E. NFPA Certification: Obtain certification according to NFPA 72 in the form of a placard by an FM Global-approved alarm company.

F. NFPA Certification: Obtain certification according to NFPA 72.
1.6 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.

1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer’s certification that all components provided have been tested as, and will operate as, a system.

B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and speaker/strobe evacuation.

C. Automatic sensitivity control of certain smoke detectors.

D. All components provided shall be listed for use with the selected system.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices:

2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.
5. Carbon monoxide detectors.
6. Automatic sprinkler system water flow.
7. Fire-extinguishing system operation.
8. Fire standpipe system.

B. Fire-alarm signal shall initiate the following actions:

1. Continuously operate alarm notification appliances.
2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Unlock electric door locks in designated egress paths.
5. Release fire and smoke doors held open by magnetic door holders.
6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
7. Close smoke dampers in air ducts of designated air-conditioning duct systems.
8. Activate preaction system.
9. Recall elevators to primary or alternate recall floors.
10. Activate elevator power shunt trip.
11. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:

1. Valve supervisory switch.
2. High- or low-air-pressure switch of a dry-pipe or preaction sprinkler system.
3. Elevator shunt-trip supervision.
4. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of communication with any addressable sensor, input module, relay, control module, or remote annunciator.
4. Loss of primary power at fire-alarm control unit.
5. Ground or a single break in internal circuits of fire-alarm control unit.
6. Abnormal ac voltage at fire-alarm control unit.
7. Break in standby battery circuitry.
8. Failure of battery charging.
9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:

1. Initiate notification appliances.
2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
3. After a time delay of 200 seconds transmit a trouble or supervisory signal to the remote alarm receiving station.

2.3 FIRE-ALARM CONTROL UNIT

A. General Requirements for Fire-Alarm Control Unit:

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.

C. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:

1. Pathway Class Designations: NFPA 72, Class B.
2. Pathway Survivability: Level 0

D. Notification-Appliance Circuit:

1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

E. Elevator Recall:

1. Elevator recall shall be initiated only by one of the following alarm-initiating devices:
 a. Elevator lobby detectors except the lobby detector on the designated floor.
 b. Smoke detector in elevator machine room.
 c. Smoke detectors in elevator hoistway.
2. Elevator controller shall be programmed to move the cars to the alternate recall floor if lobby detectors located on the designated recall floors are activated.
3. Water-flow alarm connected to sprinkler in an elevator shaft and elevator machine room shall shut down elevators associated with the location without time delay.
 a. Water-flow switch associated with the sprinkler in the elevator pit may have a delay to allow elevators to move to the designated floor.

F. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated changes in sensitivity of specific detector groups.
Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory.

G. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals supervisory and digital alarm communicator transmitters and digital alarm radio transmitters shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

H. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

2.4 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38.

1. Single-action mechanism, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key- or wrench-operated switch.

2.5 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.
2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
3. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
5. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.
6. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.

 a. Rate-of-rise temperature characteristic of combination smoke- and heat-detection units shall be selectable at fire-alarm control unit for 15 or 20 deg F per minute.
 b. Fixed-temperature sensing characteristic of combination smoke- and heat-detection units shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F
 c. Multiple levels of detection sensitivity for each sensor.
d. Sensitivity levels based on time of day.

B. Photoelectric Smoke Detectors:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Ionization Smoke Detector:
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).
 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
 4. Each sensor shall have multiple levels of detection sensitivity.
 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
2.6 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.
 1. Temperature sensors shall test for and communicate the sensitivity range of the device.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature or a rate of rise.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

C. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.7 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

B. Speaker: Provide field selectable watt taps. Optimized for voice intelligibility. 25 VRMS or 20 VRMS compatible with the fire alarm system. Comply with UL 464.

C. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.
 1. Mounting: Wall mounted unless otherwise indicated.
 2. Flashing shall be in a temporal pattern, synchronized with other units.

2.8 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 1. Mounting: Flush cabinet, NEMA 250, Type 1.
B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.9 ADDRESSABLE INTERFACE DEVICE

A. General:
 1. Include address-setting means on the module.
 2. Store an internal identifying code for control panel use to identify the module type.
 3. Listed for controlling HVAC fan motor controllers.

B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal to circuit-breaker shunt trip for power shutdown
 1. Allow the control panel to switch the relay contacts on command.
 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:
 1. Operate notification devices.
 2. Operate solenoids for use in sprinkler service.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."

B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.

C. Equipment Mounting: Install fire-alarm control unit on finished floor.

D. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.

E. Manual Fire-Alarm Boxes:
 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.

F. Smoke- or Heat-Detector Spacing: Comply with NFPA 72.

G. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.

H. Elevator Shafts: Coordinate temperature rating and location with sprinkler rating and location. Do not install smoke detectors in sprinklered elevator shafts.

I. Single-Station Smoke Detectors: Where more than one smoke alarm is installed within a dwelling or suite, they shall be connected so that the operation of any smoke alarm causes the alarm in all smoke alarms to sound.

J. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

K. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install speakers on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.

L. Visible Alarm-Indicating Devices: Install adjacent to each alarm speaker and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.

M. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.2 PATHWAYS

A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.

1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.

B. Pathways shall be installed in EMT.

C. Exposed EMT shall be painted red enamel.

3.3 CONNECTIONS

A. For fire-protection systems related to doors in fire-rated walls and partitions and to doors in smoke partitions, comply with requirements in Section 087100 "Door Hardware." Connect hardware and devices to fire-alarm system.
1. Verify that hardware and devices are listed for use with installed fire-alarm system before making connections.

B. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Smoke dampers in air ducts of designated HVAC duct systems.
2. Magnetically held-open doors.
3. Electronically locked doors and access gates.
4. Alarm-initiating connection to elevator recall system and components.
5. Alarm-initiating connection to activate emergency lighting control.
6. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
7. Supervisory connections at valve supervisory switches.
8. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.5 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.6 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Visual Inspection: Conduct visual inspection prior to testing.

 a. Inspection shall be based on completed record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter.
b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

C. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

D. Fire-alarm system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

F. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

G. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.7 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.
3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 283111
SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 3. Bait-station system.
 4. Metal mesh barrier system.

B. Related Requirements:
 1. Section 061000 "Rough Carpentry" for wood preservative treatment by pressure process.
 2. Section 076200 "Sheet Metal Flashing and Trim" for custom-fabricated, metal termite shields.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at the Project site.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components, and profiles for termite control products.
 2. Include the EPA-Registered Label for termiticide products.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Product Certificates: For each type of termite control product.

C. Soil Treatment Application Report: After application of termiticide is completed, submit report for Owner's records and include the following:
1. Date and time of application.
2. Moisture content of soil before application.
3. Termiticide brand name and manufacturer.
4. Quantity of undiluted termiticide used.
5. Dilutions, methods, volumes used, and rates of application.
6. Areas of application.
7. Water source for application.

D. Sample Warranties: For special warranties.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A specialist who is licensed according to regulations of authorities having jurisdiction to apply termite control treatment and products in jurisdiction where Project is located and who employs workers trained and approved by manufacturer to install manufacturer's products.

1.7 FIELD CONDITIONS

A. Soil Treatment:

1. Environmental Limitations: To ensure penetration, do not treat soil that is water saturated or frozen. Do not treat soil while precipitation is occurring. Comply with requirements of the EPA-Registered Label and requirements of authorities having jurisdiction.
2. **Related Work:** Coordinate soil treatment application with excavating, filling, grading, and concreting operations. Treat soil under footings, grade beams, and ground-supported slabs before construction.

1.8 **WARRANTY**

A. **Soil Treatment Special Warranty:** Manufacturer's standard form, signed by Applicator and Contractor, certifying that termite control work consisting of applied soil termiticide treatment will prevent infestation of subterranean termites, including Formosan termites (Coptotermes formosanus). If subterranean termite activity or damage is discovered during warranty period, retreat soil and repair or replace damage caused by termite infestation.

1. **Warranty Period:** Five years from date of Substantial Completion.

B. **Wood Treatment Special Warranty:** Manufacturer's standard form, signed by Applicator and Contractor, certifying that termite control work consisting of applied wood termiticide treatment will prevent infestation of subterranean termites, including Formosan termites (Coptotermes formosanus). If subterranean termite damage is discovered during warranty period, repair or replace damage caused by termite infestation and treat replacement wood.

1. **Warranty Period:** 12 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 **MANUFACTURERS**

A. **Source Limitations:** Obtain termite control products from single source.

2.2 **SOIL TREATMENT**

A. **Termiticide:** EPA-Registered termiticide acceptable to authorities having jurisdiction, in an aqueous solution formulated to prevent termite infestation.

1. **Service Life of Treatment:** Soil treatment termiticide that is effective for not less than five years against infestation of subterranean termites.

PART 3 - EXECUTION

3.1 **EXAMINATION**

A. Examine substrates, areas, and conditions, with Applicator present, for compliance with requirements for moisture content of soil per termiticide label, interfaces with earthwork, slab and foundation work, landscaping, utility installation, and other conditions affecting performance of termite control.

B. Proceed with application only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. General: Prepare work areas according to the requirements of authorities having jurisdiction and according to manufacturer's written instructions before beginning application and installation of termite control treatment(s). Remove extraneous sources of wood cellulose and other edible materials, such as wood debris, tree stumps and roots, stakes, formwork, and construction waste wood from soil within and around foundations.

B. Soil Treatment Preparation: Remove foreign matter and impermeable soil materials that could decrease treatment effectiveness on areas to be treated. Loosen, rake, and level soil to be treated, except previously compacted areas under slabs and footings. Termiticides may be applied before placing compacted fill under slabs if recommended in writing by termiticide manufacturer.

1. Fit filling hose connected to water source at the site with a backflow preventer, according to requirements of authorities having jurisdiction.

3.3 APPLYING SOIL TREATMENT

A. Application: Mix soil treatment termiticide solution to a uniform consistency. Distribute treatment uniformly. Apply treatment at the product's EPA-Registered Label volume and rate.
for maximum specified concentration of termiticide to the following so that a continuous horizontal and vertical termiticidal barrier or treated zone is established around and under building construction.

1. Slabs-on-Grade and Basement Slabs: Underground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.

2. Foundations: Soil adjacent to and along the entire inside perimeter of foundation walls; along both sides of interior partition walls; around plumbing pipes and electric conduit penetrating the slab; around interior column footers, piers, and chimney bases; and along the entire outside perimeter, from grade to bottom of footing.

3. Crawlspace: Soil under and adjacent to foundations. Treat adjacent areas, including around entrance platform, porches, and equipment bases. Apply overall treatment only where attached concrete platform and porches are on fill or ground.

5. Penetrations: At expansion joints, control joints, and areas where slabs and below-grade walls will be penetrated.

B. Post warning signs in areas of application.

C. Reapply soil treatment solution to areas disturbed by subsequent excavation, grading, landscaping, or other construction activities following application.

3.4 PROTECTION

A. Avoid disturbance of treated soil after application. Keep off treated areas until completely dry.

B. Protect termiticide solution dispersed in treated soils and fills from being diluted by exposure to water spillage or weather until ground-supported slabs are installed. Use waterproof barrier according to EPA-Registered Label instructions.

3.5 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of termite-control- treatment Installer. Include annual maintenance as required for proper performance according
to the product's EPA-Registered Label and manufacturer's written instructions. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

B. Continuing Maintenance Proposal: Provide from termite-control-treatment Installer to Owner, in the form of a standard yearly (or other period) maintenance agreement, starting on date initial maintenance service is concluded. State services, obligations, conditions, and terms for agreement period and for future renewal options.

1. Include annual inspection for termite activity and effectiveness of termite treatment according to manufacturer's written instructions.

END OF SECTION 31311
SECTION 328400 – PLANTING IRRIGATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Piping.
2. Encasement for piping.
4. Pressure-reducing valves.
5. Automatic control valves.
6. Transition fittings.
7. Miscellaneous piping specialties.
8. Sprinklers.
9. Quick couplers.
10. Controllers.

1.3 DEFINITIONS

A. Circuit Piping: Downstream from control valves to sprinklers, specialties, and drain valves. Piping is under pressure during flow.

B. Drain Piping: Downstream from circuit-piping drain valves. Piping is not under pressure.

C. Main Piping: Downstream from point of connection to water distribution piping to, and including, control valves. Piping is under water-distribution-system pressure.

D. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 PERFORMANCE REQUIREMENTS

A. Irrigation zone control shall be automatic operation with controller and automatic control valves.

B. Location of automatic control valves: Design location is approximate. Make minor adjustments necessary to avoid plantings and obstructions.

C. Location of Sprinklers and Specialties: Design location is approximate. Make minor adjustments necessary to avoid plantings and obstructions such as signs and light standards. Maintain 100 percent irrigation coverage of areas indicated.
D. Minimum Working Pressures: The following are minimum pressure requirements for piping, valves, and specialties unless otherwise indicated:

1. Irrigation Main Piping: 200 psi
2. Circuit Piping: 150 psi

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories.

B. Wiring Diagrams: For power, signal, and control wiring.

C. Delegated-Design Submittal: For irrigation systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Zoning Chart: Show each irrigation zone and its control valve.

C. Controller Timing Schedule: Indicate timing settings for each automatic controller zone.

D. Field quality-control reports.

E. Operation and Maintenance Data: For automatic control valves to include in operation and maintenance manuals.

F. Warranties for each component warranted by manufacturer.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sprinklers, controllers and automatic control valves to include in operation and maintenance manuals.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers that include a certified irrigation designer qualified by The Irrigation Association or Professional Class member of the American Society of Irrigation Consultants

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. The controller shall be installed in accordance with the manufacturer’s published instructions. The controller shall carry a warranty as advertised by Hunter Industries Incorporated for the specific series shown on the drawings. The automatic controller(s) shall be the PCC series as manufactured for Hunter Industries Incorporated, San Marcos, California. See Drawings.
D. The automatic control valves shall be installed in accordance with the manufacturer’s published instructions. The automatic control valves shall carry a warranty as advertised by Hunter Industries Incorporated for the specific series shown on the drawings. The automatic control valve(s) shall be the PCC series as manufactured by Hunter Industries Incorporated, San Marcos, California. See Drawings.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

B. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

C. Store products as recommended by Hunter Industries, Inc.

1.10 PROJECT CONDITIONS

A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:

1. Notify Architect no fewer than two days in advance of proposed interruption of water service.
2. Do not proceed with interruption of water service without Architect's written permission.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Comply with requirements in the piping schedule for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

B. PE Pipe with Controlled ID: ASTM F 771, PE 3408 compound; SIDR 11.5 and SIDR 15.
 1. Insert Fittings for PE Pipe: ASTM D 2609, nylon or propylene plastic with barbed ends. Include bands or other fasteners.

C. PE Pipe with Controlled OD: ASTM F 771, PE 3408 compound, SDR 11.
 2. PE Socket-Type Fittings: ASTM D 2683.

D. PE Pressure Pipe: AWWA C906, with DR of 7.3, 9, or 9.3 and PE compound number required to give pressure rating not less than 160 psig (1100 kPa).
 2. PE Socket-Type Fittings: ASTM D 2683.

E. PVC Pipe: ASTM D 1785, PVC 1120 compound, Schedules 40 and 80.
 1. PVC Socket Fittings: ASTM D 2466, Schedules 40 and 80.
2. PVC Threaded Fittings: ASTM D 2464, Schedule 80.
3. PVC Socket Unions: Construction similar to MSS SP-107, except both headpiece and tailpiece shall be PVC with socket ends.

 1. PVC Socket Fittings: ASTM D 2467, Schedule 80.
 2. PVC Socket Unions: Construction similar to MSS SP-107, except both headpiece and tailpiece shall be PVC with socket or threaded ends.

G. All piping scheduled for application and fitting materials shall be marked with appropriate reclaim water usage labeling and color.

2.2 PIPING JOINING MATERIALS
A. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
B. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.3 ENCASEMENT FOR PIPING
A. Standard: ASTM A 674 or AWWA C105.

2.4 MANUAL VALVES
A. Plastic Ball Valves:
 1. Description:
 b. Pressure Rating: 125 psi
 c. Body Material: PVC.
 d. Type: Union.
 e. End Connections: Socket or threaded.
 f. Port: Full.

 2. Description:
 a. Standard: MSS SP-80, Type 2.
 b. Class: 125.
 c. CWP Rating: 200 psig
 e. Ends: Threaded or solder joint.
 f. Stem: Bronze, nonrising.
 g. Disc: Solid wedge; bronze.
 h. Packing: Asbestos free.
 i. Handwheel: Malleable iron, bronze, or aluminum.
2.5 AUTOMATIC CONTROL VALVES

A. Plastic and brass, Automatic Control Valves:

1. Description: Molded-plastic body (brass for IBV series), normally closed, diaphragm type with manual-flow adjustment, and operated by 24-Vac solenoid for residential and Commercial/institutional applications.

2. The body and bonnet shall be molded of non-corrodible, glass-reinforced nylon, rated to 220 PSI. The body of the valve shall have brass inserts, with through-holes, which will accept the bonnet bolts. The bonnet bolts shall be serviceable with a slotted screwdriver, Phillips screwdriver, or a hex wrench, and shall be held captive in the bonnet when the bonnet is removed from the valve body. The diaphragm assembly shall be of molded construction, reinforced with nylon fabric and have a thermoplastic elastomer seating material. The valve shall be equipped with an internal filter as well as a self-cleaning metering rod, so only clean water can enter the solenoid chamber. An optional filter cleaning system that cleans a stainless steel filter each time the valve opens and closes, shall be available. All metal parts internal to the valve shall be manufactured from corrosion-resistant stainless steel.

3. The valve shall be available with an optional adjustable pressure regulating device with a calibrated dial for setting of the outlet pressure. (The regulator shall be capable of adjusting the outlet pressure from between 20 and 100 PSI when inlet pressure is 15 PSI or greater than regulated outlet pressure.) The regulated downstream pressure shall remain constant regardless of variations in upstream pressure. The regulation shall be maintained when valve is manually operated with use of internal bleed valve. The regulator should be capable of regulating upstream pressures from 35 psi to 220 psi.

4. The standard solenoid shall be a 24 VAC unit with a 370mA inrush current and 190mA holding current at 60 cycles and a 475 mA inrush current and 230 mA holding current at 50 cycles. When specified, the unit shall be equipped with a DC latching solenoid for use with battery-operated controllers. The solenoid shall be an encapsulated, one-piece unit with captive plunger. It shall be equipped with manual internal bleed capability to release the upper chamber water to the downstream piping, allowing the valve to open.

2.6 MISCELLANEOUS PIPING SPECIALTIES

A. Water Hammer Arresters: ASSE 1010 or PDI WH 201, with bellows or piston-type pressurized cushioning chamber and in sizes complying with PDI WH 201, Sizes A to F.

B. Pressure Gages: ASME B40.1. Include 4-1/2-inch- diameter dial, dial range of two times system operating pressure, and bottom outlet.

2.7 SPRINKLERS

A. General Requirements: Designed for uniform coverage over entire spray area indicated at available water pressure. The body and riser of the sprinkler shall be constructed of corrosion resistant, impact resistant, heavy-duty A.B.S.

B. Pop-up, Gear-Drive Rotary Sprinklers:
1. Hunter PGJ: The sprinkler shall be available with eight (8) standard nozzles discharging from .6 to 5.3 GPM, or seven (7) low-angle nozzles discharging from 1.4 to 5.3 GPM. The sprinkler also shall be available with eight (8) standard nozzles discharging from .64 to 5.3 GPM. The sprinkler shall have radius adjustment capabilities by means of a stainless-steel nozzle retainer/radius adjustment screw. The sprinkler shall be available in an adjustable arc part-circle configuration. The adjustable part-circle unit shall be minutely adjustable from 40° to 360°. The adjustable unit shall be adjustable in all phases of installation (i.e., before installation, after installation while static, and after installation while in operation). The sprinkler shall have a minimum of 4-inch (10 cm) pop-up stroke to bring the rotating nozzle turret into a clean environment. The sprinkler shall have a cover molded of purple Alcryn rubber to indicate the use of reclaimed water. The sprinkler shall have an exposed surface diameter after installation of 1-1/4 inches and have an overall height of 6-1/2 inches. The unit shall have a 1/2-inch Female National Pipe Thread (FNPT) inlet. The sprinkler shall be serviceable after installation by unscrewing the body cap, removing the riser assembly, and extracting the inlet filter screen. It shall have a stainless steel spring for positive retraction of the riser when irrigation is complete. The sprinkler shall carry a two-year, exchange warranty (not prorated).

2. HUNTER PRO-SPRAY SERIES: The sprinkler shall be available with a 4-, 6-, or 12-inch pop-up stroke, depending on the body specified, to bring the nozzle into a clean environment. The sprinkler shall have a cover molded of purple Alcryn rubber, or a replacement body cap, molded in purple to indicate the use of reclaimed water.

2.8 CONTROLLERS

A. Description:

1. Controller Stations for Automatic Control Valves: Each station is variable from approximately 1 to 2 hours. Include switch for manual or automatic operation of each station.

2. Exterior Control Enclosures: NEMA 250, Type 4, weatherproof, with locking cover and two matching keys; include provision for grounding.
 a. Body Material: Stainless-steel sheet metal
 b. Mounting: Freestanding type for concrete base

3. Control Transformer: 24-V secondary, with primary fuse.

4. Timing Device: Adjustable, 24-hour, 14-day clock, with automatic operations to skip operation any day in timer period, to operate every other day, or to operate two or more times daily.
 a. Manual or Semiautomatic Operation: Allows this mode without disturbing preset automatic operation.
 c. Surge Protection: Metal-oxide-varistor type on each station and primary power.

5. Moisture Sensor: Adjustable from one to seven days, to shut off water flow during rain.
6. Wiring: UL 493, Type UF multiconductor, with solid-copper conductors; insulated cable; suitable for direct burial.
 a. Feeder-Circuit Cables: No. 12 AWG minimum, between building and controllers.
 b. Low-Voltage, Branch-Circuit Cables: No. 14 AWG minimum, between controllers and automatic control valves; color-coded different from feeder-circuit-cable jacket color; with jackets of different colors for multiple-cable installation in same trench.
 c. Splicing Materials: Manufacturer's packaged kit consisting of insulating, spring-type connector or crimped joint and epoxy resin moisture seal; suitable for direct burial.

7. Concrete Base: Reinforced precast concrete not less than 36 by 24 by 4 inches thick, and 6 inches greater in each direction than overall dimensions of controller. Include opening for wiring.

2.9 BOXES FOR AUTOMATIC CONTROL VALVES

A. Plastic Boxes:
 1. Box and cover, with open bottom and openings for piping; designed for installing flush with grade.
 2. When used with single valve, provide Economy Turf Box with green colored snap fit cover labeled "Valve Box".
 3. When used with 2 or more valves, provide Jumbo Box with 20 inch x 14 inch cover opening with cover labeled "Control Valve".

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

B. Install warning tape directly above pressure piping, 12 inches below finished grades, except 6 inches below subgrade under pavement and slabs.

C. Provide minimum cover over top of underground piping according to the following:
 1. Irrigation Main Piping: Minimum depth of 24 inches below finished grade, or not less than 18 inches below average local frost depth, whichever is deeper.
 2. Circuit Piping: 12 inches.
 3. Drain Piping: 12 inches.

3.2 PREPARATION

A. Set stakes to identify locations of proposed irrigation system. Obtain Landscape Architect's approval before excavation.
3.3 PIPING INSTALLATION

A. Location and Arrangement: Drawings indicate location and arrangement of piping systems. Install piping as indicated unless deviations are approved on Coordination Drawings.

B. Install piping at minimum uniform slope of 0.5 percent down toward drain valves.

C. Install piping free of sags and bends.

D. Install groups of pipes parallel to each other, spaced to permit valve servicing.

E. Install fittings for changes in direction and branch connections.

F. Install unions adjacent to valves and to final connections to other components with NPS 2 or smaller pipe connection.

G. Install flanges adjacent to valves and to final connections to other components with NPS 2-1/2 or larger pipe connection.

H. Install underground thermoplastic piping according to ASTM D 2774.

I. Install expansion loops in control-valve boxes for plastic piping.

J. Lay piping on solid subbase, uniformly sloped without humps or depressions.

K. Install PVC piping in dry weather when temperature is above 40 deg F. Allow joints to cure at least 24 hours at temperatures above 40 deg F before testing.

L. Install water regulators with shutoff valve and strainer on inlet and pressure gage on outlet. Install shutoff valve on outlet. Install aboveground or in control-valve boxes.

M. Water Hammer Arresters: Install between connection to building main and circuit valves aboveground or in control-valve boxes.

N. Install piping in sleeves under parking lots, roadways, and sidewalks.

O. Install sleeves made of Schedule 40 PVC pipe and socket fittings, and solvent-cemented joints.

3.4 JOINT CONSTRUCTION

A. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

B. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

C. PVC Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. PVC Pressure Piping: Join schedule number, ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
3. PVC Nonpressure Piping: Join according to ASTM D 2855.

3.5 VALVE INSTALLATION

A. Installer Qualifications: The automatic control valves shall be installed in accordance with the manufacturer’s published instructions. The automatic control valves shall carry a warranty as advertised by Hunter Industries Incorporated for the specific series shown on the drawings. The automatic control valve(s) shall be the ICV series as manufactured by Hunter Industries Incorporated, San Marcos, California. See Drawings.

B. Install control cable in same trench as irrigation piping and at least 2 inches below piping. Provide conductors of size not smaller than recommended by controller manufacturer. Install cable in separate sleeve under paved areas.

C. Adjust automatic control valves to provide flow rate at rated operating pressure required for each sprinkler circuit.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers after hydrostatic test is completed.

B. Install sprinklers at manufacturer’s recommended heights.

C. Locate part-circle sprinklers to maintain a minimum distance of 6 inches from walls and 2 inches from other boundaries unless otherwise indicated.

3.7 AUTOMATIC IRRIGATION-CONTROL SYSTEM INSTALLATION

A. Equipment Mounting: Install exterior freestanding controllers on precast concrete bases.

1. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Install control cable in same trench as irrigation piping and at least 2 inches below piping. Provide conductors of size not smaller than recommended by controller manufacturer. Install cable in separate sleeve under paved areas.

3.8 CONNECTIONS

A. Comply with requirements for piping specified in Section 221113 "Facility Water Distribution Piping" for water supply from exterior water service piping, water meters, protective enclosures, and backflow preventers. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment, valves, and devices to allow service and maintenance.
C. Connect wiring between controllers and automatic control valves.

3.9 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

B. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplates and signs on each automatic controller.
 1. Text: In addition to identifying unit, distinguish between multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

C. Warning Tapes: Arrange for installation of continuous, underground, detectable warning tapes over underground piping during backfilling of trenches. See Section 312000 "Earth Moving" for warning tapes.

3.10 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, operate controllers and automatic control valves to confirm proper system operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Any irrigation product will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.11 STARTUP SERVICE

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Verify that controllers are installed and connected according to the Contract Documents.
3. Verify that electrical wiring installation complies with manufacturer's submittal.

3.12 ADJUSTING

A. Adjust settings of controllers.

B. Adjust automatic control valves to provide flow rate at rated operating pressure required for each sprinkler circuit.

C. Adjust sprinklers and devices, except those intended to be mounted aboveground, so they will be flush with finish grade.
3.13 CLEANING
 A. Flush dirt and debris from piping before installing sprinklers and other devices.

3.14 DEMONSTRATION
 A. Owner's maintenance personnel to adjust, operate, and maintain automatic control valves and controllers.

3.15 PIPING SCHEDULE
 A. Install components having pressure rating equal to or greater than system operating pressure.
 1. Schedule 40, PVC pipe and socket fittings, and solvent-cemented joints.
 2. Schedule 80, PVC pipe; Schedule 80, threaded PVC fittings; and threaded joints.
 3. SDR 21, PVC, pressure-rated pipe; Schedule 80, PVC socket fittings; and solvent-cemented joints.

 B. Underground Branches and Offsets at Sprinklers and Devices: Schedule 80, PVC pipe; threaded PVC fittings; and threaded joints.
 1. Option: Plastic swing-joint assemblies, with offsets for flexible joints, manufactured for this application.
 2. Schedule 40, PVC pipe and socket fittings; and solvent-cemented joints.
 3. SDR 21, 26, or 32.5, PVC, pressure-rated pipe; Schedule 40, PVC socket fittings; and solvent-cemented joints.

3.16 VALVE SCHEDULE
 A. Underground, Shutoff-Duty Valves: Use the following:
 1. NPS 2 and Smaller: Curb valve, curb-valve casing, and shutoff rod.
 2. NPS 3 and Larger: Iron gate valve, resilient seated; iron gate valve casing; and operating wrenches.

END OF SECTION 328400
SECTION 329113 – SOIL PREPARATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes planting soils specified by composition of the mixes.

B. Related Requirements:
 1. Section 329200 "Turf and Grasses" for placing planting soil for turf and grasses.
 2. Section 329300 "Plants" for placing planting soil for plantings.

1.3 DEFINITIONS

B. Backfill: The earth used to replace or the act of replacing earth in an excavation. This can be amended or un-amended soil as indicated.

C. CEC: Cation exchange capacity.

D. Compost: The product resulting from the controlled biological decomposition of organic material that has been sanitized through the generation of heat and stabilized to the point that it is beneficial to plant growth.

E. Duff Layer: A surface layer of soil, typical of forested areas, that is composed of mostly decayed leaves, twigs, and detritus.

F. Imported Soil: Soil that is transported to Project site for use.

G. Layered Soil Assembly: A designed series of planting soils, layered on each other that together produce an environment for plant growth.

H. Manufactured Soil: Soil produced by blending soils, sand, stabilized organic soil amendments, and other materials to produce planting soil.

I. NAPT: North American Proficiency Testing Program. An SSSA program to assist soil-, plant-, and water-testing laboratories through interlaboratory sample exchanges and statistical evaluation of analytical data.

J. Organic Matter: The total of organic materials in soil exclusive of undecayed plant and animal tissues, their partial decomposition products, and the soil biomass; also called "humus" or "soil organic matter."
K. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified as specified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.

M. SSSA: Soil Science Society of America.

N. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

O. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.

P. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called "topsoil"; but in disturbed areas such as urban environments, the surface soil can be subsoil.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include recommendations for application and use.
 2. Include test data substantiating that products comply with requirements.
 3. Include sieve analyses for aggregate materials.
 4. Material Certificates: For each type of imported soil and soil amendment and fertilizer before delivery to the site, according to the following:
 a. Manufacturer's qualified testing agency's certified analysis of standard products.
 b. Analysis of fertilizers, by a qualified testing agency, made according to AAPFCO methods for testing and labeling and according to AAPFCO's SUIP25.
 c. Analysis of nonstandard materials, by a qualified testing agency, made according to SSSA methods, where applicable.

B. Samples: For each bulk-supplied material, 1-quart volume of each in sealed containers labeled with content, source, and date obtained. Each Sample shall be typical of the lot of material to be furnished; provide an accurate representation of composition, color, and texture.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For each testing agency.

B. Field quality-control reports.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: An independent, state-operated, or university-operated laboratory; experienced in soil science, soil testing, and plant nutrition; with the experience and capability to conduct the testing indicated; and that specializes in types of tests to be performed.
1.7 PRECONSTRUCTION TESTING

1. Have testing agency identify and label samples and test reports according to sample collection and labeling requirements.

1.8 SOIL-SAMPLING REQUIREMENTS

A. General: Extract soil samples according to requirements in this article.

B. Sample Collection and Labeling: Have samples taken and labeled by Contractor in presence of Landscape Architect under the direction of the testing agency.

1. Number and Location of Samples: Minimum of 10 representative soil samples from varied locations for each soil to be used or amended for landscaping purposes.
2. Procedures and Depth of Samples: According to USDA-NRCS's "Field Book for Describing and Sampling Soils.
3. Division of Samples: Split each sample into two, equal parts. Send half to the testing agency and half to Owner for its records.
4. Labeling: Label each sample with the date, location keyed to a site plan or other location system, visible soil condition, and sampling depth.

1.9 TESTING REQUIREMENTS

A. Physical Testing:

1. Soil Texture: Soil-particle, size-distribution analysis by the following methods according to SSSA's "Methods of Soil Analysis - Part1-Physical and Mineralogical Methods":

 a. Sieving Method: Report sand-gradation percentages for very coarse, coarse, medium, fine, and very fine sand; and fragment-gradation (gravel) percentages for fine, medium, and coarse fragments; according to USDA sand and fragment sizes.

2. Total Porosity: Calculate using particle density and bulk density according to SSSA's "Methods of Soil Analysis - Part1-Physical and Mineralogical Methods."

5. Percentage of organic matter.
6. CEC, calcium percent of CEC, and magnesium percent of CEC.
7. Soil reaction (acidity/alkalinity pH value).
8. Buffered acidity or alkalinity.
11. Potassium ppm.
12. Manganese ppm.
15. Zinc availability ppm.
16. Copper ppm.
17. Sodium ppm.
19. Presence and quantities of problem materials including salts and metals cited in the Standard protocol. If such problem materials are present, provide additional recommendations for corrective action.
20. Other deleterious materials, including their characteristics and content of each.

B. Organic-Matter Content: Analysis using loss-by-ignition method according to SSSA’s "Methods of Soil Analysis – Part 3- Chemical Methods."

C. Recommendations: Based on the test results, state recommendations for soil treatments and soil amendments to be incorporated to produce satisfactory planting soil suitable for healthy, viable plants indicated. Include, at a minimum, recommendations for nitrogen, phosphorous, and potassium fertilization, and for micronutrients.

1. Fertilizers and Soil Amendment Rates: State recommendations in weight per 1000 sq. ft. for 6-inch depth of soil.
2. Soil Reaction: State the recommended liming rates for raising pH or sulfur for lowering pH according to the buffered acidity or buffered alkalinity in weight per 1000 sq. ft. for 6-inch depth of soil.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and compliance with state and Federal laws if applicable.

B. Bulk Materials:

1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
2. Provide erosion-control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
3. Do not move or handle materials when they are wet or frozen.
4. Accompany each delivery of bulk fertilizers and soil amendments with appropriate certificates.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Regional Materials: manufactured planting soil and soil amendments and fertilizers shall be manufactured within 500 miles of project site from materials that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.
2.2 PLANTING SOILS SPECIFIED BY COMPOSITION

A. General: Soil amendments, fertilizers, and rates of application specified in this article are guidelines that may need revision based on testing laboratory’s recommendations after preconstruction soil analyses are performed.

B. Planting-Soil Type Imported, naturally formed soil from off-site sources and consisting of loamy sand soil according to USDA textures; and modified to produce viable planting soil.

1. Sources: Take imported, un-amended soil from sources that are naturally well-drained sites where topsoil occurs at least 4 inches deep, not from bogs, or marshes; and that do not contain undesirable organisms; disease-causing plant pathogens; or obnoxious weeds and invasive plants including, but not limited to, quackgrass, Johnsongrass, poison ivy, nutseed, bindweed, bentgrass, perennial sorrel, and bromegrass.

2. Additional Properties of Imported Soil before Amending: Soil reaction of pH 6 to 7 and minimum of 4 percent organic-matter content, friable, and with sufficient structure to give good tilth and aeration.

3. Unacceptable Properties: Clean soil of the following:
 a. Unacceptable Materials: Concrete slurry, concrete layers or chunks, cement, plaster, building debris, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, acid, and other extraneous materials that are harmful to plant growth.
 b. Unsuitable Materials: Stones, roots, plants, sod, clay lumps, and pockets of coarse sand that exceed a combined maximum of 8 percent by dry weight of the imported soil.
 c. Large Materials: Stones, clods, roots, clay lumps, and pockets of coarse sand exceeding 2 inches in any dimension.

4. Amended Soil Composition: Blend imported, un-amended soil with the following soil amendments and fertilizers in the following quantities to produce planting soil:
 a. Ratio of Loose Compost to Soil: 1:3 by volume.
 b. Ratio of Loose Muck Peat to Soil: 1:3 by volume.
 c. Ratio of Loose Wood Derivatives to Soil: 1:3 by volume.

C. Planting-Soil Type: Manufactured soil consisting of manufacturer’s basic topsoil according to USDA textures blended in a manufacturing facility with sand, stabilized organic soil amendments, and other materials to produce viable planting soil.

1. Additional Properties of Manufacturer's Basic Soil before Amending: Soil reaction of pH 6 to 7 and minimum of 4 percent organic-matter content, friable, and with sufficient structure to give good tilth and aeration.

2. Unacceptable Properties: Manufactured soil shall not contain the following:
 a. Unacceptable Materials: Concrete slurry, concrete layers or chunks, cement, plaster, building debris, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, acid, and other extraneous materials that are harmful to plant growth.
 b. Unsuitable Materials: Stones, roots, plants, sod, clay lumps, and pockets of coarse sand that exceed a combined maximum of 5 percent by dry weight of the manufactured soil.
c. Large Materials: Stones, clods, roots, clay lumps, and pockets of coarse sand exceeding 1-1/2 inches in any dimension.

3. Blend manufacturer's basic soil with the following soil amendments and fertilizers in the following quantities to produce planting soil:
 a. Ratio of Loose Compost to Soil: 1:3 by volume.
 b. Ratio of Loose Muck Peat to Soil: 1:3 by volume.
 c. Ratio of Loose Wood Derivatives Soil: 1:3 by volume.
 d. Other additives shall be included in amendments such as sand, perlite, lime, sulfur, superphosphate, fertilizer as recommended by soil testing provided by the contractor (see 1.8 and 1.9 of this Specification).

2.3 INORGANIC SOIL AMENDMENTS

A. Lime: ASTM C602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:
 1. Class: O, with a minimum of 95 percent passing through a No.8 sieve and a minimum of 55 percent passing through a No.60 sieve.
 2. Form: Provide lime in form of ground dolomitic limestone.

B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent elemental sulfur, with a minimum of 99 percent passing through a No.6 sieve and a maximum of 10 percent passing through a No.40 sieve.

C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.

D. Perlite: Horticultural perlite, soil amendment grade.

E. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through a No. 50 sieve.

F. Sand: Clean, washed, natural or manufactured, free of toxic materials, and according to ASTM C33/C33M.

2.4 ORGANIC SOIL AMENDMENTS

A. Compost: Well-composted, stable, and weed-free organic matter produced by composting feedstock, and bearing USCC's "Seal of Testing Assurance,"
 1. Organic-Matter Content: 30 to 40 percent of dry weight.
 2. Particle Size: Minimum of 98 percent passing through a 1/2-inch sieve.

B. Muck Peat: Partially decomposed moss peat, native peat, or reed-sedge peat, finely divided or of granular texture with 100 percent passing through a 1/2-inch sieve, a pH of 6 to 7.5, a soluble-salt content measured by electrical conductivity of maximum 5 dS/m, having a water-absorbing capacity of 1100 to 2000 percent, and containing no sand.

C. Wood Derivatives: Shredded and composted, nitrogen-treated sawdust, ground bark, or wood waste; of uniform texture and free of chips, stones, sticks, soil, or toxic materials.
D. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, debris, and material harmful to plant growth.

2.5 FERTILIZERS

A. Fertilizers shall be added to remedy deficiencies found in soil tests.

B. Superphosphate: Commercial, phosphate mixture, soluble; a minimum of 33 percent available phosphoric acid.

C. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:

D. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:

E. Chelated Iron: Commercial-grade FeEDDHA for dicots and woody plants, and commercial-grade FeDTPA for ornamental grasses and monocots.

PART 3 - EXECUTION

3.1 GENERAL

A. Place planting soil and fertilizers according to requirements in other Specification Sections.

B. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in planting soil.

C. Proceed with placement only after unsatisfactory conditions have been corrected.

3.2 PLACING AND MIXING PLANTING SOIL OVER EXPOSED SUBGRADE

A. General: Apply and mix un-amended soil with amendments on-site to produce required planting soil. Do not apply materials or till if existing soil or subgrade is frozen, muddy, or excessively wet.

B. Subgrade Preparation: Till subgrade to a minimum depth of 6 inches. Remove stones larger than 1-1/2 inches in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.

1. Apply, add soil amendments, and mix approximately half the thickness of un-amended soil over prepared, loosened subgrade according to "Mixing" Paragraph below. Mix thoroughly into top 4 inches of subgrade. Spread remainder of planting soil.

C. Mixing: Spread un-amended soil to total depth of 6 inches, but not less than required to meet finish grades after mixing with amendments and natural settlement. Do not spread if soil or subgrade is muddy, or excessively wet.

a. Mix lime and sulfur as specified per soil testing with dry soil before mixing fertilizer.
b. Mix fertilizer with planting soil no more than seven days before planting.

2. Lifts: Apply and mix un-amended soil and amendments in lifts not exceeding 8 inches in loose depth for material compacted by compaction equipment, and not more than 6 inches in loose depth for material compacted by hand-operated tampers.

D. Finish Grading: Grade planting soil to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.

3.3 FIELD QUALITY CONTROL

A. Testing Agency: Southern Earth Science or other qualified testing agency to perform tests and inspections.

B. Perform the following tests:

C. Soil will be considered defective if it does not pass tests.

D. Prepare test reports.

E. Label each sample and test report with the date, location keyed to a site plan or other location system, visible conditions when and where sample was taken, and sampling depth.

3.4 PROTECTION

A. Protection Zone: Identify protection zones according to Section 015639 "Temporary Tree and Plant Protection."

B. Protect areas of in-place soil from additional compaction, disturbance, and contamination. Prohibit the following practices within these areas except as required to perform planting operations:

1. Storage of construction materials, debris, or excavated material.
2. Parking vehicles or equipment.
3. Vehicle traffic.
4. Foot traffic.
5. Erection of sheds or structures.
6. Impoundment of water.
7. Excavation or other digging unless otherwise indicated.

C. If planting soil or subgrade is over compacted, disturbed, or contaminated by foreign or deleterious materials or liquids, remove the planting soil and contamination; restore the subgrade as directed by Landscape Architect and replace contaminated planting soil with new planting soil.

3.5 CLEANING

A. Protect areas adjacent to planting-soil preparation and placement areas from contamination. Keep adjacent paving and construction clean and work area in an orderly condition.

B. Remove surplus soil and waste material including excess subsoil, unsuitable materials, trash, and debris and legally dispose of them off Owner's property unless otherwise indicated.
1. Dispose of excess subsoil and unsuitable materials on-site where directed by Owner.

END OF SECTION 329113
SECTION 329200 – TURF AND GRASSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Seeding.
 2. Hydroseeding.
 4. Plugging.
 5. Sprigging.

B. Related Requirements:
 1. Section 329300 "Plants" for trees, shrubs, ground covers, and other plants as well as border edgings and mow strips.
 2. Section 334600 "Subdrainage" for below-grade drainage of landscaped areas.

1.3 DEFINITIONS

A. Finish Grade: Elevation of finished surface of planting soil.

B. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. They also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.

C. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.

D. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See Section 329113 "Soil Preparation" and drawing designations for planting soils.

E. Subgrade: The surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

1.4 PREINSTALLATION MEETINGS

A. Pre-installation Conference: Conduct conference at Project site.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For landscape Installer.

B. Certification of Grass Seed: From seed vendor for each grass-seed monostand or mixture, stating the botanical and common name, percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.

1. Certification of each seed mixture for turfgrass sod. Include identification of source and name and telephone number of supplier.

C. Product Certificates: For fertilizers, from manufacturer.

D. Pesticides and Herbicides: Product label and manufacturer's application instructions specific to Project.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: Recommended procedures to be established by Owner for maintenance of turf during a calendar year. Submit before expiration of required maintenance periods.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful turf establishment.

1. Professional Membership: Installer shall be a member in good standing of either the Professional Land care Network or the Florida Nursery and Landscape Association.
2. Experience: Five years' experience in turf installation in addition to requirements in Section 014000 "Quality Requirements."
3. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.
4. Personnel Certifications: Installer's personnel assigned to the Work shall have certification in all of the following categories:
 a. Landscape Industry Certified Technician.
 b. Landscape Industry Certified Lawn care Technician.
5. Pesticide Applicator: State licensed, commercial.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.

B. Sod: Harvest, deliver, store, and handle sod according to requirements in "Specifications for Turfgrass Sod Materials" and "Specifications for Turfgrass Sod Transplanting and Installation" sections in TPI's "Guideline Specifications to Turfgrass Sodding." Deliver sod within 24 hours of harvesting and in time for planting promptly. Protect sod from breakage and drying.
1.9 FIELD CONDITIONS

A. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 SEED

A. Grass Seed: Fresh, clean, dry, new-crop seed complying with AOSA's "Rules for Testing Seeds" for purity and germination tolerances.

B. Seed Species:
 1. Quality: State-certified seed of grass species as listed below for solar exposure.
 2. Quality: Seed of grass species as listed below for solar exposure, with not less than 85 percent germination, not less than 95 percent pure seed, and not more than 0.5 percent weed seed:
 3. Full Sun: Centipede Grass (Eremochloa Ophiuroides).

2.2 TURFGRASS SOD

A. Turfgrass Sod: Certified Number 1 Quality/Premium, including limitations on thatch, weeds, diseases, nematodes, and insects, complying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding." Furnish viable sod of uniform density, color, and texture that is strongly rooted and capable of vigorous growth and development when planted.

B. Turfgrass Species: Centipede Grass (Eremochloa Ophiuroides).

C. Turfgrass Species: Sod of grass species as follows, with not less than 85 percent germination, not less than 95 percent pure seed, and not more than 0.5 percent weed seed:

2.3 FERTILIZERS

A. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:
1. Composition: 1 lb/1000 sq. ft. of actual nitrogen, 4 percent phosphorous, and 2 percent potassium, by weight.
2. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

B. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:

1. Composition: 20 percent nitrogen, 10 percent phosphorous, and 10 percent potassium, by weight.
2. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

2.4 MULCHES

A. Straw Mulch: Provide air-dry, clean, mildew- and seed-free, salt hay or threshed straw of wheat, rye, oats, or barley.

B. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:

1. Organic Matter Content: 50 to 60 percent of dry weight.

2.5 PESTICIDES

A. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

B. Pre-Emergent Herbicide (Selective and Nonselective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.

C. Post-Emergent Herbicide (Selective and Nonselective): Effective for controlling weed growth that has already germinated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to be planted for compliance with requirements and other conditions affecting installation and performance of the Work.

1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.
2. Suspend planting operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
3. Uniformly moisten excessively dry soil that is not workable or which is dusty.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Landscape Architect and replace with new planting soil.

3.2 PREPARATION

A. Protect structures; utilities; sidewalks; pavements; and other facilities, trees, shrubs, and plantings from damage caused by planting operations.
 1. Protect adjacent and adjoining areas from hydroseeding and hydromulching overspray.
 2. Protect grade stakes set by others until directed to remove them.

B. Install erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

3.3 TURF AREA PREPARATION

A. General: Prepare planting area for soil placement and mix planting soil according to Section 329113 "Soil Preparation."

B. Placing Planting Soil: Place manufactured planting soil over exposed subgrade.
 1. Reduce elevation of planting soil to allow for soil thickness of sod.

C. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

D. Before planting obtain Landscape Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.4 SEEDING

A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph.
 1. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 2. Do not use wet seed or seed that is moldy or otherwise damaged.
 3. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.

B. Sow seed at a total rate of 6 to 8 lb/1000 sq. ft..

C. Rake seed lightly into top 1/8 inch of soil, roll lightly, and water with fine spray.

D. Protect seeded areas with slopes not exceeding 1:6 by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acre to form a continuous blanket 1-1/2 inches in loose thickness over seeded areas. Spread by hand, blower, or other suitable equipment.
E. Protect seeded areas from hot, dry weather or drying winds by applying compost mulch within 24 hours after completing seeding operations. Soak areas, scatter mulch uniformly to a thickness of 3/16 inch and roll surface smooth.

3.5 HYDROSEEDING

A. Hydroseeding: Mix specified seed, slow-release fertilizer and fiber mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application.

3.6 SODDING

A. Lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy.

B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to soil or sod during installation. Tamp and roll lightly to ensure contact with soil, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.

1. Lay sod across slopes exceeding 1:3.
2. Anchor sod on slopes exceeding 1:6 with steel staples spaced as recommended by sod manufacturer but not less than two anchors per sod strip to prevent slippage.

C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below sod.

3.7 TURF MAINTENANCE

A. General: Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.

1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
2. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.

B. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than one-third of grass height. Remove no more than one-third of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:

1. Mow centipede grass to a height of 1 1/2 to 2 inch.
2. Use fertilizer that provides actual nitrogen of at least 1 lb/1000 sq. ft to turf area.
3.8 SATISFACTORY TURF

A. Turf installations shall meet the following criteria as determined by Landscape Architect:

1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 20 sq. ft and bare spots not exceeding 5 by 5 inches.

2. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.

B. Use specified materials to reestablish turf that does not comply with requirements, and continue maintenance until turf is satisfactory.

3.9 PESTICIDE APPLICATION

A. Apply pesticides and other chemical products and biological control agents according to requirements of authorities having jurisdiction and manufacturer’s written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.

B. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer's written recommendations.

3.10 CLEANUP AND PROTECTION

A. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of them off Owner's property.

C. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.

D. Remove non-degradable erosion-control measures after grass establishment period.

END OF SECTION 329200
SECTION 329300 - PLANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Plants.
 2. Tree stabilization.
 3. Tree-watering devices.
 4. Landscape edgings.
 5. Tree grates.

B. Related Requirements:
 1. Section 015639 "Temporary Tree and Plant Protection" for protecting, trimming, pruning, repairing, and replacing existing trees to remain that interfere with, or are affected by, execution of the Work.
 2. Section 329200 "Turf and Grasses" for turf (lawn) and meadow planting, hydoseeding, and erosion-control materials.

1.3 DEFINITIONS

A. Backfill: The earth used to replace or the act of replacing earth in an excavation.

B. Container-Grown Stock: Healthy, vigorous, well-rooted plants grown in a container, with a well-established root system reaching sides of container and maintaining a firm ball when removed from container. Container shall be rigid enough to hold ball shape and protect root mass during shipping and be sized according to ANSI Z60.1 for type and size of plant required.

C. Finish Grade: Elevation of finished surface of planting soil.

D. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. They also include substances or mixtures intended for use as a plant regulator, defoliant, or desiccant. Some sources classify herbicides separately from pesticides.

E. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.

F. Planting Area: Areas to be planted.
G. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See Section 329113 "Soil Preparation" for drawing designations for planting soils.

H. Plant; Plants; Plant Material: These terms refer to vegetation in general, including trees, shrubs, vines, ground covers, ornamental grasses, bulbs, corms, tubers, or herbaceous vegetation.

I. Root Flare: Also called "trunk flare." The area at the base of the plant's stem or trunk where the stem or trunk broadens to form roots; the area of transition between the root system and the stem or trunk.

J. Stem Girdling Roots: Roots that encircle the stems (trunks) of trees below the soil surface.

K. Subgrade: The surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

1.4 COORDINATION

A. Coordination with Turf Areas: Plant trees, shrubs, and other plants after finish grades are established and before planting turf areas unless otherwise indicated.

1. When planting trees, shrubs, and other plants after planting turf areas, protect turf areas, and promptly repair damage caused by planting operations.

1.5 PREINSTALLATION MEETINGS

A. Pre-installation Conference: Conduct conference at Project site.

1.6 ACTION SUBMITTALS

A. Product Data: For each type of product.

2. Plant Photographs: Include color photographs in digital print format of each required species and size of plant material as it will be furnished to Project. Take photographs from an angle depicting true size and condition of the typical plant to be furnished. Include a scale rod or other measuring device in each photograph. For species where more than 20 plants are required, include a minimum of two (2) photographs showing the average plant, the best quality plant, and the worst quality plant to be furnished. Identify each photograph with the full scientific name of the plant, plant size, and name of the growing nursery.

B. Samples for Verification: For each of the following:

1. Trees and Shrubs: one (1) sample of each variety and size delivered to site for review. Maintain approved samples on-site as a standard for comparison.

1.7 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of manufactured product, from manufacturer, and complying with the following:
1. Manufacturer's certified analysis of standard products.
2. Analysis of other materials by a recognized laboratory made according to methods established by the Association of Official Analytical Chemists, where applicable.

B. Pesticides and Herbicides: Product label and manufacturer's application instructions specific to Project.

C. Sample Warranty: For special warranty.

1.8 CLOSEOUT SUBMITTALS

A. Maintenance Data: Recommended procedures to be established by Owner for maintenance of plants during a calendar year. Submit before expiration of required maintenance periods.

1.9 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful establishment of plants.

1. Professional Membership: Installer shall be a member in good standing of either the Florida Nursery and Landscape Association.
2. Experience: Five years' experience in landscape installation in addition to requirements in Section 014000 "Quality Requirements."
3. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.

B. Provide quality, size, genus, species, and variety of plants indicated, complying with applicable requirements in ANSI Z60.1.

C. Measurements: Measure according to ANSI Z60.1. Do not prune to obtain required sizes.

1. Trees and Shrubs: Measure with branches and trunks or canes in their normal position. Take height measurements from or near the top of the root flare for field-grown stock and container-grown stock. Measure main body of tree or shrub for height and spread; do not measure above the root flare for larger sizes.
2. Other Plants: Measure with stems, petioles branches or roots tip to tip. Take caliper measurements 6 inches above the root flare for trees up to 4-inch caliper size, and 12 inches, and foliage in their normal position.

D. Plant Material Observation: Landscape Architect may observe plant material either at place of growth or at site before planting for compliance with requirements for genus, species, variety, cultivar, size, and quality. Landscape Architect may also observe trees and shrubs further for size and condition of balls and root systems, pests, disease symptoms, injuries, and latent defects and may reject unsatisfactory or defective material at any time during progress of work. Remove rejected trees or shrubs immediately from Project site.

1. Notify Landscape Architect of sources of planting materials five (5) days in advance of delivery to site.
1.10 DELIVERY, STORAGE, AND HANDLING

A. Bulk Materials:
 1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
 2. Provide erosion-control measures to prevent erosion or displacement of bulk materials; discharge of soil-bearing water runoff; and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
 3. Accompany each delivery of bulk materials with appropriate certificates.

B. Do not prune trees and shrubs before delivery. Protect bark, branches, and root systems from sun scald, drying, wind burn, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy their natural shape. Provide protective covering of plants during shipping and delivery. Do not drop plants during delivery and handling.

C. Apply anti-desiccant to trees and shrubs using power spray to provide an adequate film over trunks (before wrapping), branches, stems, twigs, and foliage to protect during digging, handling, and transportation.
 1. If deciduous trees or shrubs are moved in full leaf, spray with antidesiccant at nursery before moving and again two weeks after planting.

D. Wrap trees and shrubs with burlap fabric over trunks, branches, stems, twigs, and foliage to protect from wind and other damage during digging, handling, and transportation.

E. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than six hours after delivery, set plants and trees in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist.
 1. Do not remove container-grown stock from containers before time of planting.
 2. Water root systems of plants stored on-site deeply and thoroughly with a fine-mist spray. Water as often as necessary to maintain root systems in a moist, but not overly wet condition.

1.11 FIELD CONDITIONS

A. Field Measurements: Verify actual grade elevations, service and utility locations, irrigation system components, and dimensions of plantings and construction contiguous with new plantings by field measurements before proceeding with planting work.

B. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions and warranty requirements.

1.12 WARRANTY

A. Special Warranty: Installer agrees to repair or replace plantings and accessories that fail in materials, workmanship, or growth within specified warranty period.
 1. Failures include, but are not limited to, the following:
a. Death and unsatisfactory growth, except for defects resulting from abuse, lack of adequate maintenance, or neglect by Owner.
b. Structural failures including plantings falling or blowing over.

2. Warranty Periods: From date of planting completion.
 a. Trees, Shrubs, Vines, and Ornamental Grasses: 12 months.
 b. Ground Covers, Biennials, Perennials, and Other Plants: 12 months.
 c. Annuals: Three months.

3. Include the following remedial actions as a minimum:
 a. Immediately remove dead plants and replace unless required to plant in the succeeding planting season.
 b. Replace plants that are more than 25 percent dead or in an unhealthy condition at end of warranty period.
 c. A limit of one replacement of each plant is required except for losses or replacements due to failure to comply with requirements.
 d. Provide extended warranty for period equal to original warranty period, for replaced plant material.

PART 2 - PRODUCTS

2.1 PLANT MATERIAL

A. General: Furnish nursery-grown plants true to genus, species, variety, cultivar, stem form, shearing, and other features indicated in Plant List, Plant Schedule, or Plant Legend indicated on Drawings and complying with ANSI Z60.1; and with healthy root systems developed by transplanting or root pruning. Provide well-shaped, fully branched, healthy, vigorous stock, densely foliated when in leaf and free of disease, pests, eggs, larvae, and defects such as knots, sun scald, injuries, abrasions, and disfigurement.

1. Trees with damaged, crooked, or multiple leaders; tight vertical branches where bark is squeezed between two branches or between branch and trunk ("included bark"); crossing trunks; cut-off limbs more than 3/4 inch in diameter; or with stem girdling roots are unacceptable.

B. Provide plants of sizes, grades, and ball or container sizes complying with ANSI Z60.1 for types and form of plants required. Plants of a larger size may be used if acceptable to Landscape Architect, with a proportionate increase in size of roots or balls.

C. Root-Ball Depth: Furnish trees and shrubs with root balls measured from top of root ball, which begins at root flare according to ANSI Z60.1. Root flare shall be visible before planting.

D. Labeling: Label at least one plant of each variety, size, and caliper with a securely attached, waterproof tag bearing legible designation of common name and full scientific name, including genus and species. Include nomenclature for hybrid, variety, or cultivar, if applicable for the plant.

E. If formal arrangements or consecutive order of plants is indicated on Drawings, select stock for uniform height and spread, and number the labels to assure symmetry in planting.

F. Provide healthy, disease-free plants of species and variety shown or listed, with well-established root systems reaching to sides of the container to maintain a firm ball, but not with excessive root
growth encircling the container. Provide only plants that are acclimated to outdoor conditions before delivery.

2.2 FERTILIZERS

A. Planting Tablets: Tightly compressed chip-type, long-lasting, slow-release, commercial-grade planting fertilizer in tablet form. Tablets shall break down with soil bacteria, converting nutrients into a form that can be absorbed by plant roots.

1. Nutrient Composition: 20 percent nitrogen, 10 percent phosphorous, and 5 percent potassium, by weight plus micronutrients.

2.3 MULCHES

A. Organic Mulch: Free from deleterious materials and suitable as a top dressing of trees and shrubs, consisting of one of the following:

1. Type: Pine straw
2. Size Range: 3 inches deep.

2.4 PESTICIDES

A. General: Pesticide registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

B. Pre-Emergent Herbicide (Selective and Nonselective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.

C. Post-Emergent Herbicide (Selective and Nonselective): Effective for controlling weed growth that has already germinated.

2.5 TREE-STABILIZATION MATERIALS

A. Trunk-Stabilization Materials:

1. Upright and Guy Stakes: Rough-sawn, sound, new softwood with specified wood pressure-preservative treatment, free of knots, holes, cross grain, and other defects. See Sheet LS.4 for sizing and location. Retain "Flexible Ties" or "Guys and Tie Wires" Subparagraph below.

2. Flags: Standard surveyor's plastic flagging tape, white, 6 inches long.
3. Proprietary Staking-and-Guying Devices: Proprietary stake or anchor and adjustable tie systems to secure each new planting by plant stem; sized as indicated and according to manufacturer's written recommendations.

B. Root-Ball Stabilization Materials:
1. Upright Stakes and Horizontal Hold-Down: Rough-sawn, sound, new hardwood or softwood, free of knots, holes, cross grain, and other defects, 2-by-2-inch nominal by length indicated; stakes pointed at one end.
3. Proprietary Root-Ball Stabilization Devices: Proprietary at- or below-grade stabilization systems to secure each new planting by root ball and that do not encircle the trunk; sized according to manufacturer's written recommendations unless otherwise indicated.

C. Palm Bracing: Battens or blocks, struts, straps, and protective padding.

1. Battens or Blocks and Struts: Rough-sawn, sound, new hardwood or softwood, free of knots, holes, cross grain, and other defects, 2-by-4-inch nominal by lengths indicated.
2. Straps: Adjustable steel or plastic package banding.
4. Proprietary Palm-Bracing Devices: Proprietary systems to secure each new planting by trunk; sized according to manufacturer's written recommendations unless otherwise indicated.

2.6 MISCELLANEOUS PRODUCTS

A. Mycorrhizal Fungi: Dry, granular inoculant containing at least 5300 spores per lb of vesicular-arbuscular mycorrhizal fungi and 95 million spores per lb of ectomycorrhizal fungi, 33 percent hydrogel, and a maximum of 5.5 percent inert material.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas to receive plants, with Installer present, for compliance with requirements and conditions affecting installation and performance of the Work.

1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.
2. Verify that plants and vehicles loaded with plants can travel to planting locations with adequate overhead clearance.
3. Suspend planting operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.
4. Uniformly moisten excessively dry soil that is not workable or which is dusty.

B. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Architect and replace with new planting soil.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities and turf areas and existing plants from damage caused by planting operations.
B. Install erosion-control measures, if necessary, to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

C. Lay out individual tree and shrub locations and areas for multiple plantings. Stake locations, outline areas, adjust locations when requested, and obtain Landscape Architect's acceptance of layout before excavating or planting. Make minor adjustments as required.

D. Lay out plants at locations directed by Landscape Architect. Stake locations of individual trees and shrubs and outline areas for multiple plantings.

3.3 PLANTING AREA ESTABLISHMENT

A. General: Prepare planting area for soil placement and mix planting soil according to Section 329113 "Soil Preparation."

B. Placing Planting Soil: Place and mix planting soil in-place over exposed subgrade.

C. Before planting, obtain Landscape Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

D. Application of Mycorrhizal Fungi: At time directed by Landscape Architect, broadcast dry product uniformly over prepared soil at application rate according to manufacturer’s written recommendations.

3.4 EXCAVATION FOR TREES AND SHRUBS

A. Planting Pits and Trenches: Excavate circular planting pits.

1. Excavate planting pits with sides sloping inward at a 45-degree angle. Excavations with vertical sides are unacceptable. Trim perimeter of bottom leaving center area of bottom raised slightly to support root ball and assist in drainage away from center. Do not further disturb base. Ensure that root ball will sit on undisturbed base soil to prevent settling. Scarify sides of planting pit smeared or smoothed during excavation.

2. Excavate approximately three times as wide as ball diameter for container-grown stock.

3. If area under the plant was initially dug too deep, add soil to raise it to the correct level and thoroughly tamp the added soil to prevent settling.

4. Maintain angles of repose of adjacent materials to ensure stability. Do not excavate subgrades of adjacent paving, structures, hardscapes, or other new or existing improvements.

5. Maintain supervision of excavations during working hours.

6. Keep excavations covered or otherwise protected after working hours.

B. Backfill Soil: Subsoil and topsoil removed from excavations may be used as backfill soil unless otherwise indicated.

C. Obstructions: Notify Landscape Architect if unexpected rock or obstructions detrimental to trees or shrubs are encountered in excavations.

3.5 TREE, SHRUB, AND VINE PLANTING

A. Inspection: At time of planting, verify that root flare is visible at top of root ball according to ANSI Z60.1. If root flare is not visible, remove soil in a level manner from the root ball to where the top-
most root emerges from the trunk. After soil removal to expose the root flare, verify that root ball still meets size requirements.

B. Roots: Remove stem girdling roots and kinked roots. Remove injured roots by cutting cleanly; do not break.
1. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half filled, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.

2. Continue backfilling process. Water again after placing and tamping final layer of soil.

C. Container-Grown Stock: Set each plant plumb and in center of planting pit or trench with root flare 2 inch above adjacent finish grades.
1. Carefully remove root ball from container without damaging root ball or plant.

2. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half filled, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.

3. Continue backfilling process. Water again after placing and tamping final layer of soil.

D. Slopes: When planting on slopes, set the plant so the root flare on the uphill side is flush with the surrounding soil on the slope; the edge of the root ball on the downhill side will be above the surrounding soil. Apply enough soil to cover the downhill side of the root ball.

3.6 TREE, SHRUB, AND VINE PRUNING

A. Remove only dead, dying, or broken branches. Do not prune for shape.

B. Prune, thin, and shape trees, shrubs, and vines as directed by Landscape Architect.

C. Prune, thin, and shape trees, shrubs, and vines according to standard professional horticultural and arboricultural practices. Unless otherwise indicated by Landscape Architect, do not cut tree leaders; remove only injured, dying, or dead branches from trees and shrubs; and prune to retain natural character.

D. Do not apply pruning paint to wounds.

3.7 TREE STABILIZATION

A. Trunk Stabilization by Upright Staking and Tying: Install trunk stabilization as shown on plans.

B. Palm Bracing: Install bracing system at three or more places equally spaced around perimeter of trunk to secure each palm until established unless otherwise indicated.

1. Site-Fabricated Palm-Bracing Method:
 a. Place battens over padding and secure battens in place around trunk perimeter with at least two straps, tightened to prevent displacement. Ensure that straps do not contact trunk.
 b. Place diagonal braces and cut to length. Secure upper ends of diagonal braces with galvanized nails into battens or into nail-attached blocks on battens. Do not drive nails, screws, or other securing devices into palm trunk; do not penetrate palm trunk
in any fashion. Secure lower ends of diagonal braces with stakes driven into ground to prevent outward slippage of braces.

2. Proprietary Palm-Bracing Device: Install palm-bracing system sized and positioned as recommended by manufacturer unless otherwise indicated and according to manufacturer’s written instructions.

3.8 PLACING SOIL IN PLANTERS

A. Fill planter with planting soil. Place soil in lightly compacted layers to an elevation of 1-1/2 inches below top of planter, allowing natural settlement.

3.9 GROUND COVER AND PLANT PLANTING

A. Set out and space ground cover and plants other than trees, shrubs, and vines as indicated on Drawings in even rows with triangular spacing.

B. Use planting soil for backfill.

C. Dig holes large enough to allow spreading of roots.

D. Work soil around roots to eliminate air pockets and leave a slight saucer indentation around plants to hold water.

E. Water thoroughly after planting, taking care not to cover plant crowns with wet soil.

F. Protect plants from hot sun and wind; remove protection if plants show evidence of recovery from transplanting shock.

3.10 PLANTING AREA MULCHING

A. Mulch backfilled surfaces of planting areas and other areas indicated.
 1. Trees in Turf Areas: Apply organic mulch ring of 2-inch average thickness, with 36-inch radius around trunks or stems. Do not place mulch within 3 inches of trunks or stems.
 2. Organic Mulch in Planting Areas: Apply 2-inch average thickness of organic mulch 6 inches beyond edge of individual planting pit or trench and over whole surface of planting area, and finish level with adjacent finish grades. Do not place mulch within 3 inches of trunks or stems.

B. Shovel-Cut Edging: Separate mulched areas from turf areas curbs, and paving with a 45-degree, 4- to 6-inch deep, shovel-cut edge.

3.11 PLANT MAINTENANCE

A. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring planting saucers, adjusting and repairing tree-stabilization devices, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings.

B. Fill in, as necessary, soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence.
C. Apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use integrated pest management practices when possible to minimize use of pesticides and reduce hazards. Treatments include physical controls such as hosing off foliage, mechanical controls such as traps, and biological control agents.

3.12 PESTICIDE APPLICATION

A. Apply pesticides and other chemical products and biological control agents according to authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.

B. Pre-Emergent Herbicides (Selective and Nonselective): Apply to tree, shrub, and ground-cover areas according to manufacturer's written recommendations. Do not apply to seeded areas.

C. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer's written recommendations.

3.13 REPAIR AND REPLACEMENT

A. General: Repair or replace existing or new trees and other plants that are damaged by construction operations, in a manner approved by Landscape Architect.
 1. Submit details of proposed pruning and repairs.
 2. Perform repairs of damaged trunks, branches, and roots within 24 hours, if approved.
 3. Replace trees and other plants that cannot be repaired and restored to full-growth status, as determined by Architect.

B. Remove and replace trees that are more than 25 percent dead or in an unhealthy condition before the end of the corrections period or are damaged during construction operations that Landscape Architect determines are incapable of restoring to normal growth pattern.

3.14 CLEANING AND PROTECTION

A. During planting, keep adjacent paving and construction clean and work area in an orderly condition. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Remove surplus soil and waste material including excess subsoil, unsuitable soil, trash, and debris and legally dispose of them off Owner's property.

C. Protect plants from damage due to landscape operations and operations of other contractors and trades. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged plantings.

D. After installation and before Substantial Completion, remove nursery tags, nursery stakes, tie tape, labels, wire, burlap, and other debris from plant material, planting areas, and Project site.

END OF SECTION 329300
THIS PAGE INTENTIONALLY LEFT BLANK